
Supplementary Material: A Computational Introduction to Number
Theory and Algebra (Version 1)

Last updated: 10/15/2006.

This document contains supplementary exercises, examples, and a few alternative proofs
of theorems that would make nice additions to the book, and may be added in a later edition.

Section 1.1

After proof of Theorem 1.4, the following text might be helpful:

Theorem 1.4 can be visualized as follows:

r0 b 2b 3b 4ba

Starting with a, we subtract (or add, if a is negative) the value b until we end
up with a number r in the interval {0, . . . , b− 1}.

We can also add the following as an exercise in this section:

Exercise 1. Generalize Theorem 1.4 as follows. Let a, b ∈ Z with b > 0. Let x, y be real
numbers such that y−x = b. Show that there exist unique q, r ∈ Z such that a = bq+r and
r ∈ [x, y). Show the same, but for the interval (y, x]. Does the statement hold in general
for the intervals [x, y] or (x, y)?

Section 1.2

Exercise 2. Let a, n1, . . . , nk be integers. Show that gcd(a, n1 · · ·nk) = 1 if and only if
gcd(a, ni) = 1 for i = 1, . . . , k.

Exercise 3. For positive integer m, define Im := {0, . . . ,m − 1}. Let a, b be positive
integers. Consider the map

τ : Ib × Ia → Iab

(s, t) 7→ (as+ bt) mod ab.

Show τ is a bijection if and only if gcd(a, b) = 1.
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Section 2.1

Exercise 4. Let w be a positive integer. For a ∈ {0, . . . , 2w − 1}, let V (a) denote the
integer obtained by inverting the bits in the w-bit, binary representation of a, so that
V (a) ∈ {0, . . . , 2w−1}. Show that V (a)+1 ≡ −a (mod 2w). This justifies the usual rule for
computing negatives in 2’s complement arithmetic (which is really just arithmetic modulo
2w).

After Exercise 2.5:

Exercise 5. Generalize Exercise 2.5 to odd prime powers. Specifically, show that if p is an
odd prime and e is a positive integer, then x2 ≡ 1 (mod pe) implies x ≡ ±1 (mod pe). Also
show that the corresponding statement is false for p = 2. Hint: to prove the statement for
odd p, show that if (y + ε)2 ≡ 1 (mod pe), where p | y and ε = ±1, then pe | y.

Section 2.2

Before Exercise 2.8:

Exercise 6. Let n be a positive integer, let a be any integer, and let d := gcd(a, n). Show
that the number of integers b ∈ {0, . . . , n− 1} such that the congruence

az ≡ b (mod n)

has some integer solution z is equal to n/d, and that for any such b, the number of integers
z ∈ {0, . . . , n− 1} satisfying the congruence is equal to d.

Exercise 7. Let p be an odd prime and e a positive integer. Let a and b be integers not
divisible by p. Show that a2 ≡ b2 (mod pe) if and only if a ≡ ±b (mod pe). Hint: use
Supplementary Exercise 5.

Exercise 8. For positive integer m, define Im := {0, . . . ,m−1}. Let n1, . . . , nk be positive,
pairwise relatively prime integers and set n := n1 · · ·nk. Consider the map

τ : In → In1 × · · · × Ink

a 7→ (a mod n1, . . . , a mod nk).

Show that τ is a bijection. This is a simple consequence of the Chinese remainder theorem,
and gives a perhaps more concrete way of thinking about that theorem (as illustrated was
in Example 2.4).

Exercise 9. Let f be a polynomial with integer coefficients. For positive integer m, define
Zf (m) to be the set of integers z ∈ {0, . . . ,m − 1} such that f(z) ≡ 0 (mod m), and
define ωf (m) := |Zf (m)|. Show that the map τ defined in Supplementary Exercise 8 yields
a one-to-one correspondence between Zf (n) and Zf (n1) × · · · × Zf (nk). Conclude that
ωf (n) = ωf (n1) · · ·ωf (nk).

Exercise 10. For a prime p, and integer a, let νp(a) denote the largest power of p that
divides a (as was defined in §1.3). Let p1, . . . , pr be distinct primes, let a1, . . . , ar be arbitrary
integers, and let e1, . . . , er be arbitrary non-negative integers. Show that there exists an
integer x such that νpi(x− ai) = ei for i = 1, . . . , r.
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Section 2.3

Exercise 11. Let n1, . . . , nk be positive integers, and let n :=
∏k

i=1 ni. Consider the map

ρ : Zn → Zn1 × · · · × Znk

[a]n 7→ ([a]n1 , . . . , [a]nk
).

(a) Show that the definition of ρ is unambiguous, that is, [a]n = [a′]n implies [a]ni = [a′]ni

for i = 1, . . . , k.

(b) Show that if ρ(α) = (α1, . . . , αk) and ρ(β) = (β1, . . . , βk), then ρ(α + β) = (α1 +
β1, . . . , αk + βk) and ρ(αβ) = (α1β1, . . . , αkβk).

(c) Using Supplementary Exercise 2, show that if ρ(α) = (α1, . . . , αk), then α ∈ Z∗n if and
only if αi ∈ Z∗ni

for all i = 1, . . . , k.

(d) Using the Chinese remainder theorem, show that if the ni are pairwise relatively
prime, then ρ is a bijection. Also show the converse: if ρ is a bijection, then the ni

must be relatively prime.

Exercise 12. Suppose n is an odd, positive integer whose factorization into primes is
n = pe1

1 · · · per
r . Consider the “squaring” map σ : Z∗n → Z∗n that sends α ∈ Z∗n to α2 ∈ Z∗n.

Show that σ is a 2r-to-1 map; that is, every square in Z∗n has precisely 2r distinct square
roots. Hint: use Supplementary Exercises 7 and 11.

Section 3.4

After Exercise 3.30:

Exercise 13. If the inputs m1, . . . ,mr to the algorithm in the previous exercise are of
greatly varying length, some improvements are possible.

(a) Suppose that the inputs satisfy len(mi) ≥ 2 len(mi−1) for i = 2, . . . , r. Show how to
modify your algorithm so that it uses O(len(m)) multiplications in Zn.

(b) For general inputs, investigate how one can fine-tune the performance of your divide
and conquer algorithm by optimizing the strategy used to split the given problem
instance into subproblems, based on the relative lengths of the mi. If you have some
basic familiarity with information theory, show how to use Huffman codes to obtain
an algorithm that uses O(len(m)(H(`1/`, . . . , `r/`) + 1)) multiplications in Zn, where
`i := len(mi), ` :=

∑
i `i, and H(p1, . . . , pr) := −

∑
i pi log2 pi is Shannon’s entropy

function. In addition to these multiplications, your algorithm may perform computa-
tions that take time O(r len(r)) (which will be dominated by the time to perform the
multiplications when n is not too small).
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Section 3.5

Before Exercise 3.33:

Exercise 14. Let M be a function mapping positive integers to positive reals. Show that
M is a well-behaved complexity function iff there exists a constant c ≥ 1, such that for all
positive integers a and b, we have

1 ≤ M(a+ b)
M(a) +M(b)

≤ c.

Also, show that the first inequality is implied by the condition that N(`) := M(`)/` is a
non-decreasing function.

Section 4.1

Exercise 15. Let a, b ∈ Z, with a ≥ b > 0, let d := gcd(a, b), and let q := a/d. Show that
Euclid’s algorithm on inputs a and b runs in time O(len(b) len(q)).

Section 4.5

Exercise 16. Let n be a positive integer, and let r∗, t∗ be positive integers such that
r∗ ≤ n and r∗t∗ > n. Show that for any integer y, there exist integers r, t such that
ty ≡ ±r (mod n), 0 ≤ r < r∗, and 0 < t < t∗; moreover, show how to efficiently compute r
and t, given n, r∗, t∗, and y. Hint: adapt the proof of Theorem 4.6.

The following is a stronger version of Theorem 4.6. The proof is a bit more involved,
but still reasonably short.

Theorem 1. Let r∗, t∗, n be positive integers with n > 2r∗t∗, and let y be an integer with
0 ≤ y < n. Suppose that we run the extended Euclidean algorithm with inputs a := n
and b := y, and adopting the notation of Theorem 4.3, let i be the smallest index among
1, . . . , `+ 1 such that ri ≤ r∗, and define

r′ := ri, s′ := si, and t′ := ti.

Moreover, suppose there exist integers r, s, t such that

r = sn+ ty, |r| ≤ r∗, and 0 < |t| ≤ t∗. (1)

Then there exists a non-zero integer α such that

r = r′α, s = s′α, and t = t′α.

Proof. We begin with a simple observation. Since r0 > r1 > · · · > r` > r`+1 = 0, and i is
chosen to be the smallest index among 1, . . . , `+ 1 such that ri ≤ r∗, we have

ri−1 > r∗. (2)

The technical heart of the proof is to establish the following inequality:

|ti| ≤ t∗. (3)
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To prove (3), consider the following system of equations in the unknowns µ and ν:

siµ+ si−1ν = s, (4)
tiµ+ ti−1ν = t. (5)

Claim. The system of equations (4), (5) has a unique solution µ, ν, and moreover, µ
and ν are integers.

To prove the claim, we set ε := siti−1 − si−1ti = ±1, and solve for µ and ν as follows.
Subtracting si−1 times (5) from ti−1 times (4) yields µ = (ti−1s − si−1t)/ε. Similarly,
subtracting ti times (4) from si times (5) yields ν = (sit− tis)/ε. One can check that these
values of µ and ν indeed satisfy (4) and (5), and are clearly integers. (Those familiar with
linear algebra will see that the claim follows immediately from the fact that the matrix
associated with the system of equations has determinant ε = ±1, and so the above explicit
calculations were not really necessary.)

We now use the claim to prove (3). We consider three cases.

(i) Suppose ν = 0. In this case, (5) implies ti | t, and since t 6= 0, this implies |ti| ≤ |t| ≤
t∗.

(ii) Suppose µν < 0. In this case, since ti and ti−1 have opposite sign, (5) implies |t| =
|tiµ|+ |ti−1ν| ≥ |ti|, and so again, we have |ti| ≤ |t| ≤ t∗.

(iii) The only remaining possibility is that ν 6= 0 and µν ≥ 0. We argue that this is
impossible. Adding n times (4) to y times (5), and using the identities ri = sin+ tiy,
ri−1 = si−1n+ ti−1y, and r = sn+ ty, we obtain

riµ+ ri−1ν = r.

If ν 6= 0 and µ and ν had the same sign, this would imply that |r| = |riµ|+ |ri−1ν| ≥
ri−1, and hence ri−1 ≤ |r| ≤ r∗; however, this contradicts (2).

That proves (3). The rest of the proof is much more straightforward. From the equalities
ri = sin+ tiy and r = sn+ ty, we have the two congruences:

r ≡ ty (mod n),
ri ≡ tiy (mod n).

Subtracting ti times the first from t times the second, we obtain

rti ≡ rit (mod n).

This says that n divides rti − rit. However, by hypothesis, we have

|r| ≤ r∗, |ri| ≤ r∗, |t| ≤ t∗, and 2r∗t∗ < n,

and combined with the critical inequality (3), we obtain

|rti − rit| ≤ |rti|+ |rit| ≤ 2r∗t∗ < n.
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Since n divides rti − rit and |rti − rit| < n, the only possibility is that

rti − rit = 0. (6)

Now consider the two equations:

r = sn+ ty,

ri = sin+ tiy.

Subtracting ti times the first from t times the second, and using the identity (6), we obtain
n(sti − sit) = 0, and hence

sti − sit = 0. (7)

From (7), we see that ti | sit, and since gcd(si, ti) = 1, we must have ti | t. So t = tiα for
some α, and we must have α 6= 0 since t 6= 0. Substituting tiα for t in equations (6) and
(7) yields r = riα and s = siα.

Section 5.1

Theorem 5.2. The following proof may be easier to follow:

For positive integers j, k, define djk := 1 if pk | j, and djk := 0, otherwise.
Observe that νp(j) =

∑
k≥1 djk (this sum is actually finite, since djk = 0 for all

sufficiently large k). So we have

νp(n!) =
n∑

j=1

νp(j) =
n∑

j=1

∑
k≥1

djk =
∑
k≥1

n∑
j=1

djk.

Finally, note that
∑n

j=1 djk is equal to the number of multiples of pk among the
integers 1, . . . , n, which by Exercise 1.5 is equal to bn/pkc.

Section 6.1

Exercise 17. Let D1 = (U1,P1),D2 = (U2,P2) be probability distributions, and let D =
(U1 × U2,P) be their product distribution.

(a) Show that if D1 is the uniform distribution on U1, and D2 is the uniform distribution
on U2, then D is the uniform distribution on U1 × U2.

(b) Show that if A1 ⊆ U1 and A2 ⊆ U2, then P[A1 ×A2] = P1[A1] · P2[A2].

Section 6.2

Exercise 18. Let D1 = (U1,P1),D2 = (U2,P2) be probability distributions, and let D =
(U1 × U2,P) be their product distribution. Show that if A1 ⊆ U1 and A2 ⊆ U2, then with
respect to D, the events A1 × U2 and U1 ×A2 are independent.
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Section 6.4

Exercise 19. Let n ≥ 1, and consider a probabilistic experiment in which a subset S ⊆
{1, . . . , n} is chosen uniformly at random from the set of all 2n subsets of {1, . . . , n}. Define
the random variable X := |S|. Show that E[X] = n/2 and E[X2] = (n2 + n)/4. Hint: write
X as a sum of indicator variables.

Exercise 20. Let I be an interval of the real line (open, closed, or half open, bounded or
unbounded), and let f be a real-valued function defined on I. We say that f is convex on
I if for all x0, x2 ∈ I, and for all t ∈ [0, 1], we have f(tx0 +(1− t)x2) ≤ tf(x0)+(1− t)f(x2).
Geometrically, convexity means that for any three points Pi = (xi, f(xi)), i = 0, 1, 2, where
each xi ∈ I and x0 < x1 < x2, the point P1 lines on or below the line through P0 and P2.
You may rely on the following analytical facts:

• if f is convex on I, then f is continuous on the interior of I (but not necessarily at
the endpoints of I, if any);

• if f is continuous on I and differentiable on the interior of I, then f is convex on I iff
its derivative is non-decreasing on the interior of I.

(a) Prove Jensen’s inequality: if f is convex and X is a random variable taking values
in I, then E[f(X)] ≥ f(E[X]). Hint: use induction on the size of the sample space.

(b) Using part (a), show that if X takes non-negative real values, and α is a positive
number, then E[Xα] ≥ E[X]α if α ≥ 1, and E[Xα] ≤ E[X]α if α ≤ 1.

(c) Using part (a), show that if X takes positive real values, then

E[X] ≥ eE[log X].

(d) Using part (c), derive the arithmetic/geometric mean inequality: for positive
numbers x1, . . . , xn, we have

(x1 + · · ·+ xn)/n ≥ (x1 · · ·xn)1/n.

Section 6.6

We could add the following as a subsection at the end of this section:

On the number of people with the same birthday

Related to the question of whether we expect any two people to have the same birthday
is the following question:

how large do we expect the biggest subset of people with the same birthday to be?

This is a bit harder to analyze, and we present only a partial analysis: we restrict ourselves
to the setting where n = k and X1, . . . , Xn are mutually independent, with each uniformly
distributed over {0, . . . , n − 1}; moreover, we only derive an asymptotic upper bound on
the expectation (as n tends to infinity).
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We can formulate our problem more precisely as follows. For x = 0, . . . , n−1, define the
random variable Nx to be the number of indices i such that Xi = x; that is, Nx represents
the number of people whose birthday is x. We define

M := max{Nx : x = 0, . . . , n− 1}.

Our goal is to estimate E[M ].
Now, it is easy to see (verify) that for each x, we have E[Nx] = 1; indeed, this holds even

if the Xi are not independent. However, even assuming the Xi are mutually independent,
estimating E[M ] requires some work. We shall derive the following upper bound:

E[M ] ≤ (log n/ log log n)(1 + o(1)). (8)

In fact, it is known that
E[M ] ∼ log n/ log log n,

and so our upper bound is in fact tight; however, we shall not derive this sharper result
here.

To prove (8), we will use Theorem 6.8:

E[M ] =
n∑

m=1

P[M ≥ m]. (9)

Let us upper bound the terms appearing in (9).
Claim 1. For m = 1, . . . , n, we have P[M ≥ m] ≤ n/m!.
Let I(m) be the set of all subsets of {1, . . . , n} of size m. Now, M ≥ m if and only if

there is an x ∈ {1, . . . , n} and a subset J ∈ I(m), such that Xj = x for all j ∈ J . We have

P[M ≥ m] ≤
n∑

x=1

∑
J∈I(m)

P

[ ⋂
j∈J

Xj = x

]
(by (6.5))

=
n∑

x=1

∑
J∈I(m)

∏
j∈J

P[Xj = x] (by mutual independence)

= n

(
n

m

)
n−m ≤ n/m!.

That proves Claim 1.
Of course, Claim 1 is only interesting when n/m! ≤ 1, since P[M ≥ m] always at most

1. Define F (n) to be the smallest positive integer m such that m! ≥ n.
Claim 2. F (n) ∼ log n/ log log n.
To prove this, let us set m := F (n). It is clear that n ≤ m! ≤ nm, and taking logarithms,

log n ≤ logm! ≤ log n+ logm. Moreover, we have

logm! =
m∑

`=1

log ` =
∫ m

1
log t dt+O(logm) = m logm−m+O(logm) ∼ m logm,
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where we have estimated the sum by an integral (see §A2). Thus, log n = logm! +
O(logm) ∼ m logm. Taking logarithms again, we see that log log n = logm + log logm +
o(1) ∼ logm, and so log n ∼ m logm ∼ m log log n, from which Claim 2 follows.

Finally, observe that each term in the sequence {n/m!}∞m=1 is at most half the previous
term. Combining this observation with Claims 1 and 2, and the fact that P[M ≥ m] is
always at most 1, we have

E[M ] =
∑
m≥1

P[M ≥ m] =
∑

m≤F (n)

P[M ≥ m] +
∑

m>F (n)

P[M ≥ m]

≤ F (n) +
∑
`≥1

2−` = F (n) + 1 ∼ log n/ log log n.

That proves (8).

That ends the additional subsection. After Exercise 6.26, we could add the following
exercises, which generalize Exercises 6.25 and 6.26:

Exercise 21. Let α1, . . . , αn be non-negative numbers, with
∑n

i=1 αi = 1, and let k be an
integer between 2 and n. Define

Pk(α1, . . . , αn) :=
∑

{i1,...,ik}

αi1 · · ·αik ,

the sum being over all subsets of k distinct indices between 1 and n. Show that
Pk(α1, . . . , αn) is maximized when α1 = · · · = αn = 1/n.

Exercise 22. Using the previous exercise, show the following. Suppose X1, . . . , Xk are
mutually independent random variables each uniformly distributed over a set X of size n.
Let α be the probability that the Xi values are distinct. Suppose Y1, . . . , Yk are mutually
independent random variables, each taking values in X , and each with the same distribution
(not necessarily uniform). Let β be the probability that the Yi values are distinct. Show
that β ≤ α. This says that if the distribution of birthdays is skewed away from uniform (as
it is for real people), we are more likely to see two people with the same birthday.

Yet another exercise:

Exercise 23. Suppose k people have birthdays uniformly and independently distributed
over an n-day year. Let A be the event that there is some day on which no birthdays fall.
Show that if k ≥ n(log n+ t) for t ≥ 0, then P[A] ≤ e−t.

Section 6.7

Exercise 24. For positive integer m, define Im := {0, . . . ,m− 1}. Let n be a power of 2,
let A := I×t

n and Z := In. Define the family of hash functions H from A to Z as follows:

H := {hx1,...,xt,y : x1, . . . , xt, y ∈ In2},

where
hx1,...,xt,y(a1, . . . , at) := b((a1x1 + · · ·+ anxn + y) mod n2)/nc.

Show that H is pairwise independent.

9



Section 6.7.1

After Exercise 6.34:

Exercise 25. This exercise shows that the upper bound of Exercise 6.34 cannot be im-
proved, without assuming something stronger than pairwise independence. Let ` be a
positive integer, let n := `2 − ` + 1, and Z := {0, . . . , n − 1}. Also let S be the set of all
subsets of Z of size `, and let F be the set of all permutations on Z. For V ∈ S, let ψV be
some function that maps V onto 0, and maps Z \ V injectively into Z \ {0}. For f ∈ F ,
V ∈ S, and a ∈ Z, define φf,V (a) := f(ψV (a)). Finally, define H := {φf,V : f ∈ F , V ∈ S}.
Show that H is a pairwise independent family of hash functions from Z to Z, yet under
any hash function in H, there are at least n1/2 elements of Z that hash to the same value.

After Exercise 6.35:

Exercise 26. Let H be an ε-universal family of hash functions from A to Y (see Exer-
cise 6.35), and let H′ be an ε′-universal family of hash functions from Y to Z. Define the
composed family H′ ◦H of hash functions from A to Z as H′ ◦H := {φh′,h : h′ ∈ H′, h ∈ H},
where φh′,h(a) := h′(h(a)) for φh′,h ∈ H′◦H and a ∈ A. Show thatH′◦H is (ε+ε′)-universal.

Exercise 27. Let n be a prime.

(a) For positive integer t, let Ht := {hx : x ∈ Zn} be the family of hash functions from
Z×(2t)

n to Z×t
n , defined as follows:

hx(a1, b1, . . . , at, bt) := (a1 + b1x, . . . , at + btx).

Show that Ht is 1/n-universal.

(b) Generalize part (a) as follows. Let H be a family of hash functions from A to Z. For
positive integer t, define the family H(t) := {φh : h ∈ H} of hash functions from A×t

to Z×t as follows:
φh(a1, . . . , at) := (h(a1), . . . , h(at)).

Show that if H is ε-universal, then H(t) is ε-universal.

(c) Now combine part (a) with Supplemental Exercise 26 to obtain, for every positive
integer s, an s/n-universal family H′s of hash functions from Z×2s

n to Zn, so that H′s
is in one-to-one correspondence with Z×s

n .

The above exercise illustrates how one can use hash functions whose descriptions are
much shorter that their input lengths, if one is willing to accept a somewhat higher colli-
sion probability. Later exercises will develop better trade-offs between description size and
collision probability.

Section 6.7.2

Add to Exercise 6.36:

Also show that H is ε-universal (see Exercise 6.35).
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Section 6.8

Exercise 28. Let X and Y be random variables taking values in [0,M ]. Let ε := ∆[X;Y ].
Show that |E[X]− E[Y ]| ≤Mε.

Section 6.9

Exercise 29. Suppose that in Theorem 6.21, H is a (1 + ε)/n-universal family of hash
functions (see Exercise 6.35). Show that the conclusion of the theorem holds with δ ≤√
nκ+ ε/2.

Exercise 30. Let H be a family of hash functions from A to Z, and let H denote a random
variable uniformly distributed over H. We say H is pairwise ε-independent if for all a ∈ A,
the distribution of H(a) is the uniform distribution over Z, and for all a′ ∈ A \ {a} and
all z ∈ Z, the conditional distribution of H(a′) given that H(a) = z is δ-uniform on Z for
some δ ≤ ε.

(a) Suppose H is a pairwise ε-independent family of hash functions from A to Z. Show
that H is pairwise (1/|Z|+ ε)-predictable (see Exercise 6.38).

(b) Now let H be an ε-universal family of hash functions from A to Y (see Exercise 6.35),
and let H′ be a pairwise ε′-independent family of hash functions from Y to Z. Show
that the family of hash functions H′ ◦ H (see Exercise 6.40) is pairwise (ε + ε′)-
independent.

Section 6.10

Exercise 31. This exercise extends Jensen’s inequality (see Supplementary Exercise 20) to
the discrete setting. Suppose that f is a convex function on an interval I. LetX be a random
variable defined on a discrete probability distribution, taking values in I, and assume that
both E[X] and E[f(X)] exist. Show that E[f(X)] ≥ f(E[X]). Hint: use continuity.

Section 7.1

Exercise 32. Let Λ be a countable set, and let ` be a function mapping elements of Λ to
non-negative integers. Suppose that

∑
λ∈Λ 2−`(λ) ≤ 1. Show that there exists an injective

function σ mapping elements of Λ to bit strings, such that |σ(λ)| = `(λ) for all λ ∈ Λ, and
the set {σ(λ) : λ ∈ Λ} is prefix free.

Section 7.4

After Exercise 7.13:

Exercise 33. You are to design and analyze an efficient probabilistic algorithm B that
takes as input two integers n and a, with n > 0 and 0 ≤ a ≤ n, and always outputs 0 or 1.
Your algorithm should satisfy the following property. If N is any deterministic algorithm
that on input x always outputs a positive integer, and is A any probabilistic algorithm that
on input x always outputs an integer between 0 and N(x), then P[B(N(x), A(x)) = 1] =
E[A(x)]/N(x).
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Section 7.5

Exercise 34. Consider the following recursive, probabilistic algorithm A, which takes as
input a finite set S of items, and returns a triple of integers (d, `, q):

Algorithm A(S):
if |S| ≤ 1 then

(d, `, q)← (0, 0, 0)
else

choose S1 ⊆ S at random (so every subset of S is equally likely)
S2 ← S \ S1

(d1, `1, q1)← A(S1), (d2, `2, q2)← A(S2)
(d, `, q)← (max{d1, d2}+ 1, `1 + `2 + |S|, q1 + q2 + |S|2)

return (d, `, q)

Let (D,L,Q) denote the output of A on input S, and let n := |S|. Show that E[D] =
O(log n), E[L] = O(n log n), and E[Q] = O(n2). Hint: Supplementary Exercise 19 may be
useful.

Section 8.1

Exercise 35. For a finite abelian group, one can completely specify the group by writing
down the group operation table. For instance, Example 2.5 presented an addition table for
Z6.

(a) Write down group operation tables for the following finite abelian groups: Z5, Z∗5, and
Z3 × Z3,.

(b) Below is an addition table for an abelian group that consists of the elements {a, b, c, d};
however, some entries are missing. Fill in the missing entries, and argue that there is
only one way to do so.

+ a b c d

a a
b b a
c a
d

Exercise 36. Let S be an arbitrary, non-empty set, and let G be an abelian group. Let
Map(S,G) be the set of all functions f : S → G. For f1, f2 ∈ Map(S,G), define f1 + f2 ∈
Map(S,G) to be the function that maps s ∈ S to f1(s) + f2(s) ∈ G. Show that Map(S,G)
is an abelian group.

Exercise 37. Let G be the set of all infinite bit strings; that is,

G = {a0a1a2 · · · : ai ∈ {0, 1}}.
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Define addition of elements of G as follows. If a = a0a1a2 · · · and b = b0b1b2 · · · , then
a+ b = c = c0c1c2 · · · , where the ci are defined by the following formulas:

carry0 = 0

and for i = 0, 1, 2, . . .,

ti = ai + bi + carry i, ci = ti mod 2, carry i+1 = bti/2c ∈ {0, 1}.

Show that G is an abelian group. Intuitively, an element a0a1a2 · · · of G acts like an “infinite
binary number” (· · · a2a1a0)2, with a0 being the “low order bit.”

Section 8.2

Exercise 38. Let G be an abelian group, and H a non-empty subset of G such that (i)
h ∈ H implies −h ∈ H, and (ii) h ∈ H and g ∈ G \H implies h+ g ∈ G \H. Show that H
is a subgroup of G.

Exercise 39. Let Map(S,G) be defined as in Supplementary Exercise 36. Let Map′(S,G)
be the set of elements f of Map(S,G) such that f(s) 6= 0 for at most finitely many s ∈ S.
Show that Map′(S,G) is a subgroup of Map(S,G).

Section 8.4

The following exercise may replace Exercises 8.17 and 8.18:

Exercise 40. Let G be an abelian group, and n a positive integer. Show that G×n and
Map({1, . . . , n}, G) are isomorphic (see Supplementary Exercise 36).

Exercise 41. Let G and G′ be abelian groups, and consider the abelian group Map(G,G′)
(see Supplementary Exercise 36). Let Hom(G,G′) be the subset of elements of Map(G,G′)
that are group homomorphisms from G into G′. Show that Hom(G,G′) is a subgroup of
Map(G,G′).

Section 8.5

Exercise 42. Let G := Zm1 × Zm2 , where m1 | m2.

(a) Suppose a ∈ G has order m2. Show that G/〈a〉 ∼= Zm1 .

(b) Suppose a and b are chosen at random from G. Show that 〈a, b〉 = G with probability
at least φ(m1)φ(m2)/m1m2.

Exercise 43. Consider the quotient group G := Q/Z. Show that for all positive integers
m, we have mG = G and G{m} ∼= Zm. From this, conclude that all finite subgroups of G
are cyclic.

Exercise 44. Suppose that G is an abelian group that satisfies the following properties:

(i) For all m, G{m} is either equal to G or is of finite order.

(ii) For some m, {0} ( G{m} ( G.

Show that G{m} is finite for all non-zero m.

13



Section 8.6

Exercise 45. Let G be a non-trivial, finite abelian group. Let s be the smallest positive
integer with the following property: G = 〈a1, . . . , as〉 for some a1, . . . , as ∈ G. Show that s
is equal to the value of t in Theorem 8.44. In particular, G is cyclic iff t = 1.

Exercise 46. Suppose G ∼= Zm1 × · · · ×Zmt . Let p be a prime, and let s be the number of
mi divisible by p. Show that G{p} ∼= Z×s

p .

Exercise 47. Suppose G ∼= Zm1 × · · · × Zmt with mi | mi+1 for i = 1, . . . , t− 1, and that
H is a subgroup of G. Show that H ∼= Zn1 × · · · × Znt , where ni | ni+1 for i = 1, . . . , t− 1
and ni | mi for i = 1, . . . , t.

Exercise 48. Suppose that G is an abelian group such that for all m > 0, we have mG = G
and |G{m}| = m2. Show that G{m} ∼= Zm × Zm for all m > 0. Hint: use induction on the
number of prime factors of m.

Section 9.1

Just after Exercise 9.3:

Exercise 49. Let S be an arbitrary, non-empty set, and let R be a ring. As R is an
abelian group under addition, we can form the abelian group Map(S,R) (see Supplementary
Exercise 36). We can also equip Map(S,R) with a multiplication operation: for f1, f2 ∈
Map(S,G), and for s ∈ S, (f1f2)(s) := f1(s)f2(s). Show that Map(S,R) is a ring.

Section 9.1.2

Just before Exercise 9.4:

Exercise 50. Suppose that R is a non-trivial ring in which the cancellation law holds: for
all a, b, c ∈ R, a 6= 0R and ab = ac implies b = c. Show that R is an integral domain.

Section 9.2.3

After Exercise 9.12:

Exercise 51. Let F be a finite field of cardinality q and let t be a positive integer. Let
A := F×t and Z := F . Define a family H of hash functions from A to Z as follows: let
H := {hα : α ∈ F}, where for all hα ∈ H and all (a1, . . . , at) ∈ A, we define

hα(a1, . . . , at) :=
t∑

i=1

aiα
i−1 ∈ Z.

Show that H is (t− 1)/q-universal (see Exercise 6.35).

Exercise 52. The purpose of this exercise is to develop a family of hash functions from
A := {0, 1}×L to Z := {0, 1}×` that is an ε-forgeable message authentication scheme with
ε very close to the optimal value 1/2`, while the hash functions have compact descriptions,
even when L is significantly larger than `. More specifically, let k be a positive integer; you
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are to design a family of hash functions from A to Z that is a (1/2` + L/(k2k))-forgeable
message authentication scheme, such that each hash function can be described using O(k+`)
bits.

(a) Let p be a (k + 1)-bit prime. By breaking up elements of A into k-bit blocks, and
interpreting each block as an element of Zp, construct a L/(k2k)-universal family
of hash functions H from A to Y := {0, 1}×(k+1), where each element of H has a
(k + 1)-bit description (see Exercise 6.35 for definitions).

(b) Using the result of Supplementary Exercise 24, describe a pairwise independent family
H′ of hash functions from Y to Z, where each element of H′ has an O(k + `)-bit
description.

(c) Finally, combine H and H′ as in Exercise 6.40 to obtain the stated result.

The above exercise gives a much better trade-off between forgery rate and hash function
size than that given in Exercise 9.24 (later in the text). Supplementary Exercise 94 (below)
gives a more elegant construction based on extensions of finite fields. Also note that the
above exercise (or Supplementary Exercise 94), combined with Supplementary Exercise 29,
gives a method for “extracting” a small amount of high-quality randomness from very long,
low-quality strings, using just a small amount of auxiliary randomness.

Section 9.2.4

Before Exercise 9.19:

Exercise 53. Let R be a ring. Show that for a1, . . . , an ∈ R[X], we have

D
(∏

i

ai

)
=

∑
i

D(ai)
∏
j 6=i

aj

and that for a ∈ R[X], and n ≥ 1, we have

D(an) = nan−1D(a).

Section 9.2.5

Exercise 54. Let R be a ring, and consider the ring of multi-variate polynomials
R[X1, . . . , Xn]. For m ≥ 0, define Hm to be the subset of polynomials that can be ex-
presses as a sum of monomials, each of total degree m (by definition, Hm includes the
zero polynomial). Polynomials that are sums of monomials of like total degree are called
homogeneous polynomials. Show that:

(a) if a, b ∈ Hm, then a+ b ∈ Hm;

(b) if a ∈ Hm and b ∈ Hn, then ab ∈ Hm+n;

(c) any non-zero polynomial a can be expressed uniquely as a0 + · · ·+ ad, where ai ∈ Hi

for i = 0, . . . , d, ad 6= 0, and d = Deg(a);
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(d) for any polynomials a, b, we have Deg(ab) ≤ Deg(a) + Deg(b), and if R is an integral
domain, then Deg(ab) = Deg(a) + Deg(b);

(e) if R is an integral domain, and a, b, c are non-zero polynomials such that a = bc and
a is homogeneous, then b and c are also homogeneous.

Exercise 55. Prove the “chain rule” for formal derivatives: if h ∈ R[Y1, ..., Yn], and
g1, ..., gn ∈ R[X], and f = h(g1, ..., gn) ∈ R[X], then

DX(f) =
n∑

i=1

DYi(h)(g1, ..., gn)DX(gi).

Section 9.3

Before Exercise 9.25:

Exercise 56. Let a, b be elements of a ring R. Show that b | a iff a ∈ bR iff aR ⊆ bR.

Exercise 57. Let R be a subring of a ring E, and let S := R[X1, . . . , Xn]. For T ⊆ E×n,
define I(T ) to be the set of polynomials a ∈ S that vanish at all points in T , that is,
I(T ) := {a ∈ S : a(α) = 0 for all α ∈ T}. Show that:

(a) I(T ) is an ideal of S;

(b) if E is an integral domain, and an ∈ I(T ) for some positive integer n, then a ∈ I(T ).

Exercise 58. Let R be a ring, and I an ideal of R. Define Rad(I) := {a ∈ R : an ∈
I for some positive integer n}.

(a) Show that Rad(I) is an ideal. Hint: show that if an ∈ I and bm ∈ I, then (a+b)n+m ∈
I.

(b) If R = Z and I = (d), where d = pe1
1 · · · per

r is the prime factorization of d, show that
Rad(I) = (p1 · · · pr).

Just before Exercise 9.31 (and change “following three exercises” above to “following
exercises”):

Exercise 59. Let X,Y, Z be subsets of a ring R. Show that:

(a) X · Y is closed under addition;

(b) X · Y = Y ·X;

(c) X · (Y ·Z) = (X ·Y ) ·Z = the set of all finite sums of the form
∑

i xiyizi, with xi ∈ X,
yi ∈ Y , and zi ∈ Z;

(d) if X an additive subgroup of R, then so is X · Y ;

(e) if X and Y are additive subgroups of R, then (X + Y ) · Z = X · Z + Y · Z.

After Exercise 9.33:

Exercise 60. Let M be a maximal ideal of a ring R. Show that for a, b ∈ R, if ab ∈M ·M
and b /∈M , then a ∈M ·M .
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Section 9.4

Exercise 61. Let σ : R → R′ be an embedding of rings, and assume that as sets, R and
R′ are disjoint. Show that there exists a ring R̂, along with a ring isomorphism τ : R′ → R̂,
such that τ ◦ σ is the identity function. Thus, there is ring isomorphic to R′ in which R
itself (and not just an isomorphic copy of R) is a subring.

Exercise 62. Let F be a field, and let f ∈ F [X, Y]. Define V (f) := {(x, y) ∈ F × F :
f(x, y) = 0}. Let E := F [X, Y]/(f).

(a) Any element α of E naturally defines a function from V (f) to F , as follows: if α = [a]f ,
with a ∈ F [X, Y], then for P = (x, y) ∈ V (f), we define α(P ) := a(x, y). Show that
this definition is unambiguous, that is, a ≡ a′ (mod f) implies a(x, y) = a′(x, y).

(b) For P = (x, y) ∈ V (f), define MP := {α ∈ E : α(P ) = 0}. Show that MP is a
maximal ideal of E, and that MP = [X− x]fE + [Y− y]fE.

Exercise 63. Continuing with the previous exercise, now assume that the characteristic
of F is not 2, and that f = Y2 − g(X), where g ∈ F [X] is a non-zero polynomial with no
multiple roots in F .

(a) Show that if P = (x, y) ∈ V (f), then so is P̄ := (x,−y), and that P = P̄ iff y = 0 iff
g(x) = 0.

(b) Let P = (x, y) ∈ V (f). Show that

[X− x]fE = MP ·MP̄ .

Hint: treat the cases P = P̄ and P 6= P̄ separately.

Section 11.3

It would be better to use the following exercise in place of Exercise 11.14:

Exercise 64. Continuing with Exercise 11.13, let Q′ be the product of all the primes qi
dividing p − 1 with qi ≤ Y . Note that Q′ | Q. The goal of this exercise is to estimate the
expected value of logQ′, assuming p is a large, random prime. In particular, suppose that p
is a random `-bit prime with Y ≤ 2`/3. Assuming Conjecture 5.24, show that asymptotically
(as `→∞), we have

E[logQ′] = log Y +O(1).

Section 13.3.1

Exercise 65. Let p be a prime with p ≡ 1 (mod 4).

(a) Using Supplementary Exercise 16, show that there exist positive integers r, t, both
less than

√
p, such that r2 ≡ −t2 (mod p); moreover, show how to efficiently compute

r and t, given p.

(b) From part (a), conclude that p = r2 + t2.
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(c) Part (b) says that any prime congruent to 1 modulo 4 is the sum of two squares. Show
the converse: any odd prime that is the sum of two squares must be congruent to 1
modulo 4.

Section 14.1

Exercise 66. Let R and E be rings, and ρ : R→ E be a ring homomorphism. Show that
using the addition operation of E, and defining scalar multiplication by a · α := ρ(a)α, we
can view E as an R-module.

Exercise 67. Let S be an arbitrary, non-empty set, and let M be an R-module. As
M is an abelian group, we can form the abelian group Map(S,M). We can also equip
Map(S,M) with a scalar multiplication operation: for f ∈ Map(S,G), a ∈ R, and s ∈ S,
(af)(s) := a · f(s). Show that Map(S,M) is an R-module.

Section 14.3

Exercise 68. Let M and M ′ be R-modules, and consider the R-module Map(M,M ′),
as defined in Supplementary Exercise 67. Let HomR(M,M ′) be the subset of elements
of Map(M,M ′) that are R-linear maps from M into M ′. Show that HomR(M,M ′) is a
submodule of Map(M,M ′).

Section 14.4

Exercise 69. Show that an R-module M has a basis of size n if and only if it is isomorphic
to R×n.

Section 14.5

Exercise 70. Let V be a vector space over a field F . We can generalize the notion of
linear independence and basis to infinite sets, as follows. Let S be a non-empty subset of
V . Let us say that a function c : S → F is zero almost everywhere if c(β) 6= 0 for at
most finitely many β ∈ S, and is zero everywhere if c(β) = 0 for all β ∈ S. We say S
is linearly independent if for any function c : S → F that is zero almost everywhere,∑

β∈S c(β)β = 0 only if c is zero everywhere. We say that S is a basis for V if it is linearly
independent, and if for every α ∈ V , there exists a function c : S → F that is zero almost
everywhere and

∑
β∈S c(β)β = α.

(a) Show that for finite sets S, these generalized definitions of linear independence and
basis coincide with our original definitions in Section 14.4.

(b) Show that any two bases for V are either both finite and of the same size, or both
infinite.

(c) Show that S is basis if and only if it is a maximal linearly independent set (i.e., it is
linearly independent, and there is no linearly independent set S′ with S ( S′).

(d) It is a fact that any vector space has a (possibly infinite) basis. Prove this fact for
vector spaces with a countable number of elements.
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Exercise 71. Let M and M ′ be R-modules, and suppose that α1, . . . , αm is a basis for M
and β1, . . . , βn is a basis for M ′. Consider the R-module HomR(M,M ′) of all R-linear maps
from M into M ′ (see Supplementary Exercise 68). For i = 1, . . . ,m, let πi : M → R be
the map that sends

∑m
i=1 aiαi to ai, and for j = 1, . . . , n, let ρj : R→M ′ be the map that

sends a to aβj . Show that the collection of maps ρj ◦ πi, for i = 1, . . . ,m and j = 1, . . . , n,
is a basis for HomR(M,M ′).

Section 15.1

Exercise 72. Show that Rm×n, using the usual rules for matrix addition and scalar mul-
tiplication, is an R-module. Furthermore, show that Rm×n has a basis over R of size mn.

Exercise 73. Let A,B ∈ Rm×n. Show that if vA = vB for all v ∈ R1×m, then A = B.
Also show that if Aw = Bw for all w ∈ Rn×1, then A = B.

Exercise 74. Let A ∈ Rn×n be a scalar matrix whose diagonal entries are equal to c ∈ R.
Show that for all v ∈ R1×n, we have vA = cv and Av> = cv>.

Exercise 75. Let A,B ∈ Rn×n be diagonal matrices. Show that C := AB is a diagonal
matrix with C(i, i) = A(i, i)B(i, i) for i = 1, . . . , n.

Exercise 76. A matrix A ∈ Rn×n is called lower triangular if A(i, j) = 0R for i < j.
Show that the product of two lower triangular matrices is also lower triangular.

Section 15.2

Exercise 77. Let M and N be R-modules, and suppose that A = (α1, . . . , αm) is an
ordered basis for M and B = (β1, . . . , βn) be an ordered basis for N . Consider the R-
module HomR(M,N) of all R-linear maps from M into N (see Supplementary Exercise 68),
and the R-module Rm×n (see Supplementary Exercise 72). Let Γ : HomR(M,N)→ Rm×n

the map that sends ρ to the matrix T that implements the action of ρ with respect to A
and B. Show that Γ is an R-module isomorphism.

Exercise 78. Let M , N , and P be R-modules, with ordered bases A = (α1, . . . , αm),
B = (β1, . . . , βn), and C = (γ1, . . . , γp), respectively. Suppose ρ : M → N is an R-linear
map, and that T ∈ Rm×n is the matrix that implements the action of ρ with respect to A
and B. Also suppose that ρ′ : N → P is an R-linear map, and that T ′ ∈ Rn×p is the matrix
that implements the action of ρ′ with respect to B and C. Show that TT ′ ∈ Rm×p is the
matrix that implements the action of ρ′ ◦ ρ with respect to A and C.

Section 15.3

Theorem 15.3. The following proof may be easier to follow:

For a matrix Z ∈ Rn×n, let σZ denote the R-linear map that sends v ∈ R1×n

to vZ. So in particular, ρ = σA. Also, let id denote the identity map on R1×n.
Evidently, if I is the n× n identity matrix, then σI = id; moreover, if σZ = id,
then Z = I.
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Suppose A is invertible, and let X ∈ Rn×n be its inverse. Since AX = I, we
have σX ◦ σA = σI = id, and hence ρA is injective. Similarly, since XA = I, we
have σA ◦ σX = σI = id, and hence ρA is surjective.

Now suppose σA is bijective. The inverse map σ−1
A is also an R-module iso-

morphism. Let X be the matrix representing σ−1
A with respect to the standard

basis for R1×n. Evidently, σX = σ−1
A . If Y := AX, then σY = σX ◦ σA =

σ−1
A ◦ σA = id, from which it follows that Y = I. Similarly, if Z := XA, then
σZ = σA ◦ σX = σA ◦ σ−1

A = id, from which it follows that Z = I.

Section 15.5

Exercise 79. Let us call a collection of non-zero vectors v1, . . . , vk ∈ R1×m pairwise
orthogonal if viv

>
j = 0 for all i 6= j. Show that any pairwise orthogonal collection of

vectors over R is linearly independent.

Exercise 80. The purpose of this exercise is to use linear algebra to prove that any pair-
wise independent family of hash functions (see §6.7) must contain a large number of hash
functions. More precisely, let H be a pairwise independent family of hash functions from
A to Z, with |Z| ≥ 2. Our goal is to show that |H| ≥ |A|. Let m := |H|, k := |A|,
and n := |Z|. Write H = {h1, . . . , hm} and A = {a1, . . . , ak}. Without loss of gener-
ality, we may assume that Z is a set of non-zero real numbers that sum to zero (e.g.,
Z = {1, . . . , n−1,−n(n−1)/2}). Now define the matrix M ∈ Rk×m with M(i, j) := hj(ai).
Using the pairwise independence property, show that the rows of M are pairwise orthogonal
(see previous exercise), and therefore linearly independent; from this, conclude that m ≥ k.

Section 17.3

Exercise 81. Let a, b ∈ F [X] be non-zero polynomials, with m := deg(a) and n := deg(b).
Define

τ : F [X]<n × F [X]<m → F [X]<m+n

(s, t) 7→ as+ bt.

Show that τ is an F -linear map, and moreover, that τ is an F -vector space isomorphism if
and only if gcd(a, b) = 1.

Section 17.4

Exercise 82. Let n1, . . . , nk ∈ F [X] be non-zero, pairwise relatively prime polynomials and
set n := n1 · · ·nk. Let `i := deg(ni) for i = 1, . . . , k, and ` :=

∑
i `i. Consider the map

τ : F [X]<` → F [X]<`1 × · · · × F [X]<`k

a 7→ (a mod n1, . . . , a mod nk).

Show that τ is an F -vector space isomorphism.
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Section 17.6

Exercise 83. Consider a field F and its field of rational functions F (X). Let z ∈ F (X) \F .
Show that X is algebraic over F (z), and that z is transcendental over F .

Exercise 84. Let E be an extension field of a field F . Suppose α ∈ E is transcendental
over F , and that E is algebraic over F (α). Show that for any β ∈ E, β is transcendental
over F iff E is algebraic over F (β).

Exercise 85. Consider 21/2, 21/3 ∈ R, and the field extensions Q[21/2], Q[21/3], Q[21/2 +
21/3], and Q[21/2][21/3] = Q[21/2, 21/3] = Q[21/3][21/2]. Show that:

(a) (Q[21/2] : Q) = 2 and (Q[21/3] : Q) = 3;

(b) (Q[21/2, 21/3] : Q) = 6;

(c) Q[21/2 + 21/3] = Q[21/2, 21/3];

(d) the minimum polynomial of 21/2 + 21/3 over Q has degree 6.

Exercise 86. A field K is called algebraically closed if every monic polynomial f ∈ K[X]
splits over K into linear factors, that is, f = (X− α1) · · · (X− α`), for some α1, . . . , α` ∈ K.
If, in addition, K is an algebraic extension of a field F , then K is called an algebraic
closure of F . Every field F has an essentially unique algebraic closure. This and the
following three exercises outline a proof of this; however, to avoid any fancy set theory, we
restrict our attention to fields F that are countable (i.e., finite or countably infinite).

(a) Show that a field K is algebraically closed if and only if every non-constant polynomial
f ∈ K[X] has a root in K.

(b) Show that if E is an algebraic extension of a field K, then K is not algebraically
closed.

(c) Show that any algebraically closed field is infinite.

(d) Show that if a field F is countable, then so is F [X].

(e) Show that if a field F is countable, and if K is an algebraic extension of F , then K is
countable.

Exercise 87. Let F0 ⊆ F1 ⊆ F2 ⊆ · · · be a sequence of fields such that F0 := F and Fi+1

is an extension of Fi for each i ≥ 0. Set E := ∪i≥0Fi. We can naturally define addition and
multiplication on E as follows: for a, b ∈ E, there is some i ≥ 0 for which Fi contains both
a and b, and we define a + b and ab using the rules for addition and multiplication in Fi.
Show that this definition is unambiguous (i.e., it does not depend on the choice of i), and
that it makes E into a field. Moreover, show that if each extension Fi+1 is algebraic over
Fi, then E is algebraic over F .

Exercise 88. This exercise proves the existence of algebraic closures.

21



(a) Let F be any countable field. Let f1, f2, f3 . . . be an enumeration of all monic poly-
nomials in F [X] (by part (d) of Supplementary Exercise 86, F [X] is countable). Set
F0 := F , and for each i ≥ 0, let Fi+1 be a finite extension of Fi over which fi+1

splits into linear factors (as in Theorem 17.19). Set F∗ := ∪i≥0Fi (with addition and
multiplication defined as in Supplementary Exercise 87). Show that F∗ is a field that
is algebraic over F , and that all monic polynomials f ∈ F [X] split into linear factors
over F∗.

(b) Let F be any countable field. Define the sequence of extension fields F (0) ⊆ F (1) ⊆
F (2) ⊆ . . . , where F (0) := F , and F (i+1) := (F (i))∗ for i ≥ 0 (as defined in part (a)).
Set K := ∪i≥0F

(i) (with addition and multiplication defined as in Supplementary
Exercise 87). Show that K is an algebraic closure of F .

Exercise 89. This exercise proves the uniqueness of algebraic closures. Let F be a field,
and let K and K ′ be two algebraic closures of F .

(a) For α ∈ K, show that there is an embedding σ : F [α]→ K ′ that leaves F fixed (i.e.,
the restriction of σ to F is the identity map).

(b) Generalizing part (a), suppose that E is a subfield of K containing F , that σ : E → K ′

is an embedding, and that α ∈ K. Show how to extend σ to an embedding σ′ : E[α]→
K ′ (i.e., σ′ should agree with σ on E).

(c) Using the result of part (b), and assuming F is countable, show that there exists an
embedding τ : K → K ′ that leaves F fixed.

(d) Show that any embedding τ as in part (c) must in fact be surjective. Conclude that
any two algebraic closures of F are isomorphic as F -algebras.

Note that the field C of complex numbers is algebraically closed (although this is by no
means obvious).

Section 17.8.1

The following exercises can replace and augment Exercise 17.35. They develop more fully
divisibility properties in Z[i].

Exercise 90. Let δ ∈ Z[i]. Show that:

(a) if δ is irreducible in Z[i], then so is its complex conjugate δ̄;

(b) if N(δ) is a prime number, then δ is irreducible in Z[i];

(c) if δ is irreducible in Z[i], then N(δ) is of the form p or p2 for some prime number p.

Exercise 91. In Exercise 17.32, we saw that 2 factors as −iπ2 in Z[i], where π := 1 + i is
irreducible. The exercise examines the factorization in Z[i] of primes p > 2.

(a) Show that either p is irreducible in Z[i], or p splits in Z[i] as p = δδ̄, where δ ∈ Z[i]
is irreducible, and the complex conjugate δ̄ (which is also irreducible) is not associate
to δ.
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(b) Show that if p splits in Z[i], then p ≡ 1 (mod 4).

(c) Show that if p ≡ 1 (mod 4), then p splits in Z[i]; in particular, show that if c ∈ Z with
c2 ≡ −1 (mod p), then p = δδ̄ where δ is a greatest common divisor (in Z[i]) of c+ i
and p.

Note that the above Supplementary Exercise can be solved without using the results of
Supplementary Exercise 65, and indeed, yields an alternative proof of the same result.

Section 18.3

Exercise 92. Let a, b ∈ F [X], with deg(a) ≥ deg(b) ≥ 0, let d := gcd(a, b), and let q := a/d.
Show that Euclid’s algorithm on inputs a and b uses O(len(b) len(q)) operations in F .

Section 19.3

Theorem 19.3. A simpler proof runs as follows:

By Theorem 14.26, we can extend δ1, . . . , δm to an ordered basis
δ1, . . . , δm, δm+1, . . . , δ`. Now choose π to be the element of DF (V ) whose co-
ordinate vector, with respect to this ordered basis, is a1, . . . , am, am+1, . . . , a`,
where am+1, . . . , a` ∈ F are arbitrary.

Section 20.2

Exercise 93. As an alternative to the approach taken in Supplementary Exercise 52,
extensions of finite fields can be used to design a very elegant, compact, and effective
message authentication scheme. Let F be a finite field of cardinality q, and let t and m
be positive integers. Let A := F×t and Z := F . Show how to construct a family H of
hash from A to Z so that (i) H is in one-to-one correspondence with F×(2m+1), and (ii) H
is an ε-forgeable message authentication scheme, where ε = 1/q + t/(mqm). Hint: making
use of an irreducible polynomial of degree m over F , along with the result of Exercise 6.40,
show how to combine a t/(mqm)-universal family of hash function from F×t to F×m with
a pairwise independent family of hash functions from F×m to F .

Section 20.3

Exercise 94. Let F be a finite field of cardinality q. This exercise develops an alternative
construction of an algebraic closure of F (see Supplementary Exercises 86–89). Show that
there exists a sequence of fields F1 ⊆ F2 ⊆ F3 · · · such that F1 = F , and for i ≥ 2, Fi is a
degree i extension of Fi−1. Set E := ∪i≥1Fi (with addition and multiplication defined as in
Supplementary Exercise 87). Show that E is an algebraic closure of F .

Section 21.3

Theorem 21.4. The following is a cleaner proof:
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We may assume r ≥ 2. Let N be a random variable that denotes the number
of iterations of the main loop of the algorithm. For n = 1, . . . , N , let Hn denote
the value of H at the beginning of loop iteration n. For i, j = 1, . . . , r, we define
Nij to be the largest value of n (with 1 ≤ n ≤ N) such that gi | h and gj | h for
some h ∈ Hn.

We first claim that E[N ] = O(len(r)). To prove this claim, we make use of the
fact (see Theorem 6.25) that

E[N ] =
∑
n≥1

P[N ≥ n].

Now, N ≥ n if and only if for some i, j with 1 ≤ i < j ≤ r, we have Nij ≥
n. Moreover, if gi and gj have not been separated at the beginning of one
loop iteration, then they will be separated at the beginning of the next with
probability 1/2. It follows that

P[Nij ≥ n] = 2−(n−1).

So we have
P[N ≥ n] ≤

∑
i<j

P[Nij ≥ n] ≤ r22−n.

Therefore,

E[N ] =
∑
n≥1

P[N ≥ n] =
∑

n≤2 log2 r

P[N ≥ n] +
∑

n>2 log2 r

P[N ≥ n]

≤ 2 log2 r +
∑

n>2 log2 r

r22−n ≤ 2 log2 r +
∑
n≥0

2−n = 2 log2 r + 2,

which proves the claim.

As discussed in the paragraph above this theorem, the cost of each iteration of
the main loop is O(k`2 len(q)) operations in F . Combining this with the fact
that E[N ] = O(len(r)), it follows that the expected number of operations in F
for the entire algorithm is O(len(r)k`2 len(q)). This is significantly better than
the above quick-and-dirty estimate, but is not quite the result we are after. For
this, we have to work a little harder.

For any polynomial h dividing g, define ω(h) to be the number of irreducible
factors of h. Let us also define

S :=
N∑

n=1

∑
h∈Hn

ω(h)2.

It is easy to see that the total number of operations performed by the algorithm
is O(Sk3 len(q)), and so it will suffice to show that E[S] = O(r2).

We claim that
S =

∑
i,j

Nij ,
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where the sum is over all i, j = 1, . . . , r. To see this, define Iij(h) to be 1 if both
gi and gj divide h, and 0 otherwise. Then we have

S =
∑

n

∑
h∈Hn

∑
i,j

Iij(h) =
∑
i,j

∑
n

∑
h∈Hn

Iij(h) =
∑
i,j

Nij ,

which proves the claim.

We can write
S =

∑
i6=j

Nij +
∑

i

Nii =
∑
i6=j

Nij + rN.

For i 6= j, we have

E[Nij ] =
∑
n≥1

P[Nij ≥ n] =
∑
i≥1

2−(n−1) = 2,

and so

E[S] =
∑
i6=j

E[Nij ] + rE[N ] = 2r(r − 1) +O(r len(r)) = O(r2).

That proves the theorem.

Additional exercises for this section:

Exercise 95. Suppose that in Algorithm EDF, we replace the two lines

for each h ∈ H do
choose α ∈ F [X]/(h) at random

by the following:

choose a ∈ F [X]<2k at random
for each h ∈ H do

α← [a]h ∈ F [X]/(h)

Show that the expected running time bound of Theorem 21.4 still holds (you may assume
p = 2 for simplicity).

25


