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1 Introduction
This chapter discusses NTL, a library for doing number theory, as well as its relation
to a few other libraries.

NTL is a high-performance, portable C++ library providing data structures and al-
gorithms for manipulating signed, arbitrary length integers, and for vectors, matrices,
and polynomials over the integers and over finite fields. It is maintained and mostly
written by the author, although a number of contributions have been made by others.

1.1 NTL, LIP, and GMP
Work on NTL started around 1990, when the author wanted to implement some new
algorithms for factoring polynomials over finite fields and related problems. It seemed
that none of the publicly available software was adequate for this task, mainly because
the code for polynomial arithmetic offered by this software was too slow. More pre-
cisely, many papers by the author and others working in this field would give big-O
estimates for algorithms under the assumption of fast (i.e., quasi-linear) polynomial
multiplication algorithms; however, the publicly available software at the time did not
implement any of these fast multiplication algorithms. Thus, to turn these theoretical
results into practically useful implementations, the author began working on software
for fast polynomial arithmetic over finite fields. This software eventually grew into a
full-fledged library, and eventually led to the public release of NTL version 1.0 in 1997.
NTL has evolved quite a bit since then, with a lot of new functionality and algorithmic
improvements, as well as features like thread-safety, and exploitation of multi-core and
SIMD hardware.

The starting point for NTL was Arjen Lenstra’s LIP package for long (i.e., multi-
precision) integer arithmetic, which was written in C. LIP was originally written by
Arjen Lenstra in the late 1980s. Later, in 1995, a version of LIP called FreeLIP was
released and maintained by Paul Leyland. It soon became clear that using C++ instead
of C would be much more productive and less prone to errors, mainly because of C++’s
constructors and destructors, which allowed memory management to be automated.
Using C++ had other benefits as well, like function and operator overloading, which
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makes for more readable code. So an essential part of NTL’s original design was a
lightweight C++ wrapper around LIP to manage the storage of long integers. For ex-
ample, suppose one wanted to write a program that input integers a, b, c, d, and output
ab + cd. This could be written in LIP as

verylong a=0, b=0, c=0, d=0, t1=0, t2=0;
zread(&a); zread(&b); zread(&c); zread(&d);
zmul(&t1, a, b); zmul(&t2, c, d);
zadd(&t1, t1, t2); zwriteln(t1);
zfree(&a); zfree(&b); zfree(&c); zfree(&d);
zfree(&t1); zfree(&t2);

while in NTL, this could be written as

ZZ a, b, c, d;
cin >> a >> b >> c >> d;
cout << (a*b + c*d) << "\n";

Among other things, LIP was designed to be used in widely distributed integer
factorization projects, and so portability, without sacrificing too much performance,
was a major design feature of LIP. Indeed, quoting from the LIP documentation itself:
“This very long int package is supposed to be easy to use, portable, and not too slow.”
This design principle was adopted for NTL as well, for a number of reasons, not the
least of which was that the author’s computing environment kept changing whenever
he changed jobs (which was unfortunately happening quite frequently in those days),
and so portability was a real issue. Achieving portability eventually became easier as
standards, like IEEE floating-point [9], got widely adopted, as the definition of and
implementations of the C++ language became standardized and more stable, and as
important language extensions, such as double-word integer arithmetic, became more
widely available.

When work started on NTL, besides LIP, there were not that many good, portable
long integer packages around. Shortly thereafter, Torbjörn Granlund released (in 1991)
the first version of GMP (the GNU MP library) [10]. GMP itself was largely compatible
with the earlier Berkeley MP library, but it was quite a bit more efficient. From the
documentation of one of the first public releases of GMP (v1.1, Sept. 29, 1991): “The
speed of GNU MP is about 5 to 100 times that of Berkeley MP for small operands. The
speed-up increases with the operand sizes for certain operations, where GNU MP has
asymptotically faster algorithms.” At that time, it was not clear that GMP was going to
be developed and maintained as well as it ultimately proved to be, so NTL continued to
use LIP for its long integer arithmetic. However, as time went on, GMP became much
faster relative to LIP, and was very well supported across many platforms, and so NTL
was eventually (in 2000) restructured to use GMP instead of LIP. For the most part, this
restructuring was invisible to NTL users, as these implementation details are all hidden
behind a layer of abstraction. Moreover, the current version of NTL can still be built
without GMP, in which case it reverts to logic that is derived from LIP (although by
now, even that logic has been almost entirely restructured). LIP itself has apparently
not been supported for many years.
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1.2 A quick tour of NTL
As already mentioned above, the initial purpose for working on NTL was to implement
some new algorithms for factoring polynomials over finite fields. The author’s early
work in this area was reported in [27]. Besides the class ZZ mentioned above, which
represents multi-precision integers, NTL also provides a class ZZ_pX, which represents
the ring of univariate polynomials Zp[X] over the quotient ring Zp = Z/pZ, where p is
a multi-precision integer (not necessarily prime). NTL also provides a corresponding
class zz_pX, optimized for single-precision p, and a class GF2X, optimized for the
important special case of p = 2. In addition, NTL provides classes for the ring of
univariate polynomials E[X] over the quotient ring E = Zp[T ]/(m(T )), where m(T ) ∈
Zp[T ]. These classes are called ZZ_pEX, zz_pEX, and GF2EX, respectively, depending
on whether p is multi-precision, single-precision, or equal to 2. For each of these
polynomial classes, NTL provides algorithms for all of the basic arithmetic operations,
and when the coefficient domain is a field, for other operations, such as GCD, factoring,
minimal polynomial calculation, and generating irreducible polynomials.

In addition to polynomials over finite rings and fields, NTL provides the class ZZX,
which represents the ring Z[X] of univariate polynomials over the integers, where co-
efficients are of arbitrary size. Naturally, NTL provides algorithms for all of the basic
arithmetic operations over Z[X], as well as GCD and factoring algorithms.

Unfortunately, at the present time, NTL does not provide any support for multi-
variate or even bivariate polynomials.

NTL provides support for matrices over finite fields and rings, as well as over the
integers. For integer matrices, NTL provides implementations of various lattice basis
reduction algorithms, including (fast, heuristic) algorithms that are based on floating-
point arithmetic. In support of these floating-point lattice basis reduction routines, and
for other applications as well, NTL also provides specialized floating-point classes.

NTL is licensed under the GNU LGPL license, and is available at www.shoup.
net/ntl.

1.3 Outline
In Section 2, we describe some of the technical details of how LIP and NTL originally
implemented long integer arithmetic, and compare the performance of these techniques
to GMP’s performance. In Section 3, we describe NTL’s implementation techniques
for the Number Theoretic Transforms (NTT), i.e., the Fast Fourier Transform (FFT)
for small primes. As we shall see, the NTT plays a central role in a number of NTL’s
other arithmetic modules. In Section 4, we discuss how NTL implements arithmetic in
Zp[X] for multi-precision p. In Section 5, we discuss how NTL implements arithmetic
in Zp[X] for single-precision p. In Section 6, we discuss how NTL implements matrix
arithmetic over Zp. In Section 7, we discuss how NTL implements polynomial and
matrix arithmetic over other finite rings. Finally, in Section 8, we discuss how NTL
implements polynomial and matrix arithmetic over the integers, including a brief dis-
cussion of NTL’s lattice basis reduction algorithms. In Section 9 we conclude with a
brief look into the future of NTL.
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2 Long integer arithmetic
In this section, we describe some of the technical details of how LIP and NTL origi-
nally implemented long integer arithmetic. These details are mostly of only historical
interest, as NTL now mainly relies on GMP for its long integer arithmetic.

As mentioned above, LIP was designed to be highly portable, but not too slow,
and NTL adopted this philosophy as well. One way in which LIP initially achieved
a good balance between portability and performance was to avoid the use of double-
word integer arithmetic, and instead, to use double-precision floating-point to achieve
similar functionality.

By “double-word integer arithmetic”, we mean some mechanism that allows one
to multiply two single-word integers to get the double-word product, as well as related
operations such as adding a single- or double-word integer to a double-word integer.
At the time NTL was initially developed, some hardware simply did not have any im-
plementation at all of double-word integer arithmetic, and even if it did, its implemen-
tation could often be fairly inefficient compared to its floating-point implementation;
moreover, programming languages and compilers often did not give the programmer
access to this hardware, and so exploiting such hardware would require writing and
maintaining a lot of assembly code (which, among other things, is exactly what GMP
does).

It might seem surprising to use floating-point arithmetic, which is inherently sub-
ject to rounding errors, to implement long integer arithmetic, which does not tolerate
any errors. Nevertheless, under reasonable assumptions, this can indeed be done. The
assumptions we need are simply bounds on the relative error introduced when per-
forming the basic arithmetic operations of addition, subtraction, multiplication, and
division. These assumptions are certainly implied by the IEEE floating-point standard,
which was already being quickly adopted at the time of NTL’s initial development.

On 32-bit machines (which were ubiquitous in the early days of NTL development),
LIP represents long integers in base R, where R = 230. Thus, a “base-R digit” is
an integer in the interval [0,R). A basic operation that is used in several algorithms,
including long integer multiplication, is addmulp, which takes as input base-R digits
a, b, d, and t, computes the two base-R digits representing b · d + a + t, and stores the
high-order digit back in t and the low-order digit back in a.

The original implementation of addmulp in LIP was essentially that presented in
Fig. 1.1 Here, we are assuming that the types long and unsigned long represent 32-
bit integers. To see why this works, let lo and hi denote the low-order and high-order
digit, respectively, of b ·d + a + t. Observe that the value of t3 equals lo, since unsigned
arithmetic is guaranteed to be done correctly modulo 232. Also observe that

hi = (b · d + a + t − lo)/R.

Now, the value of d1 is
bd(1 + θ1),

1Actually, the code in Fig. 1 is somewhat more robust and efficient than the original LIP implementation,
but it is still in the same spirit.
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typedef long L;
typedef unsigned long U;
typedef double D;
const int NBITS = 30;
const U R = U(1) << NBITS;

inline void addmulp(U& a, U b, U d, U& t)
{
U t1 = b * d;
U t2 = a + t;
U t3 = (t1+t2) & (R-U(1));

double d1 = D(L(b))* D(L(d));
double d2 = d1 + D( L(t2) - L(t3) + L(R/2) );
double d3 = d2 * (1.0 / D(L(R)) );

t = L(d3);
a = t3;

}

Figure 1: A floating-point implementation of addmulp

where |θ1| ≤ ε := 2−53 on a machine that correctly implements the IEEE floating-point
standard. The value of d2 is

(d1 + a + t − t3 + R/2)(1 + θ2) = bd(1 + θ1)(1 + θ2) + (a + t − lo + R/2)(1 + θ2),

where |θ2| ≤ ε. Finally, the value of d3 is d2/R. It follows that

d3 = hi + 1/2 + θ3,

where
|θ3| ≤ R|θ1 + θ2 + θ1θ2| +

2.5
R
|θ2|.

Therefore, since R = 230 and |θ1| and |θ2| are both at most ε = 2−53, we see that |θ3|

is at most approximately 2Rε = 2−22, and so the calculation of L(d3), which drops the
fractional part of d3, will certainly yield hi, as required.

On 64-bit machines (which eventually replaced 32-bit machines in their ubiquity),
the same analysis allows us to prove that addmulp works correctly with R = 250. In
that case, the value |θ3| above is at most approximately 2Rε = 1/4, which is still small
enough to ensure that L(d3) = hi.

Some implementation notes. Note that all conversions between integers and floating-
point values in Fig. 1 are done from or to signed integers, the reason being that many
machines implement such conversions much more efficiently than the corresponding
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inline void addmulp(U& a, U b, U d, U& t)
{
U t1 = b*d + a + t;
U t2 = D(L(b))*D(L(d))*(1.0/D(L(R)));
L t3 = L(t1 - (t2 << NBITS)) >> NBITS;
t = t2 + t3;
a = t1 & (R-U(1));

}

Figure 2: Another floating-point implementation of addmulp

inline void addmulp(U& a, U b, U d, U& t)
{
UU t1 = UU(b)*UU(d) + UU(a+t);
a = U(t1) & (R-U(1));
t = U(t1 >> NBITS);

}

Figure 3: A double-word integer implementation of addmulp

conversions from or to unsigned integers. Also note that the above correctness analy-
sis only depended on the relative error guarantees provided by the IEEE floating-point
standard, and not on any “exact rounding” requirements. Thus, the analysis is still
valid, even in the presence of “double rounding”, which can occur on platforms which
perform some calculations in extended double precision (such as old x86 machines that
use the x87 floating-point instructions), or in the presence of “contractions”, which can
occur in implementations that provide “fused multiply and add” instructions (such as
newer x86 machines).

Fig. 2 presents another implementation of addmulp, which was introduced in the
original version of NTL, and which replaced LIP’s implementation of addmulp. This
implementation works on 32-bit machines (with R = 230) or on 64-bit machines (with
R = 250). It also assumes that signed integer arithmetic is two’s complement, conver-
sion from unsigned to signed works as expected (i.e., the bit pattern is unchanged), and
that right shifts of signed integers are arithmetic shifts.2

Under our relative-error assumptions for floating-point arithmetic, we have bbd/Rc =

t2 + δ, where δ ∈ {0,±1}. It follows that hi = t2 + δ′, where δ′ ∈ {−1, . . . , 3}. The cal-
culation of t3 uses the high-order bits of t1 to compute the value t3 = δ′, which is then
added to t2 to compute the correct value of hi.

Eventually, NTL was updated to exploit double-word integer arithmetic if possible
(and desired). This is done by either using a special type or by using inline assembly.3

2Here, and elsewhere, we make some assumptions about signed arithmetic which technically leads to
“implementation defined” behavior; however, the code can easily be adapted to use only unsigned arithmetic.

3Inline assembly is only implemented on x86 machines. On many 32-bit machines, the type unsigned
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inline void addmul(U* a, U* b, U d, L n)
{
U t = 0;
for (L i = 0; i < n; i++) addmulp(a[i], b[i], d, t);

}

Figure 4: Computing a← a + bd using addmulp

method time (ns)
Fig. 1 1426
Fig. 2 735
Fig. 3 548
GMP 176

Table 1: Time (in nanoseconds) to multiply two 1000-bit integers

Assuming an appropriate double-word unsigned integer type UU, the routine addmulp
can be implemented as in Fig. 3.

Fig. 4 illustrates how the addmulp routine is typically used in LIP and NTL. The
routine addmul computes a← a+bd, where a and b point to arrays representing n-digit
integers, and d is a single digit.

If GMP is not available, then either the implementation based on Fig. 3 (if a double-
word integer type is available) or Fig. 2 (otherwise) is used. The implementation based
on Fig. 1 is currently never used. Of course, if GMP is available, that is used instead.

Table 1 shows the time (in nanoseconds) needed to multiply two 1000-bit inte-
gers, based on several different implementations. Except where otherwise noted, all
benchmarks in this chapter were carried out on an Intel Xeon CPU E5-2698 v3 (64-bit
Haswell architecture) at 2.30GHz, using GCC version 7.3.1, and GMP version 6.1.0
(note that GMP was compiled with version 4.8.5 of GCC).

The takeaway is that for integers of this size, GMP is 3–4 times faster than NTL’s
native implementations, and 8 times faster than LIP’s original implementation tech-
nique. It should also be noted that to multiply larger integers, NTL’s native imple-
mentation uses Karatsuba, while GMP employs a number of different algorithms in
addition to Karatsuba (including an FFT for very large integers). Thus, GMP’s perfor-
mance relative to NTL gets even better for larger integers.

We also note that LIP (and NTL, when GMP is not used) also exploits floating-
point arithmetic in a number of other ways, for operations such as long integer division
and GCDs. However, we shall not discuss these techniques in any detail here.

long long is a 64-bit unsigned integer, and on many 64-bit machines, the type __uint128_t is a 128-bit
unsigned integer.
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3 Number-Theoretic Transforms
Let p be a prime such that p− 1 is divisible by N = 2k. We will assume here that p is a
“single precision” number, i.e., it fits in a single word. In fact, we will usually assume
that the bit-length of p is a bit smaller than the width of a word (typically 2 or 4 bits
less).

We know that Z∗p contains an element ω of multiplicative order N. The N-point
Discrete Fourier Transform (DFT) maps the coefficient vector of a polynomial f ∈
Zp[X] to the evaluation vector

( f (ω0), f (ω1), . . . , f (ωN−1) ).

The DFT over Zp is sometimes called a Number-Theoretic Transform or NTT. As is
well known, the inverse transform is also essentially just an NTT. Of course, using the
Fast Fourier Transform (FFT) [6], we can compute the NTT and inverse NTT using
O(N log N) additions, subtractions, and multiplications in Zp.

We shall sometimes call such a prime p an “FFT prime”.
An important application of NTTs is to implement fast polynomial multiplication

over Zp, using the following well known technique. Suppose f , g ∈ Zp[X] with deg( f )+
deg(g) < N. Then to compute h = f · g, we proceed as follows:

• Compute the evaluation vectors u and v of f and g using the NTT.

• Compute the component-wise product vector w := u · v.

• Compute h as the inverse NTT of w.

NTTs play a crucial role in NTL, especially in their use in the multimodular algo-
rithms for polynomial multiplication, as we will discuss later in Sections 4, 5, and 8.
Also, in Section 4.5, we shall discuss more recent applications of NTTs to a new type
of encryption called fully homomorphic encryption.

The remainder of Section 3 will discuss the techniques for efficient implementa-
tions of NTTs that are used in NTL.

3.1 Single-precision modular arithmetic
Evidently, in order to get a high-performance implementation of a fast NTT algorithm
modulo a single-precision prime, one needs high-performance implementations of ad-
dition, subtraction, and multiplication modulo such primes.

More generally, assume n > 1, and a and b are integers in the range [0, n). We
can compute a + b mod n and a − b mod n using the routines AddMod and SubMod
in Fig. 5 (see the typedefs in Fig. 1). Correctness is assured provided n < 2BPL−2,
where BPL is the number of bits in the type long. In Fig. 5, the routine CorrectExcess
subtracts n from r if r exceeds n. Similarly, the routine CorrectDeficit adds n to r if
r is negative. These routines are implemented using one of two strategies, depending
on a compile-time switch. The first strategy is branch free, and uses an appropriate
sequence of addition, subtractions, shifts, and ANDs; as presented, this code assumes
signed integer arithmetic is two’s complement, and that right shifts of signed integers
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are arithmetic shifts. The second strategy uses explicit branching. On modern archi-
tectures, which are typically highly pipelined, and which exhibit high branch penalties,
the branch-free strategy can be much faster than the branching strategy. However, some
modern architectures, such as the x86, provide so-called “conditional move” instruc-
tions, and the branching strategy can be slightly faster than the branch-free strategy on
such architectures. NTL installation logic will usually make a good decision on which
strategy is better.

To compute ab mod n, NTL originally employed floating-point arithmetic, essen-
tially as in Fig. 6. This was very similar to the strategy employed by LIP, as well.
Correctness is assured provided nε ≤ 1/8, where ε := 2−53 on a machine that correctly
implements the IEEE floating-point standard. This ensures that the computed quotient
q is equal to bab/nc + δ, where δ ∈ {0,±1}. The code also assumes that signed integer
arithmetic is two’s complement, conversion from unsigned to signed work as expected
(i.e., the bit pattern is unchanged), and that right shifts of signed integers are arithmetic
shifts.

In a 32-bit machine, the assumption that nε ≤ 1/8 is not a real restriction; however,
on a 64-bit machine, it essentially restricts the modulus n to be a 50-bit number at most.

Typically, the modulus n will remain fixed for many modular multiplication op-
erations (for example, in NTTs). In this situation, a good optimizing compiler may
generate code to compute the quantity ninv just once. However, an alternative interface
is provided in which the value ninv can be explicitly precomputed by the programmer.

Often, in addition to the modulus n, one of the multiplicands, say b, may also
remain fixed for many modular multiplication operations (again, for example, in NTTs,
where b is a root of unity). While an optimizing compiler may sometimes be able
to generate code to compute the quantity bninv just once, an alternative interface is
provided in which the value bninv can be explicitly precomputed by the programmer.
In fact, if the machine provides double-word integer arithmetic, a much faster code
sequence is used, which is shown in Fig. 7. The code shown here uses a double-word
unsigned integer type UU. Inline assembly code may also be used.

In this code, the value bninv should be precomputed as

b2SPBITSb/nc · 2BPL−SPBITS.

Here, SPBITS is a bound on the bit length of the modulus n, i.e., n < 2SPBITS, and it is
assumed that SPBITS ≤ BPL−2. The value bninv can be computed using floating-point
logic similar to that in Fig. 6 (and a function is provided to the programmer to do so).

One can prove that with bninv computed in this way, the quotient q computed in
Fig. 7 is equal to either bab/nc or bab/nc − 1.

A good optimizing compiler targeting the x86 instruction set will generate code that
consists of three integer multiplication instructions, two subtractions, one “conditional
move” instruction, and several register-to-register moves (which nowadays are almost
completely cost free). Moreover, two of the multiplications are “single word” multipli-
cations (i.e., only the low-order word need be computed), and these two multiplications
may run concurrently (there are no data dependencies between them).
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const int BPL = 64;
#ifdef AVOID_BRANCHING
inline long CorrectExcess(L r, L n)
{
return (r-n) + (((r-n) >> (BPL-1)) & n);

}

inline long CorrectDeficit(L r, L n)
{
return r + ((r >> (BPL-1)) & n);

}
#else
inline long CorrectExcess(L r, L n)
{
return r-n >= 0 ? r-n : r;

}

inline long CorrectDeficit(L r, L n)
{
return r >= 0 ? r : r+n;

}
#endif
inline long AddMod(L a, L b, L n)
{
return CorrectExcess(a + b, n);

}

inline long SubMod(L a, L b, L n)
{
return CorrectDeficit(a - b, n);

}

Figure 5: Single precision modular addition and subtraction



inline long MulMod(L a, L b, L n)
{
D ninv = 1/D(n);
D bninv = D(b) * ninv;
L q = L( D(a) * bninv );
L r = L( U(a)*U(b) - U(q)*U(n) );
r = CorrectDeficit(r, n);
r = CorrectExcess(r, n);
return r;

}

Figure 6: Single precision modular multiplication based on floating-point arithmetic

inline long MulModPrecon(L a, L b, L n, U bninv)
{
U q = U( (UU(U(a)) * UU(bninv)) >> BPL );
L r = L( U(a)*U(b) - q*U(n) );
return CorrectExcess(r, n);

}

Figure 7: Single precision modular multiplication with pre-conditioning

3.2 A floating-point-free implementation
While the above floating-point implementations for single-precision modular multipli-
cation are simple and quite effective, they have the disadvantage of restricting the mod-
ulus to only 50 bits on a 64-bit machine. In this section, we describe the floating-point-
free implementation that NTL currently deploys on machines that provide double-word
integer arithmetic. With this technique, one can easily support a 62-bit modulus on a
64-bit machine; however, for a number of reasons, NTL usually restricts the modulus
to just 60 bits. Moreover, on modern hardware, this floating-point-free implementation
typically outperforms the floating-point implementations.

We assume the modulus n has w bits, so

2w−1 ≤ n < 2w. (1)

We also assume that 2 ≤ w ≤ BPL − 2, although we may also make the stronger
assumption that w ≤ BPL − 4.

As a precomputation step, we compute

X := b(2v − 1)/nc. (2)

Here, v > w is a constant to be discussed below. Note that

2v−w ≤ X < 2v/n ≤ 2v−w+1. (3)
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We can also write
2v − 1 = Xn + Y, where 0 ≤ Y < n. (4)

Now suppose we are give an integer C satisfying

0 ≤ C < 2wn (5)

that we want to reduce mod n. We split C into high-order and low-order bits:

C = A2s + B, where 0 ≤ B < 2s, (6)

and then compute the product of A and X, splitting that into high-order and low-order
bits:

AX = Q2t + R, where 0 ≤ R < 2t. (7)

Here, s and t are constants satisfying s + t = v, to be discussed below.
We have

AX ≤
C
2s X <

C
2s

2v

n
=

2tC
n
.

These calculations follow from (3) and (6). In particular, AX/2t < C/n, and by (7), we
have

Q = bAX/2tc ≤ bC/nc.

We will show, with an appropriate choices of parameters, that

Q ≥ bC/nc − 1. (8)

To this end, we claim that

C − Qn < nC/2v + 2s + n. (9)

To see this, observe that

Qn =
AX − R

2t n =
AXn

2t −
R
2t n >

AXn
2t − n

=
A
2t (2v − 1 − Y) − n ≥

A
2t (2v − n) − n

= A2s − A
n
2t − n = C − B − A

n
2t − n > C − 2s − A

n
2t − n

≥ C − 2s −C
n
2v − n.

These calculations follow from (4), (6), and (7)
Suppose BPL ≥ w + 4 (which is the default on 64-bit machines, where w = 60). In

this case, we set
v := 2w + 2, s := w − 2, t := w + 4.

Then we have

C − Qn < nC/2v + 2s + n < n/4 + n/2 + n < 2n.
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inline long NormalizedMulMod(L a, L b, L n, U X)
{
UU C = UU(U(a)) * UU(U(b));
U A = U( C >> 58 );
U Q = (UU(A)*UU(X)) >> 64;
L r = L( U(C) - Q*U(n) );
return CorrectExcess(r, n);

}

Figure 8: Single precision modular multiplication without floating-point (on a 64-bit
machine with w = 60)

These calculations follow from (9) and the fact that nC/2v ≤ n22w−v = n/4 (based on
(5) and (1)) and 2s = 2w−2 ≤ n/2 (based on (1)). This establishes (8). From (3), we
also have

X < 2v−w+1 = 2w+3 < 2BPL,

so X fits in one machine word. From (6), (5), and (1), we also have

A ≤
C
2s <

2wn
2s < 22w−s = 2w+2 < 2BPL,

so A also fits in one machine word.
Suppose BPL ≥ w + 2 (which is the default on 32-bit machines, where w = 30). In

this case, we set
v := 2w + 1, s := w − 2, t := w + 3.

Then we have

C − Qn < nC/2v + 2s + n < n/2 + n/2 + n ≤ 2n.

This again establishes (8). We also have

X < 2v−w+1 = 2w+2 ≤ 2BPL,

so X fits in one machine word. (This is the only place where it is essential that X is
computed as in (2), rather than as b2v/nc). We also have

A ≤
C
2s <

2wn
2s < 22w−s = 2w+2 ≤ 2BPL,

so A also fits in one machine word.
Fig. 8 shows how to use the above strategy to implement modular multiplication

on a 64-bit machine with w = 60. As usual, L is a synonym for long, U is a synonym
for unsigned long, and UU is a synonym for a double-word unsigned integer type.
A good optimizing compiler targeting the x86 instruction set will generate code that
consists of three integer multiplication instructions, one “shrd” (or “shld”) instruction
(which performs the 58-bit double-word right shift), two subtractions, one “conditional
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inline long
GeneralMulMod(L a, L b, L n, U X, int shamt)
{
return
NormalizedMulMod(a, b << shamt, n << shamt, X)
>> shamt;

}

Figure 9: Floating point free modular multiplication — the general case

move” instruction, and several register-to-register moves. Some compilers may choose
to replace the “shrd” instruction with two single-word shifts and an addition or logical-
or instruction. Note that in contrast to the logic in Fig. 7, only one of the three is a
single-word multiplication, and moreover, none of them can run concurrently with the
others.

It is also possible to adapt the logic to work with w = 62, but for a number of
reasons, choosing w = 60 is advantageous.

Note that the logic in Fig. 8 requires n satisfies (1). For certain applications, this
will be true, but in general, one may have to employ the logic in Fig. 9, which only
assumes n < 2w. The amount shamt is precomputed so that 2w−1 ≤ n2shamt < 2w.

3.3 Lazy butterflies and truncated FFTs
Consider again the problem of computing NTTs, that is, an FFT modulo a single-
precision prime p. NTL’s current NTT implementation incorporates two important
optimizations.

3.3.1 Lazy butterflies

The first optimization is a “lazy butterfly” technique. A “forward FFT” (a.k.a., deci-
mation in frequency) maps naturally ordered inputs to outputs that are in bit-reversed
order. The basic operation performed in this algorithm is a “forward butterfly”:[

x
y

]
7−→

[
x + y

ω(x − y)

]
,

where ω is a root of unity. We can assume that the value ω is precomputed and stored
in table. Thus, we can implement one forward butterfly using one multiplication, one
addition, and one subtraction mod p. For the modular multiplication, we can use the
pre-conditioned modular multiplication logic discussed above (see Fig. 7). The modu-
lar addition and subtraction steps can be implemented as in Fig. 5. This implementation
requires a total of three “correction steps” (specifically, two invocations of CorrectEx-
cess and one of CorrectDeficit).

David Harvey [12] has shown how to reduce the number of correction steps in the
forward butterfly from three to one. This is achieved by keeping intermediate results
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reduced only mod 2p rather than mod p (one might call this a “lazy reduction” tech-
nique). It turns out that this leads to a significant performance improvement in practice.
In the same paper, Harvey also gives a similar improvement to the implementation of
the “inverse butterfly” step, [

x
y

]
7−→

[
x + ωy
x − ωy

]
,

which is used in the “inverse FFT” (a.k.a., decimation in time) transform that maps
bit-reverse-ordered inputs to naturally ordered outputs. This is achieved by keeping
intermediate results reduced only mod 4p rather than mod p.

3.3.2 The truncated FFT

In the application of the FFT to polynomial multiplication, one has to perform N-point
FFTs, where N is a power of two that is larger than the degree d of the product poly-
nomial. If d is at or just above a power of two, this leads to an unfortunate inefficiency.
Indeed, if one graphs the running time of such a polynomial multiplication algorithm
as a function of d, the graph looks like a step function, doubling at each power of two.

Joris van der Hoeven [31] introduced a “truncated FFT” technique that effectively
smooths out these jumps. This “truncated FFT” technique can be combined with Har-
vey’s “lazy butterfly” technique, and NTL now incorporates both of these techniques.
In fact, NTL’s current NTT implementation is derived from code originally developed
by Harvey (although it has been extensively rewritten to conform to NTL’s internal
software conventions).

3.4 Comparing implementation techniques
Table 2 shows the time (in nanoseconds) to perform a modular multiplication using the
various techniques outlined above.

The first column measures the time for a pre-conditioned modular multiplication
(where both one multiplicand and the modulus are fixed). The second column measures
the time for a modular multiplication where the modulus is fixed and normalized (i.e.,
satisfies (1)). The third column measures the time for a modular multiplication where
the modulus is fixed but need not be normalized. The first three rows all employ the
floating-point-free implementations discussed above (which work with 60-bit primes),
where the only difference is how the CorrectExcess logic is implemented: using a
conditional move instruction, using shifts and masks, and using actual jumps.4 The
next three rows are based on floating-point implementations that do not rely at all on a
double-word integer type (and which work with 50-bit primes).

For comparison, the last row in the table is based on assembly code that uses a
single hardware instruction for multiplication and a single hardware instruction for
division. This method is by far the least efficient method. This is not surprising, as
hardware support for integer division is typically very poor: even though it is just a
single instruction, it has a very high latency.

4The GCC compiler flags -fno-if-conversion -fno-if-conversion2
-fno-tree-loop-if-convert were used to force actual jumps.
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precon normal nonnorm
method time (ns) time (ns) time (ns)
no float / cmov 3.3 4.7 5.4
no float / mask 3.6 5.0 5.7
no float / jump 4.0 5.2 5.9
float / cmov 6.5 7.9 7.9
float / mask 6.7 8.1 8.1
float / jump 4.9 6.4 6.4
hardware div 26.6 26.6 26.6

Table 2: Time (in nanoseconds) for single-precision modular multiplication

The floating-point-free methods are generally the fastest, and have the advantage in
that they allow for larger moduli on 64-bit machines (60, or even 62 bits, rather than 50
bits). Notice that among the floating-point-free methods, the implementations based on
jumps are the slowest, whereas among the floating-point methods, the implementations
based on jumps are the fastest. A reasonable hypothesis to explain this behavior is that
the hardware branch predictor is doing much better in the floating-point methods than
in the floating-point-free methods. We tested this hypothesis by empirically measuring
the percentage of time the correction logic actually triggered a correction. For the
floating-point methods, this was just 1–2%, while for the floating-point-free methods,
this was 15-20% of the time.

Using the various techniques described above, Table 3 shows the time (in microsec-
onds) to multiply two polynomials of degree 1023 modulo a single-precision “FFT
prime”, i.e., a prime p such that p − 1 is divisible by a suitable power of 2. The first
three rows all employ the floating-point-free implementations discussed above (which
work with 60-bit primes), where, again, the only difference is how the CorrectExcess
logic is implemented. The last three rows are based on floating-point implementa-
tions that do not rely at all on a double-word integer type (and which work with 50-bit
primes). The first column measures the time using a “non-lazy butterfly” implementa-
tion, and the second column measure a “lazy butterfly” implementation. Note that the
“lazy butterfly” implementation is not available in the floating-point-only implementa-
tion.

Observe that in all cases, the implementation of the correction logic based on jumps
is always dramatically slower. This is in contrast to what we saw in Table 2. The
likely explanation for this is that the butterfly steps involve modular additions and/or
subtractions, and for these, the branch misprediction rate is likely much higher than for
multiplications.

Fig. 10 shows some timing data comparing the current truncated FFT implemen-
tation to an earlier FFT implementation without truncation. The x-axis is the degree
bound, y-axis is time (in seconds), shown on a log/log scale. This is the time to multiply
two polynomials modulo a single-precision “FFT” prime (60 bits). This figure nicely
illustrates how the truncated FFT smooths out the step-function behavior exhibited in
the non-truncated version.

The integer-only MulModPrecon routine (see Fig. 7) was introduced in NTL ver-
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non-lazy lazy
method time (µs) time (µs)
no float / cmov 74 56
no float / mask 80 59
no float / jump 300 130
float / cmov 110 n/a
float / mask 110 n/a
float / jump 290 n/a

Table 3: Time (in microseconds) for multiplying two degree 1023 polynomials modulo
a single-precision “FFT” prime
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sion 5.4 in 2005. Harvey’s “lazy butterfly” technique was first implemented in NTL
version 6.0 in 2013. The integer-only non-preconditioned MulMod routines (see Sec-
tion 3.2) were introduced in NTL version 9.2 in 2015.5 Van der Hoeven’s “truncated
FFT” was first implemented in NTL version 11.1 in 2018.

4 Arithmetic in Zp[X] for multi-precision p

We next discuss how NTL implements arithmetic in Zp[X] for multi-precision p.
NTL implements a class ZZ that represents multi-precision integers. In its default

configuration, this is a thin wrapper around GMP. Specifically, an object of class ZZ is
a pointer to an array of words representing a multi-precision integer, and GMP routines
are used to do the arithmetic on such integers. In fact, NTL itself manages the memory
allocation and de-allocation (using malloc and free), and (for the most part) relies
only on the lower-level mpn routines in GMP that do not themselves manage memory.

NTL also implements a class ZZ_p that represents the ring Zp = Z/pZ of integers
mod p, where p is a multi-precision modulus. Note that despite the notation, p is not
necessarily a prime. Elements of Zp are naturally represented as integers in the range
[0, p), using the class ZZ. The modulus p is recorded in a global variable containing the
value p itself (along with various precomputed values to make certain computations
more efficient). Note that in multi-threaded applications, this global variable is imple-
mented using “thread local storage”. Using a global variable in this way surely offends
some programming purists’ sensibilities, but it also is the only way to allow one to use
overload arithmetic operators to express computations in the most natural way.

NTL implements a class ZZ_pX that represents the ring of polynomials Zp[X]. An
object of class ZZ_pX is a vector of ZZ_p objects. The memory for elements of this type
of vector are specially managed.6 The ZZ_p objects in such a vector are represented
by ZZ objects, which themselves are represented by word-vectors, each of the same
size; moreover, several such word-vectors are packed contiguously into larger blocks
of memory. This packing has two benefits: first, when allocating such a vector of
ZZ_p objects, the number of calls to malloc is significantly reduced; second, when
accessing elements of such a vector in order, the cache behavior is improved, due to
better locality of reference.

NTL implements several polynomial multiplication algorithms for Zp[X]: plain,
Karatsuba, Schönhage-Strassen, and multimodular FFT.

For the most part, each of these algorithms reduces the problem of multiplying
two polynomials in Zp[X] to that of multiplying two polynomials in Z[X], and then
reducing the coefficients of the product polynomial mod p.

5The design of these routines were initially inspired by the logic in [18], but the final form, which is
optimized based on assumptions specific to NTL’s software conventions, is quite a bit different. Note also
that NTL does not implement Montgomery modular multiplication [19], as it is a bit less convenient to use:
it involves a more expensive precomputation, a non-standard representation, and does not work with even
moduli; moreover, it does not offer a significant performance benefit over the algorithms discussed above.

6For this, and other reasons, NTL implements its own vector template class, and does not rely on the
vector class defined in the C++ standard template library (STL). Indeed, NTL was initially implemented long
before templates or the STL existed.
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The plain algorithm. If the input polynomials have degree less than n, the plain
algorithm performs O(n2) multiplications of integers of bit length ≈ log2(p), as well as
O(n2) additions of integers of bit length ≈ 2 log2(p) + log2(n).

The Karutsuba algorithm. The Karutsuba algorithm [14] performs O(nlog2 3) mul-
tiplications of integers of bit length ≈ log2(p) + log2(n), as well as O(nlog2 3) additions
and subtractions of integers of bit length ≈ 2 log2(p) + log2(n).

The Schönhage-Strassen algorithm. The Schönhage-Strassen algorithm [26] is based
on the same high-level FFT strategy as outlined at the beginning of Section 3: using
two FFTs to compute the evaluation vectors of the input polynomials, multiplying these
two vectors component-wise to obtain the evaluation vector of the product polynomial,
and using one inverse FFT to obtain the product polynomial from its evaluation vec-
tor. The difference is that now the FFTs (and inverse FFTs) are performed over the
ring Zq, where q = 2mr + 1, m is a power of two, r is odd, and log2(q) is at least
≈ ` := 2 log2(p) + log2(n). The element ω := 2r ∈ Z∗q is a primitive 2mth root of
unity, which enables the use of the FFT to multiply polynomials of degree less than n,
provided m ≥ n. The requirement that log2(q) is at least ≈ ` ensures that computing the
coefficients of the product polynomial mod q allows us to recover the coefficients over
the integers.

Multiplication in Zq by a power of ω can be efficiently implemented in terms of
shifts and additions/subtractions. Also, a general multiplication in Zq can be imple-
mented using one integer multiplication (of integers of bit length ≈ `), as well as
some shifts and additions/subtractions. The overall cost of this polynomial multipli-
cation algorithm is O(n log n) additions and multiplications by powers of ω in Zq, and
O(n) multiplications in Zq. This polynomial multiplication algorithm works best when
log2(p) is not too small relative to n, as otherwise we have to work modulo number q
whose bit length (which is at least n) is significantly larger than that of p. One can im-
prove performance for somewhat smaller values of p by making use of an optimization
known as the “square root of 2 trick”. This optimization is based on the observation
that ω1 := 23mr/4 − 2mr/4 is a square root of 2 in the ring Zq, which means that ω1 is a
primitive 4mth root of unity.

The multimodular algorithm. The multimodular algorithm reduces the coefficients
of the input polynomials modulo several small primes p1, . . . , pk. We must have P :=∏

i pi > B, where B is a bound on the magnitude of the coefficients of the product poly-
nomial, so

∑
i log2(pi) is at least ≈ 2 log2(p) + log2(n). Each pi is a single-precision

“FFT prime”, so that each Zpi contains appropriate roots of unity to enable the use
of the FFT to compute the product of the input polynomials mod pi. After comput-
ing the product polynomial mod each pi, the Chinese remainder algorithm is used to
reconstruct the coefficients of the product polynomial over the integers. We have al-
ready discussed above in Section 3 the techniques to multiply polynomials modulo
such single-precision “FFT primes”. To achieve good performance, some care must be
taken in implementing the coefficient reduction modulo the small primes, and in the
inverse Chinese remaindering step.
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Assuming the hardware supports double-word integer arithmetic, the following
technique is used for the reduction step. Suppose R is the radix used to represent long
integers. Further, assume we are given a vector (a0, . . . , a`−1) of base-R digits repre-
senting a long integer a =

∑
j a jR j that we want to reduce mod each pi. To do this, we

assume we have precomputed a table of values ri j := R j mod pi. To compute a mod pi,
we compute the inner product si :=

∑
j a jr j, and then reduce si mod pi. On a typical

64-bit machine, and assuming GMP is used to implement long-integer arithmetic, we
have R = 264 and each pi is a 60-bit integer. Each term a jr j in the inner product can be
computed using a single multiplication instruction. We can accumulate up to 16 such
terms using a double-word addition (which on an x86 machine can be implemented
using one addition and one addition-with-carry instruction). If there are more than 16
terms, then this double-word accumulator needs to be accumulated in a larger triple-
word accumulator every 16 terms. After computing si, which will be represented as
either a two-word or three-word integer, it is reduced mod pi (using techniques similar
to those discussed in Section 3.2).

Reducing such an `-digit number a modulo p1, . . . , pk, takes time O(k`), using
a precomputed table of size O(k`). The implied big-O constant in the running time
is quite small, and although NTL implements an asymptotically fast algorithm for
multi-reduction (relying on GMP’s asymptotically fast algorithms), the crossover is
extremely high (for log2 p in the tens of thousands).

As for the Chinese remaindering step, we are given integers si for i = 1, . . . , k,
where each si is in the range [0, pi), and we want to compute the integer

c =

(∑
i

Pisi mod P
)

mod p,

where Pi := P/pi. A relatively straightforward implementation takes time O(k`), but
we get an easy speedup by a factor of two with the following observation. Assume
that P > 4B. Let A :=

∑
i Pisi. Suppose we write A = PQ + R, where Q is the

integer nearest A/P and |R| ≤ P/2. We want to compute R mod p. In fact, by the
assumption that P > 4B, we have |R| < P/4, and so A/P = Q + δ, where |δ| < 1/4. We
also have A/P =

∑
i si/pi. Therefore, under reasonable assumptions, we can compute

the quotient Q by computing the sum
∑

i si/pi using double-precision floating-point,
and rounding to the nearest integer. Assuming we have precomputed the values P̄i :=
Pi mod p (each of which roughly half the size of Pi), as well as P̄ := P mod p, we can
compute c above as

c =

(∑
i

P̄isi − P̄Q
)

mod p.

The sum
∑

i P̄isi can be computed fairly quickly in the obvious way (GMP provides rel-
atively good support for this); however, when double-word integer arithmetic is avail-
able, and especially when log2(p) is not too huge, a technique similar to that used above
in the reduction step for accumulating double-word products can be somewhat more ef-
ficient. Also as above, although NTL implements an asymptotically fast algorithm for
Chinese remaindering, the crossover is extremely high.
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Figure 11: Polynomial multiplication modulo a 256-bit prime

4.1 Comparing algorithms for multiplication in Zp[X]

Figs. 11–13 show the running time (in seconds) for each of the algorithms described
above for primes p of bit-length 256, 1024, and 4096, respectively. Each figure shows
the time to compute the product of two randomly chosen polynomials over Zp of degree
< n for values of n ranging between 128 and 8192 (at values of n that are powers of
two and midway between powers of two). The graphs are on a log-log scale.

These graphs speak for themselves. For these ranges of p and n, plain and Karat-
suba are always slower than the FFT-based Schönhage-Strassen and multimodular al-
gorithms. One also sees, not surprisingly, that the multimodular algorithm is signifi-
cantly faster than Schönhage-Strassen when log2(p) is not too huge, but eventually, as
log2(p) gets large, Schönhage-Strassen is somewhat faster.

For the multimodular algorithm, we also measured the percentage of the total time
spent on coefficient reduction modulo the small primes plus the inverse Chinese re-
maindering step. For n = 4096, this percentage is 35% for 256-bit primes, 51% for
1024-bit primes, and 73% for 4096-bit primes.

4.2 Multi-core implementation of polynomial multiplication algo-
rithms

When available, NTL can exploit multi-core machines to speed up polynomial multi-
plication, for both the Schönhage-Strassen and multimodular algorithms.

For Schönhage-Strassen, the FFT and inverse FFT algorithms are recursive divide-
and-conquer algorithms, which divide a given problem into two subproblems of half
the size. One thread is assigned to the top-level recursive invocation, two threads to
the two second level recursive invocations, four threads to the four third level recursive
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Figure 12: Polynomial multiplication modulo a 1024-bit prime
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Figure 14: Multi-core performance: multiplication of polynomials of degree < 4096
modulo a 4096-bit prime

invocations, and so on. The component-wise multiplication of the evaluation vectors is
trivially parallelizable.

The multimodular algorithm is even more straightforward to parallelize. The mod-
ular reductions and Chinese remaindering steps are trivially parallelizable across the
coefficients, and the FFTs are trivially parallelizable across the primes. Fig. 14 shows
the running time (in seconds) to multiply two polynomials of degree less than 4096
modulo a 4096-bit prime, using 1,2,4,8, and 16 threads, with both the Schönhage-
Strassen and multimodular algorithms. This is a log-log plot. A straight line with slope
−1 would indicate perfect scaling with respect to the number of threads. As one can
see, the scaling is not quite perfect for either algorithm.

Note that NTL implements its own “thread pool mechanism” on top of standard
C++11 threading features, and does not rely on non-standard mechanisms, such as
OpenMP. This thread pool mechanism is utilized in a number of places throughout
NTL to boost performance when multiple cores are available, and may also be used
directly by NTL clients.

4.3 Other operations on polynomials
Of course, NTL implements other operations over Zp[X], such as division and GCDs.
Asymptotically fast algorithms are used wherever possible. In theory, one can reduce
many of these problems to polynomial multiplication, and simply rely on an asymptoti-
cally fast algorithm for polynomial multiplication to get asymptotically fast algorithms
for these other problems. In practice, one can do better in certain situations. For ex-
ample, if f ∈ Zp[X] is a polynomial of degree n, and one wants to perform many
polynomial multiplications mod f , then one can precompute an appropriate polyno-
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mial “inverse” h of f , so that reducing a polynomial of degree less than 2n modulo
f can be done using just two multiplications of polynomials (of degree less than n).
Moreover, if a multimodular FFT algorithm is used for the polynomial multiplications,
appropriate transforms of f and h can also be precomputed (specifically, the evaluation
vectors of f and h modulo each small “FFT prime”), which speeds things up consid-
erably. In particular, such reduction mod f can be performed at the cost of a single
multiplication of polynomials (of degree less than n): a speedup by a factor of two. As
another example, a single squaring of polynomials mod f can be computed at the cost
of between 1.5 and 1.67 multiplications of polynomials (of degree less than n).

For more details on these and other optimizations, see the paper [28]. That paper
also presented an algorithm for factoring polynomials over Zp, and reported on an ex-
periment, conducted in 1995, that involved factoring a degree 2048 polynomial modulo
a 2048-bit prime. Factoring that polynomial took just over 272 hours (over 11 days)
on a SPARC-10 workstation. Using the current version of NTL, factoring the same
polynomial using a single core on our Haswell machine took 188 seconds, a speedup
of over 5,000×. Moreover, using 16 cores on our Haswell machine took just under
26 seconds, a speedup of over 37,000× (which represents a 45% utilization of these
cores). The high-level algorithms have really not changed that much. The SPARC-10
and Haswell release dates differ by 20 years, so Moore’s law by itself would predict
about a 1,000× speedup. In addition to making NTL’s polynomial arithmetic exploit
multiple cores (when possible), other improvements to the running time include better
implementations of:

• single-precision modular arithmetic (most notably, the pre-conditioned modular
multiplication code in Fig. 7),

• the NTT itself (most notably, Harvey’s lazy butterflies, discussed in Section 3.3),

• modular reduction and Chinese remaindering as deployed in the multimodular
polynomial multiplication algorithm (see Section 4),

• modular composition, i.e., computing g(h) mod f for f , g, h ∈ Zp[X] — although
the high-level algorithm is still the same baby-step/giant-step approach of Brent
and Kung [3], much better algorithms for matrix multiplication over Zp are used,
which are discussed below in Section 6.2.7

4.4 NTL vs Flint
FLINT is a C library started in 2007 by Bill Hart and David Harvey, ostensibly as a
“successor” to NTL, as some people were apparently under the (mistaken) impression
that NTL was no longer actively maintained. Since 2007, both NTL and FLINT have
evolved considerably, but they still share some common functionality whose perfor-
mance we can compare.

7NTL does not implement any of the newer, asymptotically faster algorithms for modular composition by
Kedlaya and Umans [15]. Indeed, as far as we are aware, these algorithms remain of only theoretical interest
(see [32]).
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k/1024 n/1024
1/4 1/2 1 2 4 8 16

1/4 1.89 1.98 2.20 2.31 2.49 2.40 2.60 2.51 2.68 2.68 2.80 2.75 2.96
1/2 1.50 1.65 1.60 1.84 1.81 2.21 2.18 2.77 3.09 2.90 3.19 3.23 3.37
1 1.11 1.20 1.17 1.30 1.27 1.49 1.46 1.96 1.94 2.93 3.11 2.89 3.07
2 0.87 0.89 0.87 0.92 0.93 1.02 1.01 1.25 1.24 1.81 1.59 2.23 2.35
4 1.00 1.01 0.99 1.03 1.01 0.99 1.00 1.08 1.06 1.25 1.22 1.52 1.40
8 1.05 1.05 1.03 1.01 1.00 0.97 0.96 0.93 0.89 0.98 0.96 0.94 0.90

16 0.96 0.96 0.94 0.95 0.94 0.95 0.93 0.89 0.90 0.87 0.83 0.90 0.88

Table 4: Multiplication in Zp[X]: n = degree bound, k = #bits in p

4.4.1 Multiplication in Zp[X]/( f )

Table 4 compares the relative speed of NTL’s ZZ_pX mul routine with the correspond-
ing FLINT routine.8 The polynomials were generated at random to have degree less
than n, and the modulus p was chosen to be a random, odd k-bit number.9 The unla-
beled columns correspond to n-values half-way between the adjacent labeled columns.
For example, just to be clear: the entry in the 3rd row and 7th column corresponds
to k = 1024 and n = 2048; the entry in the 3rd row and 8th column corresponds to
k = 1024 and n = 2048 + 1024 = 3072.

The numbers in the table shown are ratios:

FLINT time
NTL time

.

So ratios greater than 1 mean NTL is faster, and ratios less than 1 mean FLINT is faster.
Ratios outside of the range (1/1.2, 1.2) are boldfaced (the others are essentially a tie).

The ratios in the upper right-hand corner of the table essentially compare NTL’s
multimodular FFT algorithm with FLINT’s Kronecker-substitution algorithm, which
reduces polynomial multiplication to integer multiplication, which is performed by
GMP. The ratios in the lower left-hand corner of the table essentially compare NTL’s
Schönhage-Strassen algorithm with FLINT’s Schönhage-Strassen algorithm.

As one can see, NTL’s multimodular-FFT approach can be significantly faster than
FLINT’s Kronecker-substitution, being more than 3 times faster in some cases. One
can also see that FLINT’s Schönhage-Strassen implementation seems slightly better
engineered than NTL’s, being up to 20% faster than NTL’s implementation in some
cases.

4.4.2 Squaring in Zp[X]/( f )

Squaring in Zp[X]/( f ) is a critical operation that deserves special attention, as it is the
bottleneck in many exponentiation algorithms in Zp[X]/( f ).

8We compared NTL v11.4.3 with FLINT v2.5.2, which is the most recent public release of FLINT at the
time of this writing. These were both built using GMP v6.1.0. The compiler was GCC v4.8.5. All packages
were configured using their default configuration flags. All of the programs used for benchmarking can be
obtained at www.shoup.net/ntl.

9NTL’s behavior is somewhat sensitive to whether p is even or odd, and since odd numbers correspond
to the case where p is prime, we stuck with those.
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k/1024 n/1024
1/4 1/2 1 2 4 8 16

1/4 3.03 3.10 3.55 3.54 3.95 3.74 4.08 3.85 4.33 4.06 4.50 4.23 4.90
1/2 2.45 2.52 2.60 2.88 2.97 3.43 3.57 4.18 4.68 4.47 5.16 5.06 5.46
1 1.86 1.89 1.96 2.07 2.12 2.40 2.46 3.19 3.26 4.63 5.02 4.42 5.09
2 1.48 1.46 1.49 1.54 1.60 1.72 1.74 2.10 2.12 2.82 2.96 3.51 3.71
4 1.65 1.67 1.67 1.66 1.69 1.64 1.65 1.77 1.73 1.93 2.04 2.31 2.36
8 0.86 0.91 0.87 0.91 0.88 0.93 0.89 0.95 1.04 0.98 0.96 1.11 1.11

16 0.65 0.66 0.66 0.67 0.67 0.69 0.68 0.71 0.68 0.69 0.67 0.73 0.73

Table 5: Squaring in Zp[X]/( f ): n = degree bound, k = #bits in p

k/1024 n/1024
1/4 1/2 1 2 4 8 16

1/4 1.62 1.73 1.81 1.90 2.00 2.00 2.22 2.12 2.41 2.28 2.59 2.41 2.78
1/2 1.43 1.52 1.59 1.63 1.73 1.76 1.89 1.88 2.04 2.05 2.24 2.23 2.46
1 1.25 1.35 1.32 1.41 1.43 1.47 1.52 1.54 1.59 1.65 1.73 1.77 1.89
2 1.22 1.36 1.27 1.34 1.30 1.38 1.36 1.41 1.38 1.43 1.43 1.48 1.50
4 1.24 1.37 1.34 1.43 1.40 1.44 1.46 1.50 1.51 1.51 1.54 1.57 1.58
8 1.04 1.16 1.03 1.15 1.03 1.11 1.03 1.11 1.02 1.07 1.01 1.09 1.02

16 0.98 1.11 0.93 1.04 0.93 1.01 0.89 0.98 0.87 0.95 0.87 0.94 0.87

Table 6: Computing GCDs in Zp[X]: n = degree bound, k = #bits in p

Table 5 compares the relative performance of NTL’s ZZ_pX SqrMod routine with
FLINT’s corresponding routine. The NTL routine takes as input precomputations
based on f , specifically, a ZZ_pXModulus object. The modulus p was chosen to be
a random, odd k-bit number. The polynomial f was a random monic polynomial of
degree n, while the polynomial to be squared was a random polynomial of degree less
than n.

NTL is using a multimodular-FFT strategy throughout (combined with the pre-
computation techniques briefly discussed in 4.3), while FLINT is using Kronecker-
substitution in the upper right region and Schönhage-Strassen in the lower left region.
As one can see, NTL’s strategy can be over 5 times faster in some cases, while FLINT’s
can be over 1.5 times faster in others.

4.4.3 Computing GCDs in Zp[X]

Table 6 compares the relative performance of NTL’s ZZ_pX GCD routine with FLINT’s
corresponding routine. The modulus p was chosen to be a random k-bit prime, and the
GCD was computed on two random polynomials of degree less than n. Both libraries
use a fast “Half GCD” algorithm.

4.4.4 Modular composition in Zp[X]

Table 7 compares the relative performance of NTL’s ZZ_pX CompMod routine and the
corresponding FLINT routine. These routines compute g(h) mod f for polynomials
f , g, h ∈ Zp[X] using Brent and Kung’s [3] modular composition algorithm. The mod-
ulus p was chosen to be a random k-bit prime. The polynomial f was chosen to be a
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k/1024 n/1024
1/4 1/2 1 2 4

1/4 7.24 7.32 8.91 9.08 10.87 10.86 13.27 12.75 14.07
1/2 6.15 6.53 7.32 7.87 8.78 9.56 10.38 12.12 14.64
1 5.24 5.50 6.16 6.47 7.26 7.57 8.38 9.51 10.93
2 4.64 4.79 5.35 5.08 6.22 6.52 7.20 7.60 8.37
4 5.00 5.12 5.78 5.94 6.79 6.81 7.72 7.37 8.39

Table 7: Composition modulo a degree n polynomial in Zp[X], k = #bits in p

k/1024 n/1024
1/4 1/2 1 2 4

1/4 3.59 3.62 4.17 4.48 5.73 5.06 6.17 5.28 6.25
1/2 2.79 2.81 14.06 4.22 4.35 4.99 5.08 5.67 8.01
1 2.07 2.19 2.38 2.68 3.29 3.45 3.46 4.39 5.52
2 2.20 1.70 1.76 1.92 2.29 2.56 2.74 3.19 4.04
4 1.72 11.21 7.16 1.92 2.12 2.09 2.50 2.79 2.50

Table 8: Factoring a degree n polynomial in Zp[X], k = #bits in p

random monic polynomial of degree n, and the polynomials g and h were chosen to be
random polynomials of degree less than n.

4.4.5 Factoring in Zp[X]

Table 8 compares the relative performance of NTL’s ZZ_pX CanZass factoring routine
and the corresponding FLINT routine. Both routines implement the Kaltofen/Shoup
algorithm [13], and for the range of parameters that were benchmarked, this is the
fastest algorithm that each library has to offer. The modulus p was chosen to be a
random k-bit prime. The polynomial to be factored was a random monic polynomial
of degree n.

4.5 Application to fully homomorphic encryption
Interest in NTTs and corresponding multimodular techniques for polynomial arithmetic
has intensified recently, because of the critical role they play in the design and imple-
mentation of several so-called fully homomorphic encryption schemes.

In such a scheme, one party, Alice, can encrypt a value, x, under the public key
of a second party, Bob, obtaining a ciphertext c that encrypts x. Next, Alice can send
c to a third party Charlie, who can efficiently transform c into another ciphertext c′

that encrypts the value f (x), where f is some specific function. Surprisingly, Charlie
can do this only knowing c (and an appropriate description of f ), without Bob’s secret
decryption key, and indeed, without learning anything at all about the values x or f (x).

We cannot go into the details of these schemes here. However, for many of these
schemes, the bulk of the computation time is spent operating on objects in the ring
R := Zq[X]/(Φm(X)), where q is typically a composite number a few hundred bits in
length, and Φm(X) is the mth cyclotomic polynomial, with m typically in the range
16,000–64,000. Multimodular techniques are especially applicable in this range of
parameters. Moreover, there is typically a lot of flexibility in the choice of q.
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For example, the library HElib [11], which is built on top of NTL, and which was
mainly developed by Shai Halevi and this author, the modulus q can be chosen to be
the product of single-precision primes p, where p − 1 is divisible by both m and a
large power of two. In this setting, in addition to the traditional “coefficient vector”
representation, in which elements of R are represented as the vector of coefficients of
a polynomial f (X) ∈ Zq[X] representing a residue class mod Φm(X), one can also ad-
vantageously work with a “Double CRT” representation, in which for each prime p
dividing q, we store the values fp(ω j

p), for j ∈ Z∗m, where ωp is a primitive mth root of
unity in Zp, and fp(X) is the image of f (X) in Zp[X]. In this “Double CRT” representa-
tion, elements of R can be added and multiplied in linear time. However, there are still
situations where we need to convert back and forth between “coefficient vector” and
“Double CRT” representations. Since each single-precision prime p is also an “FFT
prime”, we can use fast NTTs to efficiently implement these conversions. Ignoring the
modular reduction or Chinese remaindering, and focusing on the computations mod
each small prime p, if m = 2r is a power of two, so that Φm(X) = X2r−1

+ 1, such a con-
version can be done almost directly, using a 2r−1-point NTT (this is sometimes called a
nega-cyclic transformation). For general m, HElib uses Bluestein’s FFT algorithm [2].
In fact, HElib uses a variation of Bluestein’s algorithm that exploits the truncated FFT
discussed above in Section 3.3.

5 Arithmetic in Zp[X] for single-precision p

We briefly discuss how NTL implements arithmetic in Zp[X] for single-precision p.
NTL implements a class zz_p that represents the ring Zp = Z/pZ of integers mod

p, where p is a single-precision modulus. (Again, despite the notation, p is not neces-
sarily a prime.) Elements of Zp are naturally represented as integers in the range [0, p)
using the built-in type long.

NTL implements a class zz_pX that represents the ring of polynomials Zp[X]. An
object of class zz_pX is a vector of zz_p objects.

NTL implements several polynomial multiplication algorithms for Zp[X]: plain,
Karatsuba, and multimodular FFT.

For the multimodular FFT, if p is a prime such that Zp contains appropriate roots
of unity, then just a single application of the FFT-based polynomial multiplication al-
gorithm (see Section 3) is required. Otherwise, just as for the case of multi-precision
p, several “FFT primes” are used together with Chinese remaindering. Depending on
the size of p and the degrees of the polynomials, either one, two, or three such “FFT
primes” are used.

Just as for arithmetic in Zp[X] for multi-precision p, for single-precision p, when
the degrees of the polynomials are large enough, many other operations (such as divi-
sion and GCD) are reduced to fast polynomial multiplication.

5.1 NTL vs Flint
Just as we did for the multi-precision case, in Section 4.4, we compare the performance
of NTL’s polynomial arithmetic over Zp[X], for single-precision p, to that of FLINT.
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k n/1024
1 2 4 8 16 32 64

5 0.47 0.55 0.59 0.63 0.68 0.70 0.75 0.72 0.86 0.99 1.17 1.14 1.27
10 0.68 0.72 0.79 0.83 0.90 1.05 1.16 1.22 1.37 1.41 1.60 1.60 1.58
15 0.85 1.00 1.09 1.14 1.24 1.33 1.46 1.55 1.68 2.04 2.14 2.04 2.28
20 0.52 0.55 0.60 0.63 0.67 0.78 0.87 0.95 1.01 1.15 1.13 1.14 1.11
25 0.61 0.71 0.77 0.82 0.89 0.95 1.06 1.11 1.26 1.35 1.54 1.36 1.48
30 0.83 0.86 0.93 0.97 1.08 1.23 1.40 1.40 1.67 1.50 1.66 1.51 1.66
35 0.93 1.01 1.11 1.17 1.25 1.39 1.55 1.59 1.72 1.86 1.77 1.91 1.82
40 1.08 1.14 1.26 1.27 1.44 1.64 1.81 2.02 2.07 1.95 2.13 2.13 2.24
45 1.19 1.31 1.47 1.49 1.72 1.87 2.01 2.19 2.20 2.29 2.31 2.29 2.35
50 0.97 0.96 1.06 1.11 1.25 1.40 1.54 1.57 1.56 1.56 1.56 1.57 1.61
55 1.00 1.09 1.22 1.31 1.40 1.50 1.64 1.82 1.85 1.87 1.99 1.98 2.14
60 1.17 1.23 1.36 1.46 1.62 1.79 2.03 1.96 2.08 1.98 2.06 2.03 2.17

Table 9: Single precision: Multiplication in Zp[X]: n = degree bound, k = #bits in p

k n/1024
1 2 4 8 16 32 64

5 0.81 0.83 0.98 1.03 1.19 1.23 1.43 1.52 1.65 1.57 1.94 1.76 2.01
10 1.21 1.24 1.48 1.52 1.78 1.87 2.23 2.15 2.37 2.29 2.50 2.49 2.71
15 1.64 1.76 2.06 2.14 2.51 2.53 2.92 2.79 2.99 3.00 3.13 3.30 3.48
20 0.99 1.03 1.28 1.28 1.47 1.54 1.69 1.67 1.75 1.77 1.93 1.94 1.96
25 1.26 1.32 1.51 1.64 1.84 1.88 2.09 1.95 2.28 2.21 2.58 2.40 2.69
30 1.61 1.67 1.90 1.92 2.33 2.28 2.51 2.31 2.73 2.38 2.64 2.56 2.93
35 1.91 1.92 2.31 2.29 2.66 2.70 2.88 2.82 2.93 3.04 3.14 3.38 3.37
40 2.22 2.28 2.68 2.77 2.91 2.93 3.38 3.24 3.42 3.22 3.96 3.65 3.99
45 2.56 2.61 3.09 3.19 3.52 3.42 3.65 3.40 3.71 3.97 4.03 4.03 4.06
50 1.93 1.96 2.24 2.26 2.53 2.44 2.68 2.47 2.57 2.58 2.72 2.69 2.86
55 2.17 2.21 2.53 2.49 2.81 2.80 2.89 2.88 2.88 2.84 3.32 3.49 3.45
60 2.49 2.49 2.86 2.81 3.15 3.02 3.35 3.20 3.68 3.30 3.51 3.42 4.11

Table 10: Single precision: Squaring in Zp[X]/( f ): n = degree bound, k = #bits in p

Table 9 compares the relative speed of NTL’s zz_pX mul routine with FLINT’s
corresponding routine. As in Section 4.4, the numbers in the table are the ratio of
FLINT time to NTL, so ratios greater than 1 mean NTL is faster. NTL is using a
multimodular FFT throughout, while FLINT is using Kronecker substitution through-
out. Table 10 compares the relative performance of NTL’s zz_pX SqrMod routine with
FLINT’s corresponding routine. Table 11 compares the relative performance of NTL’s
ZZ_pX GCD routine with FLINT’s corresponding routine. Table 12 compares the rela-
tive performance of NTL’s zz_pX CompMod routine for modular composition and the
corresponding FLINT routine. Table 13 compares the relative performance of NTL’s
zz_pX CanZass factoring routine and the corresponding FLINT routine.

5.2 Special case where p = 2

An important special case for arithmetic in Zp[X] is when p = 2. For this, NTL
implements a special class GF2X that represents the ring of polynomials Z2[X].

In this implementation, each coefficient is a single bit, and these bits are packed
into machine words (actually, an unsigned long type).
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30

k n/1024
1 2 4 8 16 32 64

5 0.89 0.82 0.84 0.78 0.81 0.76 0.84 0.75 0.86 0.77 0.90 0.80 0.96
10 0.93 0.89 0.91 0.86 0.90 0.86 0.97 0.91 1.03 0.92 1.08 1.00 1.19
15 0.99 0.97 1.00 0.95 1.04 0.98 1.10 1.03 1.19 1.08 1.30 1.18 1.44
20 0.78 0.74 0.74 0.68 0.72 0.67 0.75 0.70 0.80 0.72 0.86 0.79 0.98
25 0.88 0.80 0.82 0.76 0.83 0.76 0.86 0.78 0.95 0.85 1.02 0.92 1.12
30 1.03 0.95 1.00 0.90 1.01 0.92 1.09 0.97 1.17 1.03 1.29 1.10 1.41
35 1.28 1.20 1.19 1.14 1.20 1.13 1.28 1.17 1.38 1.27 1.47 1.35 1.67
40 1.32 1.26 1.30 1.20 1.32 1.17 1.42 1.27 1.53 1.39 1.64 1.50 1.86
45 1.42 1.30 1.38 1.27 1.42 1.29 1.50 1.37 1.67 1.50 1.86 1.61 2.03
50 1.38 1.16 1.18 1.07 1.18 1.07 1.21 1.13 1.32 1.21 1.43 1.36 1.57
55 1.43 1.22 1.24 1.14 1.22 1.15 1.31 1.22 1.40 1.32 1.58 1.43 1.72
60 1.47 1.27 1.32 1.21 1.32 1.26 1.43 1.34 1.57 1.46 1.73 1.58 1.97

Table 11: Single precision: Computing GCDs in Zp[X]: n = degree bound, k = #bits
in p

k n/1024
1 2 4 8 16

5 3.84 3.19 4.44 3.65 4.88 3.23 3.88 3.86 4.56
10 4.30 3.75 5.07 4.46 5.86 4.93 6.08 5.74 6.81
15 4.99 4.53 6.02 5.53 7.22 6.73 8.20 7.66 8.92
30 4.52 4.08 5.34 4.89 6.24 5.85 6.70 6.21 7.28
60 5.21 4.68 6.67 5.93 8.13 7.75 9.23 8.22 9.94

Table 12: Single precision: Composition modulo a degree n polynomial in Zp[X], k =

#bits in p

k n/1024
1 2 4 8 16

5 1.22 1.11 1.39 1.46 1.77 1.98 2.03 2.23 2.40
10 1.49 1.82 1.70 1.99 2.71 2.41 2.94 3.11 3.63
15 2.15 2.32 2.45 2.76 3.22 3.70 3.55 3.89 4.31
30 2.49 2.76 2.97 2.70 3.01 3.16 3.53 3.36 3.73
60 3.61 3.51 4.01 3.96 4.50 4.21 5.97 4.66 4.59

Table 13: Single precision: Factoring a degree n polynomial in Zp[X], k = #bits in p



n = 103 n = 106

NTL gf2x NTL gf2x
with PCLMUL 0.21µs 0.20µs 13.3ms 6.4ms
w/o PCLMUL 1.54µs 1.24µs 91.8ms 15.7ms

Table 14: Time to multiply two random polynomials of degree < n over Z2[X]

To multiply two polynomials over Z2[X], NTL recursively performs Karatsuba
down to the “base case”, which is the multiplication of two “word-sized” polynomials.
Note that even before reaching this base case, the recursion switches over at some point
to hand-coded, branch-free versions of Karatsuba, with an optimization from Weimer-
skirch, Stebila, and Shantz [34] for multiplying two 3-word polynomials.

To multiply two word-sized polynomials, one of two strategies is used, depending
on the available hardware. Modern x86 machines have a built-in instruction called
PCLMUL for precisely this task, and NTL will use this instruction (by way of compiler
“intrinsics”) if this is possible.

Failing this, NTL will use its default strategy, which is the following “window”
method. To multiply two word-sized polynomials a and b, first compute the polynomial
g · b mod Xw for all polynomials g ∈ Z2[X] of degree less than a small parameter s.
Here, w is the number of bits in a word. Typically, s = 4 when w = 64, and s = 3
when w = 32. The values g · b mod Xw are computed by a series of shifts and XORs
(each entry in the table is computed as either the XOR of two previously computed
table entries, or a shift of one previously computed table entry). After this, the bits of a
are processed in dw/se blocks of s bits, where for each block, one table entry is fetched,
and two shifts and two XORs are performed. Finally, s − 1 simple correction steps are
executed, to compensate for the fact the values in the table were only computed mod
Xw. Each correction step consists of a handful of shifts, ANDs, and XORs. All of the
above is carried out using branch-free code that is generated when NTL is configured.

The above strategy was implemented in v2.0 of NTL in 1998 for a window size
of s = 2. The strategy was later generalized in [4] to arbitrary window size, and
incorporated into v5.4 of NTL in 2005.

In fact, the paper [4] mentioned above reports on an implementation of a highly-
optimized C library called gf2x for multiplying polynomials over Z2[X]. Moreover,
NTL can be configured to call the multiplication routine in the gf2x library instead
of its own version. We compared the performance of the current version of NTL to
the current version of gf2x (version 1.3, released December 2019). Table 14 shows
the time to multiply two random polynomials of degree less than n over Z2[X], where
n = 103 and n = 106, for both NTL and gf2x, and both with and without usage of the
PCLMUL instruction. As one can see, NTL is fairly competitive with gf2x in these
ranges, except for the case where n = 106 and no PCLMUL instruction is used (gf2x
is almost 6 times faster here).
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6 Matrix arithmetic over Zp

NTL provides support for matrix arithmetic over Zp, including basic operations such as
addition and multiplication, as well as operations such as inversion and solving matrix-
vector equations.

Different strategies are used for single-precision and multi-precision modulus p.
NTL also implements specialized strategies for p = 2, but we do not discuss these
here.

6.1 Matrix arithmetic modulo single-precision p

Here are the strategies that NTL uses for computing the product C = AB, where A and
B are large matrices over Zp, and where p is a single-precision modulus.

Strassen’s divide-and-conquer algorithm. For very large matrices, NTL runs a few
levels of Strassen’s divide-and-conquer matrix multiplication algorithm [29].

Cache friendly memory access. While Strassen’s divide-and-conquer algorithm al-
ready yields somewhat cache-friendly code, to obtain even more cache friendly code,
all the matrices are organized into panels, which are matrices with many rows but only
32 columns. We compute the ith panel of C by computing ABi, where Bi is ith panel
of B. If multiple cores are available, we use them to parallelize the computation, as the
panels of C can be computed independently.

Next consider the computation of AP, where P is a single panel. We can write
AP =

∑
j A jP j, where each A j is a panel of A and each P j is a 32 × 32 square sub-

matrix of P. We have thus reduced the problem to that of computing

Q← Q + RS , (10)

where Q and R are panels, and S is a 32 × 32 square matrix. The matrix S is small
and fits into the first-level cache on most machines — that is why we chose a panel
width of 32. While the panels Q and R typically do not fit into the first-level cache,
the data in each panel is laid out in contiguous memory in row-major order. In the
implementation of (10), we process the panels a few rows at a time, so the data in each
panel gets processed sequentially, and we rely on hardware prefetch (which is common
on modern high-performance systems) to speed up the memory access. Moreover,
these fetches are paired with a CPU-intensive computation (involving S , which is in
the first-level cache), so the resulting code is fairly cache friendly.

Fast modular arithmetic. The basic arithmetic operation in any matrix multiplica-
tion algorithm is the computation of the form x← x + yz, where x and y are scalars. In
our case, the scalars lie in Zp. While we could use the techniques in Section 3.1, this is
not the most efficient approach.

If p is small enough, specifically, at most 23-bits in length, we can use the un-
derlying floating-point hardware that is commonly available and typically very fast.
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Indeed, if we have 23-bit numbers w and xi and yi, for i = 1, . . . , k, then we can com-
pute w +

∑
i xiyi exactly in floating-point, provided k is not too big: since standard

(double precision) floating-point can exactly represent 53-bit integers, we can take k
up to 253−23·2 = 27. If k is larger than this, we can still use the fast floating-point
hardware, interspersed with occasional “clean up” operations which convert the accu-
mulated floating-point sum to an integer, reduce it mod p, and then convert it back to
floating-point.

By using this floating-point implementation, we can also exploit the fact that mod-
ern x86 CPUs come equipped with very fast SIMD instructions for quickly perform-
ing several floating-point operations concurrently. Our code is geared to Intel’s AVX,
AVX2, and AVX512 instruction sets, which allows us to process floating-point opera-
tions 4 (or 8) at a time.

For p larger than 23 bits, the code reverts to using double-word integer arithmetic
(if available) to accumulate inner products (rather than the AVX floating-point instruc-
tions), but still uses the same “cache friendly” panel/square memory organization,
along with Strassen’s divide-and-conquer algorithm, and utilizing multiple cores, if
available.

Other matrix operations. NTL also implements other matrix operations modulo
single-precision p, such as inversion and solving matrix-vector equations. The same
techniques for utilizing cache-friendly code and for fast modular arithmetic are em-
ployed.

Comparison to FFLAS. One of the state-of-the-art implementations of matrix op-
erations over finite fields is FFLAS [7]. For small, single-precision p, FFLAS also
employs floating-point techniques; however, it reduces all computations to floating-
point matrix operations that are then carried out using the well-know BLAS API (see
netlib.org/blas/blast-forum). We compared the current version of FFLAS (ver-
sion 2.4.3), paired with the current version of OpenBLAS (version 0.3.7, see www.
openblas.net). For example, to multiply two 4096×4096 matrices modulo a 23-bit
prime, FFLAS took 3.18s and NTL took 3.69s, so FFLAS is about 16% faster on this
benchmark. As another benchmark, to invert a matrix of the same size, FFLAS took
4.15s and NTL took 4.74s, so FFLAS is about 14% faster on this benchmark.

6.2 Matrix arithmetic modulo multi-precision p

For large, multi-precision p, NTL uses a multimodular technique for matrix multipli-
cation:

1. The coefficients of the matrix are reduced modulo several single-precision primes
p1, . . . , pk.

2. The matrix product is computed modulo each pi, using the techniques outlined
above.

3. The results are combined using Chinese remaindering.
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Steps 1 and 3 are implemented using the same techniques used for the multimodular
polynomial multiplication algorithm, discussed above in Section 4. Step 2 is imple-
mented as discussed above in Section 6.1 (if AVX intructions are availble, then we use
23-bit primes). Just as for the multimodular polynomial multiplication algorithm, these
steps are all trivially parallelizable, which is exploited if multiple cores are available.

At the current time, while NTL does provide implementations of other matrix op-
erations modulo multi-precision p, such as inversion and solving matrix-vector equa-
tions, these implementations are very basic, and not as fast as they could be.

Comparison to FFLAS. We compared NTL’s multimodular matrix multiplication
performance to that of FFLAS (see discussion of FFLAS at the end of Section 6.1),
which uses a similar multimodular approach. For example, to multiply two 1024×1024
matrices modulo a 1024-bit prime, FFLAS took 11.5s and NTL took 11.9s, essentially a
tie. On the same benchmark, but using integer-only scalar arithmetic (no floating-point
or AVX, using 60-bit primes), NTL’s multimodular algorithm takes 22.8s, which is
indicative of NTL’s performance on other platforms where it would not be able to take
advantage of AVX. As another comparison, on this same benchmark, NTL’s “plain”
matrix multiplication code (which carries out the computation naively using multi-
precision integer arithmetic) takes 217s (so the multimodular algorithm is still much
faster even without AVX support).

7 Polynomial and matrix arithmetic over other finite
rings

NTL also provides classes for the ring of univariate polynomials E[X], where E is a
quotient ring of the form Zp[T ]/(m(T )). These classes are called ZZ_pEX, zz_pEX,
and GF2EX, respectively, depending on whether p is multi-precision, single-precision,
or equal to 2, and are implemented in terms of the classes ZZ_pX, zz_pX, and GF2X,
respectively. For low degree polynomials over E, naive, quadratic-time algorithms
are used. For large degree polynomials, multiplication is implemented via Kronecker
substitution [16], which reduces the problem of multiplication in E[X] first to multipli-
cation in Zp[X,T ] and then to multiplication in Zp[X]. Most other operations in E[X]
(e.g., division, GCD) are reduced to polynomial multiplication.

Algorithms for factoring univariate polynomials over E, computing minimal poly-
nomials, and generating irreducible polynomials over E are also available (assuming E
is a field).

NTL also provides support for basic matrix operations over E. Currently, these
implementations are fairly basic, and there is plenty of room for performance improve-
ments in this area.

8 Polynomial and matrix arithmetic over Z
NTL provides the class ZZX, which represents the ring Z[X] of univariate polynomi-
als over the integers. Multiplication in Z[X] is done using essentially the same tech-
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niques as in Section 4. In particular, it implements several algorithms: plain, Karatsuba,
Schönhage-Strassen, and multimodular FFT.

For a number of other operations, such as GCD, a multimodular approach is em-
ployed, reducing these operations to corresponding operations in Zp[X] for several
small primes p.

An algorithm for factoring univariate polynomials over Z is also provided. The
algorithm is based on the well-known Berlekamp-Zassenhaus strategy [35], but with a
number of critical improvements. The algorithm works by first ensuring that the given
polynomial is squarefree (this is essentially just a GCD computation, and is usually
very fast). Second, this squarefree polynomial is factored modulo several small primes,
and one small prime p is selected as “best”, meaning that the number r of irreducible
factors mod p is minimal. Third, this factorization mod p is lifted to a factorization
mod pk for a suitably large k. This is done using an asymptotically fast Hensel lifting
procedure.

The final step is to discover those subsets of the irreducible factors mod pk that
multiply out to factors of the polynomial over the integers. The naive strategy, which
tries all possible subsets, takes time exponential in r. If r is not too big, NTL employs
the heuristic pruning strategy introduced in [1], which speeds up this exponential-time
strategy significantly. However, for larger r, NTL switches to Mark van Hoeij’s algo-
rithm [33], which reduces the problem of discovering appropriate subsets of factors to
that of solving a certain type of knapsack problem. This knapsack problem is itself
solved using a lattice basis reduction algorithm.

NTL also supports a number of operations on matrices over Z. In addition to al-
gorithms for basic arithmetic, NTL provides a number of algorithms for lattice basic
reduction, i.e., variations on the famous LLL algorithm [17]:

• An exact integer version of LLL is implemented, which is essentially the same
as one presented in [5].

• A number of faster, heuristic floating-point versions of LLL are implemented.
These are variations on algorithms presented by Schnorr and Euchner [25], with
significant modifications to improve performance and to deal with rounding er-
rors more robustly.

• A number of heuristic floating-point versions of Block Korkin-Zolotarev (BKZ)
reduction (also from [25]), which can produce much higher quality reduced bases
than LLL, are implemented.

Much of the work on the floating-point LLL and BKZ algorithms in NTL arose
out of some very pleasant interactions with Phong Nguyen, who was attempting to
use NTL’s initial implementations of LLL to break certain lattice-based cryptosystems
[22, 20]. These attempts really “stress tested” NTL’s implementation, and led to several
heuristic improvements over the original floating-point algorithms proposed by Schnorr
and Euchner. One such improvement was utilizing a “lazy” size-reduction condition.
Indeed, the floating-point LLL algorithms presented in [25] impose the classical size-
reduction condition, in which the Gramm-Schmidt coefficients of the lattice basis must
be at most 1/2 in absolute value. Unfortunately, using this classical size-reduction
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was found to easily lead to infinite loops, due to the fact that the Gramm-Schmidt
coefficients are only being computed approximately. NTL’s implementation replaces
the bound 1/2 in the size-reduction condition by 1/2 + ε, where ε starts out very small,
but then grows as infinite loops are (heuristically) detected. Other improvements in
NTL’s LLL implementation include:

• implementation of Givens rotations, in place of Gramm-Schmidt orthogonaliza-
tion, which yields better numerical stability;

• implementations of LLL algorithms that use other floating-point types to yield
(at the expense of performance) greater stability and/or range.

In support of these floating-point LLL implementations, as well as for other appli-
cations, NTL provides several specialized floating-point classes:

• quad_float, which provides (essentially) twice the precision of ordinary double-
precision floating-point. This class was derived from software developed previ-
ously by Keith Briggs (see keithbriggs.info/doubledouble.html), which
itself was derived from software developed earlier by Douglas Priest. [24]

• xdouble, which provides double-precision floating-point with an extended ex-
ponent range.

• RR, which provides arbitrary precision floating-point (with correct rounding for
basic arithmetic and square root), and extended exponent range (note that RR
provides functionality similar to the MPFR library [8], which was developed
some time later than NTL’s RR).

In recent years, better floating-point LLL algorithms have been developed [21] and
implemented [30]. However, these algorithms have not yet been incorporated into
NTL. For an excellent survey on more recent developments on the LLL algorithm, see
[23].

9 The future of NTL
Currently, the author has no plans to add significant new functionality to NTL. Rather,
the plan is to continue to improve the performance of NTL, either by implementing
new algorithms or by exploiting new hardware features. In addition, the author hopes
to make it easier for others to contribute to NTL by using a code-hosting facility. At
that stage, other contributors may perhaps wish to add new functionality to NTL.
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