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Each set is implemented as a tree

Every node in the tree, other than the root, has a
pointer “up” to its parent

The representative of a set is the root of its tree

Find: follow pointers to the root

Union: Merge one root into the other root

Union/Find with “up trees”
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Example of Union:

Assume n items and m operations

Worst case: mn — trees may degenerate into lists

Two simple ideas: size balancing and path
compression
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Size balancing

Size balancing rule

In a Union operation, always merge the smaller
tree into the larger tree

Lemma 1
If T is a tree created by balanced merges, and T
has size n and height h, then n ≥ 2h



Size balancing

Size balancing rule

In a Union operation, always merge the smaller
tree into the larger tree

Lemma 1
If T is a tree created by balanced merges, and T
has size n and height h, then n ≥ 2h



Proof: induction on n.

Assume T was obtained by merging T1 into T2

where n1 := Sze(T1) ≤ n2 := Sze(T2)
Let h := Heght(T) for  = 1,2

By induction, n1 ≥ 2h1 and n2 ≥ 2h2

If h1 ≥ h2, then h = h1 + 1 and
n = n1 + n2 ≥ 2n1 ≥ 2 · 2h1 = 2h

If h1 < h2, then h = h2 and
n = n1 + n2 ≥ n2 ≥ 2h2 = 2h QED
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Path compression rule

After each Find operation, make all nodes visited
point to the root of the tree
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Running time analysis

For g ≥ 0, define

F(g) := 22
2 · ·
·2
«

g 2’s

Formally, F(0) := 1 and F(g+ 1) := 2F(g)

Define log∗ r := least g such that F(g) ≥ r

Theorem
With size balancing and path compression, any
sequence of m union/find operations on n items
takes time O((m+ n) log∗ n)



Running time analysis

For g ≥ 0, define

F(g) := 22
2 · ·
·2
«

g 2’s

Formally, F(0) := 1 and F(g+ 1) := 2F(g)

Define log∗ r := least g such that F(g) ≥ r

Theorem
With size balancing and path compression, any
sequence of m union/find operations on n items
takes time O((m+ n) log∗ n)



Running time analysis

For g ≥ 0, define

F(g) := 22
2 · ·
·2
«

g 2’s

Formally, F(0) := 1 and F(g+ 1) := 2F(g)

Define log∗ r := least g such that F(g) ≥ r

Theorem
With size balancing and path compression, any
sequence of m union/find operations on n items
takes time O((m+ n) log∗ n)



Running time analysis

For g ≥ 0, define

F(g) := 22
2 · ·
·2
«

g 2’s

Formally, F(0) := 1 and F(g+ 1) := 2F(g)

Define log∗ r := least g such that F(g) ≥ r

Theorem
With size balancing and path compression, any
sequence of m union/find operations on n items
takes time O((m+ n) log∗ n)



Running time analysis

For g ≥ 0, define

F(g) := 22
2 · ·
·2
«

g 2’s

Formally, F(0) := 1 and F(g+ 1) := 2F(g)

Define log∗ r := least g such that F(g) ≥ r

Theorem
With size balancing and path compression, any
sequence of m union/find operations on n items
takes time O((m+ n) log∗ n)



1 2 4

16

64K

264K

0 3

R0

R1

R2

R3

R4

R5

5

0
1
2

4

!

!

!

!

!
!

g

F(g)

Rg := (log∗)−1(g) = {r : log∗ r = g}
log∗ r ≤ g⇔ r ≤ F(g)

R0 = {0,1}, Rg = {F(g− 1) + 1, . . . , F(g)} for g > 0



1 2 4

16

64K

264K

0 3

R0

R1

R2

R3

R4

R5

5

0
1
2

4

!

!

!

!

!
!

g

F(g)

Rg := (log∗)−1(g) = {r : log∗ r = g}
log∗ r ≤ g⇔ r ≤ F(g)

R0 = {0,1}, Rg = {F(g− 1) + 1, . . . , F(g)} for g > 0



1 2 4

16

64K

264K

0 3

R0

R1

R2

R3

R4

R5

5

0
1
2

4

!

!

!

!

!
!

g

F(g)

Rg := (log∗)−1(g) = {r : log∗ r = g}
log∗ r ≤ g⇔ r ≤ F(g)

R0 = {0,1}, Rg = {F(g− 1) + 1, . . . , F(g)} for g > 0



1 2 4

16

64K

264K

0 3

R0

R1

R2

R3

R4

R5

5

0
1
2

4

!

!

!

!

!
!

g

F(g)

Rg := (log∗)−1(g) = {r : log∗ r = g}
log∗ r ≤ g⇔ r ≤ F(g)

R0 = {0,1}, Rg = {F(g− 1) + 1, . . . , F(g)} for g > 0



Let Op1, . . . , Opm be a sequence of union/find
operations

Consider the forest of trees F that results after
executing Op1, . . . , Opm with size balancing, but
no path compression

Define the rank of a node  to be its height in F

rank is a static quantity –
it does not change over
time
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Lemma 2
For every r ≥ 0, there are at most n/2r nodes of
rank r

Proof:

• By Lemma 1, any node of rank r is the root of a
subtree in F of size ≥ 2r

• Any two distinct nodes of rank r are roots of
disjoint subtrees in F
• Therefore, there can be at most n/2r nodes of

rank r

• QED
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Lemma 3
Suppose that at some time during the execution
of Op1, . . . , Opm with compression,  is a (strict)
descendent of . Then Rnk() < Rnk()

Proof:

• Key observations:

• path compression only eliminates descendency
relations – it never creates any new ones

• with no path compression, union/find
operations never destroy descendency
relations
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Prove by induction on :

• for all ,, if  is a descendent of  after
executing Op1, . . . , Op with compression, then
 is a descendent of  after executing
Op1, . . . , Op without compression

Thus, if  is a descendent of  at some point in
time during the execution of Op1, . . . , Opm with
compression, then  is a descendent of  in F ,
and hence Rnk() < Rnk() – QED

Definition
For a node , we define its group as
G() := log∗ Rnk()

Clearly, G() ≤ log∗ n
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Proof of Theorem

Union operations take O(1), so we can focus on
find operations

Let I be the set of indices  such that Op is a find
operation

Consider a fixed  ∈ I, with Op = “Fnd()”

Consider the path from  to the root:
 = 1, 2, . . . , k−2
︸ ︷︷ ︸

moved nodes

, k−1, k = root

By Lemma 3, we have
Rnk(1) < Rnk(2) < · · · < Rnk(k)

G(1) ≤ G(2) ≤ · · · ≤ G(k)
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Let X = {1, . . . , k}

C :=
∑

∈I |X| is the cost of all the find operations

Let’s split X into 3 sets:

• Y := {j : j < k − 1 and G(j) = G(j+1)}

• Z := {j : j < k − 1 and G(j) < G(j+1)}

• W := {j : j ≥ k − 1}

We have

• |Z| ≤ G(k) ≤ log∗ n

• |W| ≤ 2
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So we have
C =
∑

∈I
(|Y|+ |Z|+ |W|)

≤
∑

∈I
|Y|+m log∗ n+ 2m

Claim: C′ :=
∑

 |Y| ≤ n log
∗ n

Idea: Consider a fixed node 

• Each time  moves during a path compression,
’s new parent has a higher rank than ’s old
parent

• If G() = g, then after |Rg| − 1 moves,  must
acquire a parent whose group is > g
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For g ≥ 0, let Vg := { : G() = g}

We have

C′ ≤
log∗ n
∑

g=0

|Vg| · (|Rg| − 1)

≤ n+
log∗ n
∑

g=2

|Vg||Rg|

To prove the claim, it will suffice to show that
|Vg||Rg| ≤ n

for g > 0 (we may assume n > 1 and so
log∗ n > 0)
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For g > 0, we have
Rg = {F(g− 1) + 1, . . . , F(g)}

|Vg| ≤
∑

r∈Rg

n/2r (by Lemma 2)

=
n

2F(g−1)+1

F(g)−F(g−1)−1
∑

j=0

1/2j

≤
n

2F(g−1)
=

n

F(g)

Therefore,

|Vg||Rg| ≤
n

F(g)
· |Rg| ≤

n

F(g)
· F(g) = n.

QED
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