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Abstract

We show that there is a set of points p1, po, ..., pn such that any arithmetic
circuit of depth d for polynomial evaluation (or interpolation) at these points
has size

< nlogn >

log(2+d/logn)/

Moreover, for circuits of sub-logarithmic depth, we obtain a lower bound of
Q(dn't1/4) on its size.

1 Introduction

To prove a superlinear lower bound for a natural problem is one of the
greatest challenges of theoretical computer science. Algebraic complexity
theory is the study of a restricted class of algorithms that can perform
arithmetic operations on data (i.e., add, subtract, multiply and divide), but
that do not care how the data is represented. This is a reasonable class
of algorithms to consider when solving algebraic problems. We shall use
arithmetic circuits as our model of computation. Two very natural measures
of the complexity of such a circuit are its size (number of gates and wires)
and depth (length of longest path from input to output). We formally define
these notions in the next section.

*Appeared in Proc. 81st Annual Symposium on Foundations of Computer Science
(FOCS), pp. 378-383, 1991; this work was done while both authors were postdoctoral
fellows in the Dept. of Computer Science at the University of Toronto; first author’s
current address: IBM Ziurich Research Laboratory, Saumerstrasse 4, 8803 Riischlikon,
Switzerland, sho@zurich.ibm.com.



Even though restricting the model of computation to arithmetic circuits
allows one to obtain lower bounds that are not currently obtainable in a
more general model, proving lower bounds on the algebraic complexity of
natural problems is still extremely difficult.

In this paper, we consider the problem of evaluating a polynomial at a
fixed set of points. This problem has a very simple definition: the input
is the list of coefficients of a polynomial of degree n — 1 over the complex
numbers C; the output is the list of values of this polynomial at n points
P1,P2,---,Pn € C. It is important to note that we do not view these points
as part of the input. This problem is the same as computing the linear
transformation on C™ defined by the Vandermonde matrix V = (pf_l).

Multi-point evaluation is of central importance in algebraic computation,
and has been well-studied (see, e.g., [AHU74] or [Bmu75]). The best arith-
metic circuits for this problem are of size O(n(log n)?) and depth O((log n)?).
When the points are the n-th roots of unity, then this problem is called the
Discrete Fourier Transform (DFT). When 7 is a power of 2, the DFT can be
computed by an arithmetic circuit of size O(n(logn)) and depth O(logn).

Suppose we are given an n X n matrix A with entries in C and ask:
what is the size of the smallest arithmetic circuit that computes the linear
transformation on C™ defined by A? It is easy to use a transcendence degree
argument to show that if A contains a superlinear number of entries that
are algebraically independent over Q, the rational numbers, then any circuit
that computes the linear transformation defined by A must have superlinear
size.

An n X n Vandermonde matrix V' contains at most n algebraically in-
dependent points, and so the above transcendence degree argument does
not apply. In fact, it is not known if there exists a set of points for which
polynomial evaluation at these points requires circuits of superlinear size.

Since we are computing a set of linear forms, for the purpose of proving
lower bounds, we can restrict ourselves to linear circuits. A linear circuit
is an arithmetic circuit that that uses only multiplication by constants and
addition. At the expense of increasing the size and depth by constant factors,
we can replace an arbitrary arithmetic circuit for computing a set of linear
forms by a linear circuit [St73b]. We allow unbounded fan-in of addition
gates, so that linear circuits of sub-logarithmic depth are possible.

In this paper we consider circuits of small depth. We prove that there
exists a set of points p1,...,p, such that for any circuit of size £ and depth



d for polynomial evaluation at these points, we have

nlogn
L=Q .
<10g(2 +d/log n)>

Thus, for circuits of depth (logn)?(), we have £ = Q(nlogn/loglogn),
and for circuits of depth O(logn), we have £ = Q(nlogn). For circuits
of sub-logarithmic depth, we can obtain an even better lower bound: ¢ =
Q(dn!t1/d),

In proving this lower bound, we show that we can take any set of points
{p1,...,pn} that is algebraically independent over Q. In fact, this condition
is stronger than necessary; it suffices that the set {p{* : 0 < e; <n—1}1is
linearly independent over Q. So for example, if q1, . . ., g, are distinct primes
larger than n, and if we let p; be a primitive g;-th root of unity, then our
lower bound holds.

Moreover, we show that we can take a any set of integer points that grow
fast enough so as to “look” algebraically independent. For example

n—1

p1:2a p2:2na sy pn:2n

These lower bounds are not entirely satisfying. A much more challeng-
ing problem is to prove a lower bound, assuming that the points are small
integers, bounded, say, by n°®(1), or even gn®t)

One should understand our result as follows. Any arithmetic circuit for
multi-point polynomial evaluation that does not use some specific algebraic
relations among the points is subject to our lower bound.

We also prove analogous results for the inverse problem of polynomial
interpolation, i.e., computing the linear transformation on C" defined by

the matrix V1.

Related work

Valiant [Val77] also considered circuits of small depth for computing linear
transformations. Valiant proved that if the matrix of a linear transformation
is “rigid” then a linear circuit of small depth requires superlinear size in order
to compute the transformation.

A matrix has high rigidity if its rank is high and remains high if the values
of a small number of entries are changed. It was conjectured by Valiant that
all the Vandermonde matrices have high rigidity, but this conjecture remains
unproven. Moreover, it is not known if any Vandermonde matrix has high



rigidity. Some estimations of rigidity for specific matrices were made by
Razborov [Raz] and Friedman [Fri93]. However all the known bounds on the
rigidity of specific matrices are still not high enough to imply complexity
bounds.

We also point out that even though we do not prove any rigidity condi-
tions, the lower bounds we obtain are similar to what one would obtain if
these matrices could be shown to be highly rigid.

Other restrictions on circuits besides depth are possible. For example,
Morgenstern [Mor73] showed that if the constants used in the linear circuit
have absolute value at most one, then a circuit that computes the DFT has
size Q(nlogn). In fact, the best known circuits for this problem satisfy this
property.

In this paper, we view the points p1, ..., p, as fixed, but one can also con-
sider the problem of multi-point polynomial evaluation in which the points
are viewed as part of the input. In this situation, the functions being
computed are no longer linear forms. Using a degree argument involving
tools from algebraic geometry, Strassen [St73a] obtained an Q(nlogn) lower
bound for this problem on circuit size—with no depth restriction.

Our result complements Strassen’s, in that it says that no amount of
precomputation based on the points will yield a linear size, small depth
circuit.

2 Basic Notation and Definitions

An arithmetic circuit P over a field K is a directed acyclic graph. Each
node is labeled as one of five types: input, constant, addition, multiplica-
tion, and division. The edges are also labeled with constants from K called
edge weights. The input nodes and constant nodes have in-degree 0, and
the constant nodes are labeled with constants from K. The multiplication
and division nodes all have in-degree 2. We allow addition nodes to have
arbitrary in-degree. Some nodes are also distinguished as output nodes.

P computes a function in the usual way; we only remark that the in-
terpretation given to the edge weights is that a value is multiplied by the
weight on that edge before being fed to the target node of that edge.

The size of P is defined as the number of edges in the graph. The depth
of P is the length of the longest path from an input to an output. It will
also be useful to define the level of an edge as the length of the longest path
from an input to the target node of that edge.



A linear circuit over K is a special type of arithmetic circuit in which
the only allowed node types are input and addition. A linear circuit P with
n input nodes and m output nodes computes the linear transformation from
K™ to K™ defined by the matrix A = (a;;), where a;; is the sum over all
paths from input node j to output node 7 of the product of the edge weights
on that path. Conversely, it is known that for infinite K, if an arithmetic
circuit P computes a linear transformation, then there is a linear circuit P’
that computes the same function as P, and the size and depth of P’ are
within a constant factor of the size and depth of P [St73b].

3 Lower Bounds for Polynomial Evaluation

The motivation for our proof comes from the theory of algebraic dimension,
which measures the amount of algebraic independence of a set z1, ..., 2, of
elements in some algebra over a field in terms of the function D(m) defined
as the dimension of the vector space spanned by homogeneous polynomials
of degree m in z1,...,z,. Informally, we show that from the point of view
of a small-depth circuit, the entries of a Vandermonde matrix “look” more
algebraically independent than they “really” are.

Let A = (a;;) be an n X n matrix with entries in C. Denote by T'4(m)
the set of all monomials of degree m in {a;;}. Let D4(m) be the dimension
of the vector space over Q spanned by I'4(m).

Lemma 1. Suppose we have a linear circuit P over C of size ¢ and depth
d that computes a linear transformation on C™, and let A be the associated

matrix. Then ;
Dy(n) < (nJrT) ,

n

where r = [£/d].

Proof. Let I' =T 4(n) and D = D4(n).

Consider the graph defining the circuit P. For 1 < ¢ < d, let £; be the
number of edges at level ¢, and let T; be the set of edge weights that appear
at level 1.

Each matrix entry can be expressed as a sum of products of the form
oy -+ -ag, where a; € T; U{1}; we include 1 here because we might skip some
levels in the graph. Each element in I' is obtained by multiplying together



n matrix entries, and therefore can be expressed as a sum of products of the
form 1) (oD )
1 n 1 n
(V.o @l
where a( ) ¢ T; U{1}. We let S be the collection of all such products.

It is clear that each element in I' is in the Z-span of S. Since D <
Card(S), we now want to bound Card(S). The number of products of the
form
(1)
is no more than the number of monomials in ¢; variables of degree at most
n, which is (nzli). Therefore,

D < H<n+£)

=1

_ ﬁﬁ""‘” —j+1
= Hj_dH(n‘}‘fz’—j‘}‘l)-
7=1

=1

By the arithmetic-geometric mean inequality,

d
[I(n+&—-5+1)<(n+2/d—j+ 1)~
=1
Therefore,
n o d d
< H (n+r .d]—}—l) _ n—4+r .
i=1 J "
O
Theorem 1. Let py, ..., p, be complex numbers, algebraically independent

over Q, with n > 1. Consider a linear circuit of size ¢ and depth d for
polynomial evaluation at these points. There exists an absolute constant C

such that
nlogn

log(2 + d/logn)’
Moreover, if d < logn/log 3, then

L>C

2> Cdnltl/e,



Proof. Consider just those products of elements in the corresponding
matrix V taking one element from each row. This is the set of products of

the form
€1 €2

O SRRy O

where the e;’s range over all integers between 0 and n — 1. These products
are linearly independent over Q since the p;’s are algebraically independent,
and there are n” of them. Combining this with Lemma 1, we have

d
n™ < Dy(n) < (”“) ,

n

where r = [£/d]. From Stirling’s approximation, we have

(””)zowﬁwmwu+Wﬂm

n

Taking logarithms, we obtain

nlogn

nlog(l+r/n) +rlog(l+n/r) > + O(1).

We prove the second assertion of the theorem first. Assume that d <
log n/log 3. Since log(1+z) < z forall z > 0, rlog(1+n/r) < n. Therefore,

1
nlog(l+r/n)+n > n c;gn +0(1),
1
log(1+7/n) > =o=—140(1/n),
TS pl/dg=140(1/n) _ 1
n 2
Now, since we are assuming that n/4 > 3, for all sufficiently large n, we
have
r
- = Q 1/d
L= @),
¢ = Q(dnt19),

This proves the second assertion of the theorem.

To prove the first assertion, we can assume that logn/log3 < d < /7,
since, if d > /n, the lower bound (n) is trivial, and if d < logn/log3,
the bound in the second assertion implies the bound in the first assertion.



Moreover, we can assume that n/r > e — 1, since otherwise £ = Q(nlogn).
Then we have

nlog(l+r/n)+rlog(l+n/r) < r+rlog(l+n/r),
< 2rlog(l+ n/r).
Therefore,
1
orlog(1 + n/r) > —2% 4 0(1).
Put ¢t = n/r. Then
2log(14+1¢t) _ 1
og(1+?) 187 \ 1),

t - d
and so

t/logt = O(d/logn).
This implies that

t =0((d/logn)log(2+ d/logn)),

and so

0 — < nlogn >
~ " \log(2+d/logn)/ "

This proves the first assertion of the theorem. O

Theorem 2. Let p;1 = 2,p2 = 2%,...,pp = 2"n_1, with n > 1. Consider a
linear circuit of size £ and depth d for polynomial evaluation at these points.
There exists an absolute constant C' such that

nlogn

1 .
> Clog(2 + d/logn)

Moreover, if d < log n/log 3, then

2> Cdnltl/e,

Proof (sketch). To prove this theorem, we replace the preceding dimension
argument by a counting argument. Instead of the dimension Dy (n), we
consider the number D of distinct elements that can be expressed as sums
of distinct elements in I'y/(n). Included among these are all integers between
0 and 2°" — 1, s0 D > 2*". On the other hand, each element of I'y (n) can



be expressed as a sum ) g c()c, where S is as in the proof of Lemma 1,

and each c¢(a) is a positive integer bounded by gn®) Thus, one finds that
d
n" < nP0) (n N T) )

n

where r = [£/d].
The theorem is now proved using an argument similar to that used in
the proof of Theorem 1. O

4 Lower Bounds for Polynomial Interpolation

To prove corresponding lower bounds for polynomial interpolation, we ob-
serve that for a Vandermonde matrix V' = (pf_l), VTV is the Hankel matrix

S0 S1 [P Sp—1
81 82 DY Sn
H= ,
Sp—1 Sn 32(n—1)

where s; is the j-th power sum, s; =), pf We also have
v =(wTvyvl=HV L
It then follows that
Dy () = Dy»(n) < Da(n) - Dy (n).

But, since H has only 2n — 1 distinct entries,

DH(n) < (3nn— 2),

3n—2
n

and so
)Dv—l (’I'L)

From this, one can easily prove the following analog of Theorem 1.

Dy(n) < (



Theorem 3. Let py, ..., p, be complex numbers, algebraically independent
over Q, with n > 1. Consider a linear circuit of size ¢ and depth d for
polynomial interpolation at these points. There exists an absolute constant

C such that

nlogn
log(2 + d/logn)’
Moreover, if d < logn/log 3, then

L>C

£> Cdnltl/e,

By replacing the dimension argument with a counting argument, we
obtain the following analog of Theorem 2.

Theorem 4. Let p1 = 2,py = 2",...,pp = 2“n_1, with n > 1. Consider
a linear circuit of size £ and depth d for polynomial interpolation at these
points. There exists an absolute constant C' such that

nlogn

1 .
> Clog(Z + d/logn)

Moreover, if d < logn/log 3, then

2> Cdnltl/e,

We remark that the idea of writing VT = HV ™! comes from the paper
[CKY89], which uses this relation to prove an upper bound for computing
the linear transformation defined by the matrix V7.

5 Open Problems

Question 1. Can we remove the depth restriction on our lower bounds?

Without a depth restriction, we still know that the entries in the Van-
dermonde matrix V are expressible as multi-linear polynomials over Q in
the edge weights. If the points p1, ..., p, are algebraically independent, this
could very well imply a superlinear lower bound on the number of edge
weights that appear in a linear circuit for evaluating a polynomial at these
points.

For example, the following conjecture would imply an affirmative answer
to Question 1.

10



Conjecture. Consider a transcendental number, say w. Suppose that there
exist complex numbers c1,...,c; such that the powers 7, w2, 74, .. .,71'2k_1

can be expressed as multi-linear polynomials over Q in the ¢;’s. Then ¢ =

Q(k).

Our lower bounds do not exploit the structure of the matrix V, in the
sense that they hold even if we rearrange the matrix entries in an arbitrary
way. In particular, our techniques could never yield superlinear lower bounds
for DFT, or for a matrix with 0-1 entries.

Question 2. Can we exploit some constraints on the expressions for matrix
entries in terms of the edge weights that arise from the structure of the
matrix?

An example of one such constraint is the following. We know that each
matrix entry pf_l of V can be written as
-1
pZ :fij(cla"'7cl)

where the ¢;’s are the edge weights in the circuit, and f;; € Q[Xy,..., X,
Each matrix Vi with entries in Q(X3,...,X,) defined by

3
= (522)

has rank 1.
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