
Honors Algorithms
G22.3520-001 Fall 2007

Lecture 13

Each set is implemented as a tree

Every node in the tree, other than the root, has a
pointer “up” to its parent

The representative of a set is the root of its tree

Find: follow pointers to the root

Union: Merge one root into the other root

Union/Find with “up trees”

Each set is implemented as a tree

Every node in the tree, other than the root, has a
pointer “up” to its parent

The representative of a set is the root of its tree

Find: follow pointers to the root

Union: Merge one root into the other root

Union/Find with “up trees”

Each set is implemented as a tree

Every node in the tree, other than the root, has a
pointer “up” to its parent

The representative of a set is the root of its tree

Find: follow pointers to the root

Union: Merge one root into the other root

Union/Find with “up trees”

Each set is implemented as a tree

Every node in the tree, other than the root, has a
pointer “up” to its parent

The representative of a set is the root of its tree

Find: follow pointers to the root

Union: Merge one root into the other root

Union/Find with “up trees”

Each set is implemented as a tree

Every node in the tree, other than the root, has a
pointer “up” to its parent

The representative of a set is the root of its tree

Find: follow pointers to the root

Union: Merge one root into the other root

Union/Find with “up trees”

Each set is implemented as a tree

Every node in the tree, other than the root, has a
pointer “up” to its parent

The representative of a set is the root of its tree

Find: follow pointers to the root

Union: Merge one root into the other root

Union/Find with “up trees”

Example of Union:

Assume n items and m operations

Worst case: mn — trees may degenerate into lists

Two simple ideas: size balancing and path
compression

Example of Union:

Assume n items and m operations

Worst case: mn — trees may degenerate into lists

Two simple ideas: size balancing and path
compression

Example of Union:

Assume n items and m operations

Worst case: mn — trees may degenerate into lists

Two simple ideas: size balancing and path
compression

Example of Union:

Assume n items and m operations

Worst case: mn — trees may degenerate into lists

Two simple ideas: size balancing and path
compression

Example of Union:

Assume n items and m operations

Worst case: mn — trees may degenerate into lists

Two simple ideas: size balancing and path
compression

Size balancing

Size balancing rule

In a Union operation, always merge the smaller
tree into the larger tree

Lemma 1
If T is a tree created by balanced merges, and T
has size n and height h, then n ≥ 2h

Size balancing

Size balancing rule

In a Union operation, always merge the smaller
tree into the larger tree

Lemma 1
If T is a tree created by balanced merges, and T
has size n and height h, then n ≥ 2h

Proof: induction on n.

Assume T was obtained by merging T1 into T2

where n1 := Sze(T1) ≤ n2 := Sze(T2)
Let h := Heght(T) for = 1,2

By induction, n1 ≥ 2h1 and n2 ≥ 2h2

If h1 ≥ h2, then h = h1 + 1 and
n = n1 + n2 ≥ 2n1 ≥ 2 · 2h1 = 2h

If h1 < h2, then h = h2 and
n = n1 + n2 ≥ n2 ≥ 2h2 = 2h QED

Proof: induction on n.

Assume T was obtained by merging T1 into T2

T1 T2 T1
T2

where n1 := Sze(T1) ≤ n2 := Sze(T2)
Let h := Heght(T) for = 1,2

By induction, n1 ≥ 2h1 and n2 ≥ 2h2

If h1 ≥ h2, then h = h1 + 1 and
n = n1 + n2 ≥ 2n1 ≥ 2 · 2h1 = 2h

If h1 < h2, then h = h2 and
n = n1 + n2 ≥ n2 ≥ 2h2 = 2h QED

Proof: induction on n.

Assume T was obtained by merging T1 into T2

T1 T2 T1
T2

where n1 := Sze(T1) ≤ n2 := Sze(T2)
Let h := Heght(T) for = 1,2

By induction, n1 ≥ 2h1 and n2 ≥ 2h2

If h1 ≥ h2, then h = h1 + 1 and
n = n1 + n2 ≥ 2n1 ≥ 2 · 2h1 = 2h

If h1 < h2, then h = h2 and
n = n1 + n2 ≥ n2 ≥ 2h2 = 2h QED

Proof: induction on n.

Assume T was obtained by merging T1 into T2

T1 T2 T1
T2

where n1 := Sze(T1) ≤ n2 := Sze(T2)
Let h := Heght(T) for = 1,2

By induction, n1 ≥ 2h1 and n2 ≥ 2h2

If h1 ≥ h2, then h = h1 + 1 and
n = n1 + n2 ≥ 2n1 ≥ 2 · 2h1 = 2h

If h1 < h2, then h = h2 and
n = n1 + n2 ≥ n2 ≥ 2h2 = 2h QED

Proof: induction on n.

Assume T was obtained by merging T1 into T2

T1 T2 T1
T2

where n1 := Sze(T1) ≤ n2 := Sze(T2)
Let h := Heght(T) for = 1,2

By induction, n1 ≥ 2h1 and n2 ≥ 2h2

If h1 ≥ h2, then h = h1 + 1 and
n = n1 + n2 ≥ 2n1 ≥ 2 · 2h1 = 2h

If h1 < h2, then h = h2 and
n = n1 + n2 ≥ n2 ≥ 2h2 = 2h QED

Proof: induction on n.

Assume T was obtained by merging T1 into T2

T1 T2 T1
T2

where n1 := Sze(T1) ≤ n2 := Sze(T2)
Let h := Heght(T) for = 1,2

By induction, n1 ≥ 2h1 and n2 ≥ 2h2

If h1 ≥ h2, then h = h1 + 1 and
n = n1 + n2 ≥ 2n1 ≥ 2 · 2h1 = 2h

If h1 < h2, then h = h2 and
n = n1 + n2 ≥ n2 ≥ 2h2 = 2h QED

Path compression
Path compression rule

After each Find operation, make all nodes visited
point to the root of the tree

Path compression
Path compression rule

After each Find operation, make all nodes visited
point to the root of the tree

Running time analysis

For g ≥ 0, define

F(g) := 22
2 · ·
·2
«

g 2’s

Formally, F(0) := 1 and F(g+ 1) := 2F(g)

Define log∗ r := least g such that F(g) ≥ r

Theorem
With size balancing and path compression, any
sequence of m union/find operations on n items
takes time O((m+ n) log∗ n)

Running time analysis

For g ≥ 0, define

F(g) := 22
2 · ·
·2
«

g 2’s

Formally, F(0) := 1 and F(g+ 1) := 2F(g)

Define log∗ r := least g such that F(g) ≥ r

Theorem
With size balancing and path compression, any
sequence of m union/find operations on n items
takes time O((m+ n) log∗ n)

Running time analysis

For g ≥ 0, define

F(g) := 22
2 · ·
·2
«

g 2’s

Formally, F(0) := 1 and F(g+ 1) := 2F(g)

Define log∗ r := least g such that F(g) ≥ r

Theorem
With size balancing and path compression, any
sequence of m union/find operations on n items
takes time O((m+ n) log∗ n)

Running time analysis

For g ≥ 0, define

F(g) := 22
2 · ·
·2
«

g 2’s

Formally, F(0) := 1 and F(g+ 1) := 2F(g)

Define log∗ r := least g such that F(g) ≥ r

Theorem
With size balancing and path compression, any
sequence of m union/find operations on n items
takes time O((m+ n) log∗ n)

Running time analysis

For g ≥ 0, define

F(g) := 22
2 · ·
·2
«

g 2’s

Formally, F(0) := 1 and F(g+ 1) := 2F(g)

Define log∗ r := least g such that F(g) ≥ r

Theorem
With size balancing and path compression, any
sequence of m union/find operations on n items
takes time O((m+ n) log∗ n)

1 2 4

16

64K

264K

0 3

R0

R1

R2

R3

R4

R5

5

0
1
2

4

!

!

!

!

!
!

g

F(g)

Rg := (log∗)−1(g) = {r : log∗ r = g}
log∗ r ≤ g⇔ r ≤ F(g)

R0 = {0,1}, Rg = {F(g− 1) + 1, . . . , F(g)} for g > 0

1 2 4

16

64K

264K

0 3

R0

R1

R2

R3

R4

R5

5

0
1
2

4

!

!

!

!

!
!

g

F(g)

Rg := (log∗)−1(g) = {r : log∗ r = g}
log∗ r ≤ g⇔ r ≤ F(g)

R0 = {0,1}, Rg = {F(g− 1) + 1, . . . , F(g)} for g > 0

1 2 4

16

64K

264K

0 3

R0

R1

R2

R3

R4

R5

5

0
1
2

4

!

!

!

!

!
!

g

F(g)

Rg := (log∗)−1(g) = {r : log∗ r = g}
log∗ r ≤ g⇔ r ≤ F(g)

R0 = {0,1}, Rg = {F(g− 1) + 1, . . . , F(g)} for g > 0

1 2 4

16

64K

264K

0 3

R0

R1

R2

R3

R4

R5

5

0
1
2

4

!

!

!

!

!
!

g

F(g)

Rg := (log∗)−1(g) = {r : log∗ r = g}
log∗ r ≤ g⇔ r ≤ F(g)

R0 = {0,1}, Rg = {F(g− 1) + 1, . . . , F(g)} for g > 0

Let Op1, . . . , Opm be a sequence of union/find
operations

Consider the forest of trees F that results after
executing Op1, . . . , Opm with size balancing, but
no path compression

Define the rank of a node to be its height in F

rank is a static quantity –
it does not change over
time

Let Op1, . . . , Opm be a sequence of union/find
operations

Consider the forest of trees F that results after
executing Op1, . . . , Opm with size balancing, but
no path compression

Define the rank of a node to be its height in F

rank is a static quantity –
it does not change over
time

Let Op1, . . . , Opm be a sequence of union/find
operations

Consider the forest of trees F that results after
executing Op1, . . . , Opm with size balancing, but
no path compression

Define the rank of a node to be its height in F

rank

rank is a static quantity –
it does not change over
time

Lemma 2
For every r ≥ 0, there are at most n/2r nodes of
rank r

Proof:

• By Lemma 1, any node of rank r is the root of a
subtree in F of size ≥ 2r

• Any two distinct nodes of rank r are roots of
disjoint subtrees in F
• Therefore, there can be at most n/2r nodes of

rank r

• QED

Lemma 2
For every r ≥ 0, there are at most n/2r nodes of
rank r

Proof:

• By Lemma 1, any node of rank r is the root of a
subtree in F of size ≥ 2r

• Any two distinct nodes of rank r are roots of
disjoint subtrees in F
• Therefore, there can be at most n/2r nodes of

rank r

• QED

Lemma 2
For every r ≥ 0, there are at most n/2r nodes of
rank r

Proof:

• By Lemma 1, any node of rank r is the root of a
subtree in F of size ≥ 2r

• Any two distinct nodes of rank r are roots of
disjoint subtrees in F
• Therefore, there can be at most n/2r nodes of

rank r

• QED

Lemma 2
For every r ≥ 0, there are at most n/2r nodes of
rank r

Proof:

• By Lemma 1, any node of rank r is the root of a
subtree in F of size ≥ 2r

• Any two distinct nodes of rank r are roots of
disjoint subtrees in F
• Therefore, there can be at most n/2r nodes of

rank r

• QED

Lemma 2
For every r ≥ 0, there are at most n/2r nodes of
rank r

Proof:

• By Lemma 1, any node of rank r is the root of a
subtree in F of size ≥ 2r

• Any two distinct nodes of rank r are roots of
disjoint subtrees in F
• Therefore, there can be at most n/2r nodes of

rank r

• QED

Lemma 2
For every r ≥ 0, there are at most n/2r nodes of
rank r

Proof:

• By Lemma 1, any node of rank r is the root of a
subtree in F of size ≥ 2r

• Any two distinct nodes of rank r are roots of
disjoint subtrees in F
• Therefore, there can be at most n/2r nodes of

rank r

• QED

Lemma 3
Suppose that at some time during the execution
of Op1, . . . , Opm with compression, is a (strict)
descendent of . Then Rnk() < Rnk()

Proof:

• Key observations:

• path compression only eliminates descendency
relations – it never creates any new ones

• with no path compression, union/find
operations never destroy descendency
relations

Lemma 3
Suppose that at some time during the execution
of Op1, . . . , Opm with compression, is a (strict)
descendent of . Then Rnk() < Rnk()

Proof:

• Key observations:

• path compression only eliminates descendency
relations – it never creates any new ones

• with no path compression, union/find
operations never destroy descendency
relations

Lemma 3
Suppose that at some time during the execution
of Op1, . . . , Opm with compression, is a (strict)
descendent of . Then Rnk() < Rnk()

Proof:

• Key observations:

• path compression only eliminates descendency
relations – it never creates any new ones

• with no path compression, union/find
operations never destroy descendency
relations

Lemma 3
Suppose that at some time during the execution
of Op1, . . . , Opm with compression, is a (strict)
descendent of . Then Rnk() < Rnk()

Proof:

• Key observations:

• path compression only eliminates descendency
relations – it never creates any new ones

• with no path compression, union/find
operations never destroy descendency
relations

Lemma 3
Suppose that at some time during the execution
of Op1, . . . , Opm with compression, is a (strict)
descendent of . Then Rnk() < Rnk()

Proof:

• Key observations:

• path compression only eliminates descendency
relations – it never creates any new ones

• with no path compression, union/find
operations never destroy descendency
relations

Prove by induction on :

• for all ,, if is a descendent of after
executing Op1, . . . , Op with compression, then
 is a descendent of after executing
Op1, . . . , Op without compression

Thus, if is a descendent of at some point in
time during the execution of Op1, . . . , Opm with
compression, then is a descendent of in F ,
and hence Rnk() < Rnk() – QED

Definition
For a node , we define its group as
G() := log∗ Rnk()

Clearly, G() ≤ log∗ n

Prove by induction on :

• for all ,, if is a descendent of after
executing Op1, . . . , Op with compression, then
 is a descendent of after executing
Op1, . . . , Op without compression

Thus, if is a descendent of at some point in
time during the execution of Op1, . . . , Opm with
compression, then is a descendent of in F ,
and hence Rnk() < Rnk() – QED

Definition
For a node , we define its group as
G() := log∗ Rnk()

Clearly, G() ≤ log∗ n

Prove by induction on :

• for all ,, if is a descendent of after
executing Op1, . . . , Op with compression, then
 is a descendent of after executing
Op1, . . . , Op without compression

Thus, if is a descendent of at some point in
time during the execution of Op1, . . . , Opm with
compression, then is a descendent of in F ,
and hence Rnk() < Rnk() – QED

Definition
For a node , we define its group as
G() := log∗ Rnk()

Clearly, G() ≤ log∗ n

Prove by induction on :

• for all ,, if is a descendent of after
executing Op1, . . . , Op with compression, then
 is a descendent of after executing
Op1, . . . , Op without compression

Thus, if is a descendent of at some point in
time during the execution of Op1, . . . , Opm with
compression, then is a descendent of in F ,
and hence Rnk() < Rnk() – QED

Definition
For a node , we define its group as
G() := log∗ Rnk()

Clearly, G() ≤ log∗ n

Prove by induction on :

• for all ,, if is a descendent of after
executing Op1, . . . , Op with compression, then
 is a descendent of after executing
Op1, . . . , Op without compression

Thus, if is a descendent of at some point in
time during the execution of Op1, . . . , Opm with
compression, then is a descendent of in F ,
and hence Rnk() < Rnk() – QED

Definition
For a node , we define its group as
G() := log∗ Rnk()

Clearly, G() ≤ log∗ n

Prove by induction on :

• for all ,, if is a descendent of after
executing Op1, . . . , Op with compression, then
 is a descendent of after executing
Op1, . . . , Op without compression

Thus, if is a descendent of at some point in
time during the execution of Op1, . . . , Opm with
compression, then is a descendent of in F ,
and hence Rnk() < Rnk() – QED

Definition
For a node , we define its group as
G() := log∗ Rnk()

Clearly, G() ≤ log∗ n

Proof of Theorem

Union operations take O(1), so we can focus on
find operations

Let I be the set of indices such that Op is a find
operation

Consider a fixed ∈ I, with Op = “Fnd()”

Consider the path from to the root:
 = 1, 2, . . . , k−2
︸ ︷︷ ︸

moved nodes

, k−1, k = root

By Lemma 3, we have
Rnk(1) < Rnk(2) < · · · < Rnk(k)

G(1) ≤ G(2) ≤ · · · ≤ G(k)

Proof of Theorem

Union operations take O(1), so we can focus on
find operations

Let I be the set of indices such that Op is a find
operation

Consider a fixed ∈ I, with Op = “Fnd()”

Consider the path from to the root:
 = 1, 2, . . . , k−2
︸ ︷︷ ︸

moved nodes

, k−1, k = root

By Lemma 3, we have
Rnk(1) < Rnk(2) < · · · < Rnk(k)

G(1) ≤ G(2) ≤ · · · ≤ G(k)

Proof of Theorem

Union operations take O(1), so we can focus on
find operations

Let I be the set of indices such that Op is a find
operation

Consider a fixed ∈ I, with Op = “Fnd()”

Consider the path from to the root:
 = 1, 2, . . . , k−2
︸ ︷︷ ︸

moved nodes

, k−1, k = root

By Lemma 3, we have
Rnk(1) < Rnk(2) < · · · < Rnk(k)

G(1) ≤ G(2) ≤ · · · ≤ G(k)

Proof of Theorem

Union operations take O(1), so we can focus on
find operations

Let I be the set of indices such that Op is a find
operation

Consider a fixed ∈ I, with Op = “Fnd()”

Consider the path from to the root:
 = 1, 2, . . . , k−2
︸ ︷︷ ︸

moved nodes

, k−1, k = root

By Lemma 3, we have
Rnk(1) < Rnk(2) < · · · < Rnk(k)

G(1) ≤ G(2) ≤ · · · ≤ G(k)

Proof of Theorem

Union operations take O(1), so we can focus on
find operations

Let I be the set of indices such that Op is a find
operation

Consider a fixed ∈ I, with Op = “Fnd()”

Consider the path from to the root:
 = 1, 2, . . . , k−2
︸ ︷︷ ︸

moved nodes

, k−1, k = root

By Lemma 3, we have
Rnk(1) < Rnk(2) < · · · < Rnk(k)

G(1) ≤ G(2) ≤ · · · ≤ G(k)

Proof of Theorem

Union operations take O(1), so we can focus on
find operations

Let I be the set of indices such that Op is a find
operation

Consider a fixed ∈ I, with Op = “Fnd()”

Consider the path from to the root:
 = 1, 2, . . . , k−2
︸ ︷︷ ︸

moved nodes

, k−1, k = root

By Lemma 3, we have
Rnk(1) < Rnk(2) < · · · < Rnk(k)

G(1) ≤ G(2) ≤ · · · ≤ G(k)

Proof of Theorem

Union operations take O(1), so we can focus on
find operations

Let I be the set of indices such that Op is a find
operation

Consider a fixed ∈ I, with Op = “Fnd()”

Consider the path from to the root:
 = 1, 2, . . . , k−2
︸ ︷︷ ︸

moved nodes

, k−1, k = root

By Lemma 3, we have
Rnk(1) < Rnk(2) < · · · < Rnk(k)

G(1) ≤ G(2) ≤ · · · ≤ G(k)

Proof of Theorem

Union operations take O(1), so we can focus on
find operations

Let I be the set of indices such that Op is a find
operation

Consider a fixed ∈ I, with Op = “Fnd()”

Consider the path from to the root:
 = 1, 2, . . . , k−2
︸ ︷︷ ︸

moved nodes

, k−1, k = root

By Lemma 3, we have
Rnk(1) < Rnk(2) < · · · < Rnk(k)

G(1) ≤ G(2) ≤ · · · ≤ G(k)

Let X = {1, . . . , k}

C :=
∑

∈I |X| is the cost of all the find operations

Let’s split X into 3 sets:

• Y := {j : j < k − 1 and G(j) = G(j+1)}

• Z := {j : j < k − 1 and G(j) < G(j+1)}

• W := {j : j ≥ k − 1}

We have

• |Z| ≤ G(k) ≤ log∗ n

• |W| ≤ 2

Let X = {1, . . . , k}

C :=
∑

∈I |X| is the cost of all the find operations

Let’s split X into 3 sets:

• Y := {j : j < k − 1 and G(j) = G(j+1)}

• Z := {j : j < k − 1 and G(j) < G(j+1)}

• W := {j : j ≥ k − 1}

We have

• |Z| ≤ G(k) ≤ log∗ n

• |W| ≤ 2

Let X = {1, . . . , k}

C :=
∑

∈I |X| is the cost of all the find operations

Let’s split X into 3 sets:

• Y := {j : j < k − 1 and G(j) = G(j+1)}

• Z := {j : j < k − 1 and G(j) < G(j+1)}

• W := {j : j ≥ k − 1}

We have

• |Z| ≤ G(k) ≤ log∗ n

• |W| ≤ 2

Let X = {1, . . . , k}

C :=
∑

∈I |X| is the cost of all the find operations

Let’s split X into 3 sets:

• Y := {j : j < k − 1 and G(j) = G(j+1)}

• Z := {j : j < k − 1 and G(j) < G(j+1)}

• W := {j : j ≥ k − 1}

We have

• |Z| ≤ G(k) ≤ log∗ n

• |W| ≤ 2

Let X = {1, . . . , k}

C :=
∑

∈I |X| is the cost of all the find operations

Let’s split X into 3 sets:

• Y := {j : j < k − 1 and G(j) = G(j+1)}

• Z := {j : j < k − 1 and G(j) < G(j+1)}

• W := {j : j ≥ k − 1}

We have

• |Z| ≤ G(k) ≤ log∗ n

• |W| ≤ 2

Let X = {1, . . . , k}

C :=
∑

∈I |X| is the cost of all the find operations

Let’s split X into 3 sets:

• Y := {j : j < k − 1 and G(j) = G(j+1)}

• Z := {j : j < k − 1 and G(j) < G(j+1)}

• W := {j : j ≥ k − 1}

We have

• |Z| ≤ G(k) ≤ log∗ n

• |W| ≤ 2

Let X = {1, . . . , k}

C :=
∑

∈I |X| is the cost of all the find operations

Let’s split X into 3 sets:

• Y := {j : j < k − 1 and G(j) = G(j+1)}

• Z := {j : j < k − 1 and G(j) < G(j+1)}

• W := {j : j ≥ k − 1}

We have

• |Z| ≤ G(k) ≤ log∗ n

• |W| ≤ 2

Let X = {1, . . . , k}

C :=
∑

∈I |X| is the cost of all the find operations

Let’s split X into 3 sets:

• Y := {j : j < k − 1 and G(j) = G(j+1)}

• Z := {j : j < k − 1 and G(j) < G(j+1)}

• W := {j : j ≥ k − 1}

We have

• |Z| ≤ G(k) ≤ log∗ n

• |W| ≤ 2

Let X = {1, . . . , k}

C :=
∑

∈I |X| is the cost of all the find operations

Let’s split X into 3 sets:

• Y := {j : j < k − 1 and G(j) = G(j+1)}

• Z := {j : j < k − 1 and G(j) < G(j+1)}

• W := {j : j ≥ k − 1}

We have

• |Z| ≤ G(k) ≤ log∗ n

• |W| ≤ 2

So we have
C =
∑

∈I
(|Y|+ |Z|+ |W|)

≤
∑

∈I
|Y|+m log∗ n+ 2m

Claim: C′ :=
∑

 |Y| ≤ n log
∗ n

Idea: Consider a fixed node

• Each time moves during a path compression,
’s new parent has a higher rank than ’s old
parent

• If G() = g, then after |Rg| − 1 moves, must
acquire a parent whose group is > g

So we have
C =
∑

∈I
(|Y|+ |Z|+ |W|)

≤
∑

∈I
|Y|+m log∗ n+ 2m

Claim: C′ :=
∑

 |Y| ≤ n log
∗ n

Idea: Consider a fixed node

• Each time moves during a path compression,
’s new parent has a higher rank than ’s old
parent

• If G() = g, then after |Rg| − 1 moves, must
acquire a parent whose group is > g

So we have
C =
∑

∈I
(|Y|+ |Z|+ |W|)

≤
∑

∈I
|Y|+m log∗ n+ 2m

Claim: C′ :=
∑

 |Y| ≤ n log
∗ n

Idea: Consider a fixed node

• Each time moves during a path compression,
’s new parent has a higher rank than ’s old
parent

• If G() = g, then after |Rg| − 1 moves, must
acquire a parent whose group is > g

So we have
C =
∑

∈I
(|Y|+ |Z|+ |W|)

≤
∑

∈I
|Y|+m log∗ n+ 2m

Claim: C′ :=
∑

 |Y| ≤ n log
∗ n

Idea: Consider a fixed node

• Each time moves during a path compression,
’s new parent has a higher rank than ’s old
parent

• If G() = g, then after |Rg| − 1 moves, must
acquire a parent whose group is > g

So we have
C =
∑

∈I
(|Y|+ |Z|+ |W|)

≤
∑

∈I
|Y|+m log∗ n+ 2m

Claim: C′ :=
∑

 |Y| ≤ n log
∗ n

Idea: Consider a fixed node

• Each time moves during a path compression,
’s new parent has a higher rank than ’s old
parent

• If G() = g, then after |Rg| − 1 moves, must
acquire a parent whose group is > g

So we have
C =
∑

∈I
(|Y|+ |Z|+ |W|)

≤
∑

∈I
|Y|+m log∗ n+ 2m

Claim: C′ :=
∑

 |Y| ≤ n log
∗ n

Idea: Consider a fixed node

• Each time moves during a path compression,
’s new parent has a higher rank than ’s old
parent

• If G() = g, then after |Rg| − 1 moves, must
acquire a parent whose group is > g

For g ≥ 0, let Vg := { : G() = g}

We have

C′ ≤
log∗ n
∑

g=0

|Vg| · (|Rg| − 1)

≤ n+
log∗ n
∑

g=2

|Vg||Rg|

To prove the claim, it will suffice to show that
|Vg||Rg| ≤ n

for g > 0 (we may assume n > 1 and so
log∗ n > 0)

For g ≥ 0, let Vg := { : G() = g}

We have

C′ ≤
log∗ n
∑

g=0

|Vg| · (|Rg| − 1)

≤ n+
log∗ n
∑

g=2

|Vg||Rg|

To prove the claim, it will suffice to show that
|Vg||Rg| ≤ n

for g > 0 (we may assume n > 1 and so
log∗ n > 0)

For g ≥ 0, let Vg := { : G() = g}

We have

C′ ≤
log∗ n
∑

g=0

|Vg| · (|Rg| − 1)

≤ n+
log∗ n
∑

g=2

|Vg||Rg|

To prove the claim, it will suffice to show that
|Vg||Rg| ≤ n

for g > 0 (we may assume n > 1 and so
log∗ n > 0)

For g > 0, we have
Rg = {F(g− 1) + 1, . . . , F(g)}

|Vg| ≤
∑

r∈Rg

n/2r (by Lemma 2)

=
n

2F(g−1)+1

F(g)−F(g−1)−1
∑

j=0

1/2j

≤
n

2F(g−1)
=

n

F(g)

Therefore,

|Vg||Rg| ≤
n

F(g)
· |Rg| ≤

n

F(g)
· F(g) = n.

QED

For g > 0, we have
Rg = {F(g− 1) + 1, . . . , F(g)}

|Vg| ≤
∑

r∈Rg

n/2r (by Lemma 2)

=
n

2F(g−1)+1

F(g)−F(g−1)−1
∑

j=0

1/2j

≤
n

2F(g−1)
=

n

F(g)

Therefore,

|Vg||Rg| ≤
n

F(g)
· |Rg| ≤

n

F(g)
· F(g) = n.

QED

For g > 0, we have
Rg = {F(g− 1) + 1, . . . , F(g)}

|Vg| ≤
∑

r∈Rg

n/2r (by Lemma 2)

=
n

2F(g−1)+1

F(g)−F(g−1)−1
∑

j=0

1/2j

≤
n

2F(g−1)
=

n

F(g)

Therefore,

|Vg||Rg| ≤
n

F(g)
· |Rg| ≤

n

F(g)
· F(g) = n.

QED

For g > 0, we have
Rg = {F(g− 1) + 1, . . . , F(g)}

|Vg| ≤
∑

r∈Rg

n/2r (by Lemma 2)

=
n

2F(g−1)+1

F(g)−F(g−1)−1
∑

j=0

1/2j

≤
n

2F(g−1)
=

n

F(g)

Therefore,

|Vg||Rg| ≤
n

F(g)
· |Rg| ≤

n

F(g)
· F(g) = n.

QED

For g > 0, we have
Rg = {F(g− 1) + 1, . . . , F(g)}

|Vg| ≤
∑

r∈Rg

n/2r (by Lemma 2)

=
n

2F(g−1)+1

F(g)−F(g−1)−1
∑

j=0

1/2j

≤
n

2F(g−1)
=

n

F(g)

Therefore,

|Vg||Rg| ≤
n

F(g)
· |Rg| ≤

n

F(g)
· F(g) = n.

QED

For g > 0, we have
Rg = {F(g− 1) + 1, . . . , F(g)}

|Vg| ≤
∑

r∈Rg

n/2r (by Lemma 2)

=
n

2F(g−1)+1

F(g)−F(g−1)−1
∑

j=0

1/2j

≤
n

2F(g−1)
=

n

F(g)

Therefore,

|Vg||Rg| ≤
n

F(g)
· |Rg| ≤

n

F(g)
· F(g) = n.

QED

For g > 0, we have
Rg = {F(g− 1) + 1, . . . , F(g)}

|Vg| ≤
∑

r∈Rg

n/2r (by Lemma 2)

=
n

2F(g−1)+1

F(g)−F(g−1)−1
∑

j=0

1/2j

≤
n

2F(g−1)
=

n

F(g)

Therefore,

|Vg||Rg| ≤
n

F(g)
· |Rg| ≤

n

F(g)
· F(g) = n.

QED

For g > 0, we have
Rg = {F(g− 1) + 1, . . . , F(g)}

|Vg| ≤
∑

r∈Rg

n/2r (by Lemma 2)

=
n

2F(g−1)+1

F(g)−F(g−1)−1
∑

j=0

1/2j

≤
n

2F(g−1)
=

n

F(g)

Therefore,

|Vg||Rg| ≤
n

F(g)
· |Rg| ≤

n

F(g)
· F(g) = n.

QED

For g > 0, we have
Rg = {F(g− 1) + 1, . . . , F(g)}

|Vg| ≤
∑

r∈Rg

n/2r (by Lemma 2)

=
n

2F(g−1)+1

F(g)−F(g−1)−1
∑

j=0

1/2j

≤
n

2F(g−1)
=

n

F(g)

Therefore,

|Vg||Rg| ≤
n

F(g)
· |Rg| ≤

n

F(g)
· F(g) = n.

QED

For g > 0, we have
Rg = {F(g− 1) + 1, . . . , F(g)}

|Vg| ≤
∑

r∈Rg

n/2r (by Lemma 2)

=
n

2F(g−1)+1

F(g)−F(g−1)−1
∑

j=0

1/2j

≤
n

2F(g−1)
=

n

F(g)

Therefore,

|Vg||Rg| ≤
n

F(g)
· |Rg| ≤

n

F(g)
· F(g) = n.

QED

For g > 0, we have
Rg = {F(g− 1) + 1, . . . , F(g)}

|Vg| ≤
∑

r∈Rg

n/2r (by Lemma 2)

=
n

2F(g−1)+1

F(g)−F(g−1)−1
∑

j=0

1/2j

≤
n

2F(g−1)
=

n

F(g)

Therefore,

|Vg||Rg| ≤
n

F(g)
· |Rg| ≤

n

F(g)
· F(g) = n.

QED

