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Abstract. We present a new class of signature schemes based on proper-
ties of certain bilinear algebraic maps. These signatures are secure against
existential forgery under a chosen message attack in the standard model
(without using the random oracle model). Security is based on the com-
putational Diffie-Hellman problem. The concrete schemes that we get are
the most efficient provable discrete-log type signature schemes to date.

1 Introduction

Provably secure signature schemes can be constructed from the most basic cryp-
tographic primitive, one-way functions [NY89,Rom90]. As is often the case with
cryptographic schemes designed from elementary blocks, this signature scheme
is somewhat impractical. Over the years several signature schemes were pro-
posed based on stronger complexity assumptions. The most efficient schemes
provably secure in the standard model are based on the Strong RSA assump-
tion [GHR99,CS99].

Surprisingly, no scheme based on any discrete logarithm problem comes close
to the efficiency of the RSA-based schemes. We give a partial solution to this
open problem using bilinear maps. A bilinear map is a function e : G0×G1 7→ G2

that is consistent with group operations in both of its arguments, as described in
the next section. Our construction gives an existentially unforgeable signature
whenever the Computational Diffie-Hellman (CDH) assumption holds in G0×G1,
that is, no efficient algorithm can compute gα ∈ G1 given the three values
h, hα ∈ G0, and g ∈ G1. Precise definitions are given in the next section.

Our signature scheme is based on a signature authentication tree with a
large branching factor. At a high level, our construction bares some resemblance
to the signature schemes of Dwork-Naor [DN94] and Cramer-Damg̊ard [CD96].
Both these schemes are based on the hardness of factoring whereas our scheme
is based on CDH.

We obtain a concrete signature scheme by instantiating the bilinear map
with the modified Weil or Tate pairings. This is the only known provably se-
cure signature scheme based on the CDH assumption that is more efficient than
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the most general constructions of [CD95]. It is interesting to note that recently,
Lysyanskaya [Lys02] constructed a verifiable unpredictable function (VUF) se-
cure under the Generalized Diffie-Hellman assumption in the standard model.
Such functions (defined in [MRV99]) provide a special type of secure signatures
called unique signatures. This construction gives an excellent VUF, but as a sig-
nature scheme it compares poorly with the construction of [CD95]. We review
other known signature schemes in Section 4.

Bilinear maps such as the Weil or Tate pairing have recently been used
to construct a number of new cryptosystems, including three-party key ex-
change [Jou00], identity based encryption [BF01], short signatures [BLS01], cre-
dential systems [Ver01], hierarchical identity based encryption [HL02,GS02], and
others. In this paper we show how bilinear maps can be used to construct efficient
signature schemes secure in the standard model.

Efficient discrete log based signature schemes are known to exist in the ran-
dom oracle model [PS96,BLS01]. Security in the random oracle model does not
imply security in the real world. In this paper we only study signature schemes
secure in the standard complexity model.

2 Mappings with Algebraic Properties

We consider binary maps between groups that are consistent with the group
structure of their arguments. Such binary maps are called bilinear. Their formal
definition follow.

Definition 1 (Bilinear map). A function e : G0 ×G1 7→ G2 is bilinear if for
any four elements g1, g2 ∈ G0, H1, H2 ∈ G1 the following holds:

e(g1◦g2, H1) = e(g1, H1)◦e(g2, H1) and e(g1, H1◦H2) = e(g1, H1)◦e(g1, H2).

In this paper we intentionally limit our scope to finite cyclic groups, which allows
us to give more efficient constructions.

Throughout the paper we use the following notation. Small Roman letters
f, g, h, . . . from the lower part of the alphabet denote elements of the group G0;
capital Roman letters F,G,H, . . . stand for elements of G1; elements of G2 are
denoted by letters from the end of the alphabet x, y, z.

Our constructions are based on the Computational Diffie Problem (CDH)
defined below. However to simplify the exposition we define the notion of a secure
bilinear map. We then show that this notion is equivalent to CDH. Informally,
we say that a bilinear map e : G0 × G1 → G2 is secure if, given g ∈ G0 and
G,H ∈ G1, it is hard to find h ∈ G0 such that e(h,H) = e(g,G). More precisely,
we define secure bilinear maps as follows.

Definition 2 (Secure bilinear map). A bilinear map e : G0 × G1 7→ G2 is
(t, ε)-secure if for all t-time adversaries A

AdvBLMA = Pr

[

e

(

A(g,G,H), H

)

= e(g,G)

∣

∣

∣

∣

g
R
← G0;G,H

R
← G1

]

< ε.



The probability is taken over the coin tosses of the algorithm A and random
choice of g,G,H.

We given two simple examples of bilinear maps that are believed to be secure.

– e(·, ·) : G0×G1 7→ F
∗
pr is the Weil or Tate pairings on an elliptic curve E/Fp

and G0, G1 are distinct subgroups of E[q] for some prime q (recall that E[q] is
the subgroup containing all point of order dividing q on some elliptic curve
E/Fp). For certain curves E/Fp one can slightly modify the Weil pairing
(as in [BF01]) so that we may take G0 = G1. At any rate, the security of
the bilinear map e(·, ·) is equivalent to the Computational Diffie-Hellman
assumption (CDH) in G0×G1. Informally, the CDH assumption in G0×G1

means that:
It is infeasible to find Ga given random group elements h, ha ∈ G0, and
G ∈ G1. When G0 = G1 this is the standard CDH assumption in G0.

– Another bilinear map believed to be secure is r(·, ·) : Z
∗
N × Z

+
ϕ(N) 7→ Z

∗
N

defined as r(g,H) = gH , where N is a product of two primes. This map is
secure under the Strong RSA assumption [BP97]. Briefly, the Strong RSA
assumption says that the following problem is difficult to solve:

For a random x ∈ Z∗
N find r > 1 and y ∈ Z∗

N such that yr = x.
We give a short argument why the security of the map r(·, ·) is reducible
to the Strong RSA assumption. Suppose the map r(·, ·) is insecure. Then,
given (G,H, g) it is feasible to find an h ∈ G0 such that r(g,G) = r(h,H),
i.e. gG = hH . This solution yields (through application of the Extended
Euclidean algorithm) a z ∈ Z

∗
N satisfying za = g, where a = H/ gcd(G,H).

For random G,H
R
← Z

+
ϕ(N) the probability that a = 1 is negligible. Therefore

breaking the security of the bilinear map r amounts to breaking the Strong
RSA assumption. It is not known whether the converse is true.

Next, we show that for finite order groups a bilinear map e : G0 × G1 → G2 is
secure if and only if the CDH assumption holds in G0 × G1. We first precisely
define the CDH assumption.

Definition 3 (Computational Diffie-Hellman problem). The Computa-
tional Diffie-Hellman problem is (t, ε)-hard if for all t-time adversaries A we
have

AdvCDHA = Pr
[

A(g,H,Ha) = ga | g
R
← G0;H

R
← G1; a

R
← Z|G1|

]

< ε.

Claim. Suppose that G0, G1, G2 are cyclic groups of prime order p. Suppose the
map e : G0 ×G1 → G2 is non-degenerate in the following sense: e(h,H) 6= 1 for
some h ∈ G0 and H ∈ G1. Then the map e is (t, ε)-secure if and only if the CDH
problem is (t, ε)-hard.

Proof. First, suppose CDH can be solved in time t with probability at least ε.
We give an algorithm to show that the map is not (t, ε)-secure. Let g ∈ G0

and G,H ∈ G1 where both G,H 6= 1. We wish to find h ∈ G0 such that



e(g,G) = e(h,H). Since G1 is cyclic of prime order p there exists an a ∈ Zp such
that G = Ha. Let h = ga. Then h satisfies

e(h,H) = e(ga, H) = e(g,Ha) = e(g,G).

Therefore, h = ga, which is the solution to the CDH problem (g,H,G), is the
required h. Hence, if the map is (t, ε)-secure then CDH is (t, ε)-hard.

Conversely, suppose there is a t-time algorithm that given random (g,G,H)
outputs h ∈ G0 such that e(g,G) = e(h,H) with probability at least ε. We show
how to solve CDH. Let (g,H,G) be a random instance of the CDH problem,
where H 6= 1. Write G = Ha for some a ∈ Zp. Let h be such that e(g,G) =
e(h,H). Then

e(h,H) = e(g,G) = e(g,Ha) = e(ga, H)

and hence e(h/ga, H) = 1. Since H 6= 1 it follows that h = ga, since otherwise
the map e would be degenerate. Hence, if CDH is (t, ε)-hard then the map is
(t, ε)-secure. �

3 Security for signature schemes

We recall the standard definition of secure signature schemes stated in terms of
exact security, in the spirit of [BR94]. This notion of existential unforgeability
under adaptive chosen-message attack is due to [GMR88].

A signature scheme is a triple of probabilistic algorithms: a key generation
algorithm KeyGen, signer Sign(SK,Msg), and verifier Verify(Msg,Sig,PK). By
convention, Verify outputs 1 if it accepts the signature and 0 otherwise. We use
the oracle notation, where AB(·)(·) means A supplied with oracle access to B.

Definition 4. A signature scheme is (t, ε, n)-existentially unforgeable under
adaptive chosen-message attack, if for all pairs of algorithms F1,F2 running
in time at most t

AdvSigF1,F2
= Pr[Verify(F2(T ),PK) = 1 |

(SK,PK)← KeyGen(1k); T ← F
Sign(SK,·)
1 (1k)] < ε.

F1 requests no more than n signatures from Sign and the message output by F2

is different from the messages signed by Sign. The probability is taken over the
coin tosses of KeyGen, Sign, F1 and F2. Here F2(T ) outputs a message/signature
pair.

4 Previous work

The seminal paper [GMR84] formulated a strong notion of security for signature
schemes: existential unforgeability under adaptive chosen-message attacks. Since



then there have been many proposals for signature schemes meeting this notion
of security based on different assumptions and of varying efficiency. Some of
these results are summarized in Table 1. With an exception of GMR, all schemes
have running time of the signing and verification algorithms proportional to the
signature length. This information is omitted from the table.

Reference Signature Public key Max number Security assumption

length length of signatures

[GMR84] O(k`) O(k) 2` claw-free trapdoor permutations

[NY89] O(k2`) O(k) 2` UOWHF

[CD95] O(k`) O(k) 2` one-way homomorphism

[DN94] O(k`) O(kn) n` RSA assumption

[CD96] O(k`) O(k + n) n` RSA assumption
[GHR99],[CS99] O(k) O(k) ∞ Strong RSA assumption
[Lys02] O(km) O(km) 2m Generalized Diffie-Hellman

this paper O(k`) O(kn) n` Computational Diffie-Hellman
(secure bilinear maps)

Table 1. Summary of provably secure signature schemes. k is the security parameter,
` is the depth of the authentication three, n is the branching factor of the tree, and
m is the message length. The O-notation refers to asymptotics as a function of the
security parameter k.

A signature scheme may be based on the most general cryptographic assump-
tion, namely that one-way functions exist [NY89,Rom90]. The proof proceeds
via constructing an authentication tree and results in a scheme in which the
signature length is proportional to the binary logarithm of the total number of
messages signed with the same public key. More efficient (in terms of the signa-
ture length) signature schemes can be based on the Strong RSA assumption or
its variants [CS99,GHR99]. Important steps in constructing these schemes were
the Dwork-Naor scheme [DN94] later improved by [CD96]. Both schemes use
trees with a large branching factor, which are therefore very shallow.

The Dwork-Naor trick is crucial for understanding this paper. In a nutshell,
the trick allows to increase the tree’s branching factor without blowing up the
signature size. An authentication-tree scheme produces signatures that represent
paths connecting messages and the root of the tree. Messages are usually placed
in the very bottom level of the tree, though [CD95] puts messages in the leaves
hanging from the inner nodes. The authentication mechanism works inductively:
the root authenticates its children, they authenticate their children, and so on,
down to the message authenticated by its parent. If the authentication mecha-
nism allows attaching children to a node only when some secret information is
known, then the adversary cannot forge signatures without knowing that secret.

[GMR84] and [CD95] take similar approaches in designing the authentica-
tion mechanism (hence the identical asymptotic of their signature length). They
concatenate bit representations of a node’s children and compute a value that



authenticates this string in respect to the node. To verify a node’s authenticity
we must know all siblings of the node. If the tree is binary, the signature contains
twice as many nodes as the the depth of the tree. Indeed, each node must be
accompanied by its sibling.

Since the signature length is proportional to the depth of the tree, one may
wonder whether increasing the tree’s branching factor is a good idea. The fol-
lowing simple computation shows why this is counterproductive.

Suppose one wants to sign N messages. If the authentication tree is binary,
its depth must be at least log2 N . The signature length is roughly 2k log2 N ,
where k is the security parameter that accounts for the nodes’ size. When the
branching factor of the tree is increased from 2 to d, the depth of the tree goes
down to logd N . The signatures, however, must include all siblings of the nodes
on the authentication path (ancestors of the message-leaf). Thus the signature
size becomes dk logd N , which is actually more than in the binary case.

The improvement achieved by [DN94] is due to the way the sibling nodes
are authenticated. Using a stronger complexity assumption than in the GMR
scheme, authenticity of a node can be verified given its parent and its authenti-
cation value, whose size is independent of the branching factor. Each node has
the authentication value different from those of its siblings and their authenticity
can be verified independently. It allows to increase the number of a node’s chil-
dren and decrease the depth of the tree without inflating the signature length.
The public key size, being the branching factor times the security parameter
and, because of that, the main drawback of [DN94], was reduced in the Cramer-
Damg̊ard scheme [CD96]. Finally, two independent methods proposed in [CS99]
and [GHR99] make the tree flat by letting the signer (but not the adversary)
add branches on the fly.

We do not distinguish between statefull and stateless schemes. All schemes
can be made memoryless at the price of doubling the tree depth [Gol86]. To
do so [Gol86] suggested using a pseudo-random function (PRF) to generate all
secret values in internal nodes of the authentication tree. The key for the PRF is
kept secret at the signer. Furthermore, instead of sequentially stepping through
the leaves of the tree (one leaf per signature) we pick a random leaf for every
signature. To make sure the same leaf is not chosen at random for two different
signatures we need to square the number of leaves and hence double the depth
of the tree.

In this paper we implement the Dwork-Naor method using a secure bilinear
map. Improving the scheme further in the direction of [CD96,CS99,GHR99] is
left as an open problem.

5 The new signature scheme

We present a signature scheme based on a secure bilinear map. An instantiation
of this construction yields the most efficient provably secure scheme based on
the Computational Diffie-Hellman assumption known to date.

The signature scheme is designed as follows.



– Setup of the scheme. Groups G0 and G1 have prime order p. Bilinear
map e : G0 × G1 7→ G2 is secure. Hk : M 7→ {0, 1}s is a family of collision-
resistant hash functions, where M is the message space (the key for Hk

is fixed at random during key generation and made public). The signature
scheme allows signing of `n messages, where ` and n are arbitrary positive
integers.

– Key generation. The public and private keys are created as follows:

Step 1. Pick α1, . . . , αn
R
← Z

∗
p and H

R
← G1. Choose a random key k for the

collision resistant hash function Hk. Compute H1 ← H1/α1 ,. . . ,Hn ←
H1/αn ∈ G1.

Step 2. Pick g
R
← G0. Compute y ← e(g,H).

Step 3. Pick β0
R
← Zp. Compute x0 ← e(g,H)β0 .

Step 4. The public key is k,H,H1, . . . , Hn, y and x0. The private key is
α1, . . . , αn, β0, and g.

– Signing algorithm. Each node in the tree is authenticated with respect
to its parent; messages to be signed are authenticated with respect to the
leaves, which are selected in sequential order and never reused. To sign the ith

message M ∈ M the signer generates the ith leaf of the authentication tree
together with a path from the leaf to the root. We denote the leaf by x` ∈ G1

and denote the path from the leaf to the root by (x`, i`, x`−1, i`−1, . . . , i1, x0),
where xj is the ithj child of xj−1 (here ij ∈ {1, . . . , n}). The leaf and the nodes
along the path and their authentication values are computed as follows:
Step 1. All nodes of the tree, including the leaf x`, that have not been

visited before are computed as xj ← e(g,H)βj for some random βj
R
← Zp.

The secret βj is stored for as long as node xj is an ancestor of the current
signing leaf (β` is discarded immediately after use). Note that when using
stateless signatures [Gol86] the βj are derived using a PRF and hence
there is no need to remember their values.

Step 2. The authentication value of xj , the ithj child of xj−1, is fj ←

gαij
(βj−1+Hk(xj)).

Step 3. The authentication value ofHk(M), the child of x`, is f ← gβ`+Hk(M).
Step 4. The signature on M is (f, f`, i`, . . . , f1, i1).

– Verification algorithm. To verify a signature (f̂ , f̂`, î`, . . . , f̂1, î1) on a mes-
sage M we reconstruct the nodes x̂`, . . . , x̂0 in a bottom-up order (from leaf
x̂` to root x̂0). The signature is accepted if and only if x̂0 matches the root
of the tree. More precisely, to verify the signature the verifier performs the
following steps:
Step 1. Compute x̂` ← e(f̂ , H) · y−Hk(M).

Step 2. For j = ` . . . 1 compute x̂j−1 ← e(f̂j , Hij
) · y−Hk(x̂j).

Step 3. The signature is accepted if x̂0 = x0.

A signature output by the signing algorithm passes the verification test.
Indeed, step 1 of the verification algorithm results in

e(f,H) · y−Hk(M) = e(gβ`+Hk(M), H) · e(g,H)−Hk(M) = e(gβ` , H) = x`.
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Fig. 1. Authentication tree. The signature on M is (f, f`, i`, . . . , f1, i1).

For any j ∈ 1 . . . ` the result of computation in step 2 of the verification algorithm
is

e(fj , Hij
) · y−Hk(xj) = e(gαij

(βj−1+Hk(xj)), H1/αij ) · e(g,H)−Hk(xj) =

e(gβj−1+Hk(xj), H) · e(g−Hk(xj), H) = e(gβj−1 , H) = xj−1.

Signature length. Suppose the user needs to generate a billion signatures. Then
taking n = 20 and ` = 4 is sufficient (420 > 1012). The public key will contain 20
elements in G1 and two elements in G2. The signature contains five elements in
G0. To get stateless signatures we would need to double the depth so that each
signature will contain nine elements of G0.

Security. We show that the signature scheme is secure against the most general
attack. To formalize it as a claim we need to recall the definition of collision-
resistance and assume the existence of a collision-finding algorithm for e.



Definition 5 (Collision-resistant function). We call function H : K×M 7→
{0, 1}s a family of (t, ε)-collision-resistant functions, if for any t-time algorithm
A its advantage in finding a collision

AdvCRA = Pr[Hk(M1) = Hk(M2),M1 6= M2 | k
R
← K; (M1,M2)← A(k)] < ε.

The probability is taken over A’s coin tosses.

Definition 6 (Collision-finding algorithm). We say that an algorithm is
collision-finding for bilinear map e : G0×G1 7→ G2 if it outputs a solution g′, g′′ ∈
G0, where g′, g′′ 6= 1, to the equation

e(g′, G′) = e(g′′, G′′),

for given G′, G′′ ∈ G1 whenever such a solution exists.

For the bilinear maps defined on elliptic curves, namely the Weil and Tate
pairings, it is easy to build collision finding algorithms. This yields a concrete
discrete-log signature scheme as described later in this section.

Theorem 1. The signature scheme is (t, ε/(n + 1),m)-secure against existen-
tial forgery against adaptive chosen-message attack under the following assump-
tions:
– e is a (t, ε)-secure bilinear map;
– H is (t, ε)-collision-resistant function;
– there is an efficient collision-finding algorithm for e.

Proof. The proof is by contradiction. We show that existence of an efficient
forger implies that we can either find a collision in H or solve

e(g∗, G1) = e(g2, G3)

for g∗ given G1, G3 ∈ G1 and g2 ∈ G0.
To this end we set up the public key to help the simulator in answering the

adversary’s signing queries. In the same time a forgery would let us respond
to the challenge or find a collision of the hash function with a non-negligible
probability.

First, we set y ← e(g2, G3). Second, we pick random i ∈ {0, . . . , n}. Consider
two cases.

Case 1: i = 0. We assign H ← G1, pick γj
R
← Zp for all j ∈ 1 . . . n and assign

Hj ← G
1/γi

3 . All internal nodes of the authentication tree, including the root x0

but excluding the leaves, are computed as random powers of e(g2, G3). Suppose
x′ is the jth child of x′′, where x′′ = e(g2, G3)

γ . The authentication value for x′

is computed as f ′ ← g
γj(γ+H(x′))
2 . It correctly authenticates x′ as the jth child

of x′′, since

e(f ′, Hj) · y
−H(x′) = e(g

γj(γ+H(x′))
2 , G

1/γj

3 ) · e(g2, G3)
−H(x′) = e(g2, G3)

γ = x′′.



When the adversary requests a signature on a message M , the path (i`,
x`−1, i`−1, . . . , i1,x0) is generated and the authentication values for all internal
nodes along the path are included in the signature. The leaf x` is computed as

x` ← e(g2, G
γ
1 · G

−H(M)
3 ) for a randomly chosen γ

R
← Zp. The authentication

value for H(M) is set to be f ← gγ
2 . The leaf x` is authenticated as the ith` child

of x`−1 as above. This results in a valid signature (f, f`, i`, . . . , f1, i1).
Case 2: i ∈ {1, . . . , n}. Assign Hi ← G1. We randomly choose γ, γ1, . . . ,

γi−1, γi+1, . . . , γn
R
← Zp, assign H ← G

1/γ
3 and Hj ← G

1/γj

3 , for all j 6= i. We
apply the collision-finding algorithm that returns d1 and d2 satisfying

e(d1, G1) = e(d2, G3).

The authentication tree is constructed from the bottom up. Suppose we
are given a set of siblings z1, . . . , zn. The challenge is to define their parent
node z such that we may find authentication values for all of them. Let z ←

e(d2, G
δ
3)y

−H(zi) for a randomly chosen δ
R
← Zq. For all j ∈ 1 . . . n, such that j 6=

i, the authentication value of zj can be computed as fj ← (g
H(zj)−H(zi)
2 · dδ

1)
γj .

Indeed, for all such j

e(fj , Hj) · y
−H(zj) = e((g

H(zj)−H(zi)
2 · dδ

2)
γj , G

1/γj

3 ) · e(g2, G3)
−H(zj) =

e(g
H(zj)−H(zi)
2 · dδ

2, G3) · e(g
−H(zj)
2 , G3) = e(g

−H(zj)
2 · dδ

2, G3) =

e(d2, G
δ
3) · e(g2, G3)

−H(zi) = e(d2, G
δ
3)y

−H(zi) = zj .

Node zi is authenticated with fi ← dδ
1. Indeed,

e(fi, Hi) · y
−H(zi) = e(dδ

1, G1) · y
−H(zi) = e(dδ

2, G3) · y
−H(zi) = z.

It follows that every internal node may be computed given its jth child. In
particular, the root of the tree, x0, is determined by values on the path (x`, j,
x`−1,. . . ,x1, j), which can be efficiently computed by the randomized algorithm
given above.

When a signature is requested by the adversary, a new leaf is generated as

x` ← e(g2, H
δ), where δ

R
← Zp. Then the path to the root is computed, which

would involve generating new nodes from their jth children. The authentication

value for H(M) is given by f ← g
δ+γH(M)
2 .

We have shown that the simulator may effectively replace the signing ora-
cle and answer the adversary’s queries. The simulated answers have the same
distribution as signatures output by the real signer.

Solving the challenge. Let us consider an algorithm that interacts with the sign-
ing oracle and then forges a signature (f, f`, i`, . . . , f1, i1) on a message M . With-
out loss of generality we may assume that the adversary makes `n queries. Denote
the full authentication tree constructed by the simulator by T . The signature on
M has the form of an authenticated path up the tree from a leaf to the root x0.



Let (x`, i`, x`−1, i`−1, . . . , i1, x0) be the path reconstructed from the signature.
Define xj as the lowest node of the path that also appears in T .

We distinguish between two types of forgeries:
Type I: j = `. Denote the message that was previously authenticated using

x` by M ′ and let f ′ be the authentication value of H(M ′). It follows that

e(f,H) · y−H(M) = x`,

e(f ′, H) · y−H(M ′) = x`,

from which we have
yH(M)−H(M ′) = e(f/f ′, H). (1)

Type II: j < `. Let the x′
j+1 be the ithj child of xj in T and f ′

j be its
authentication value. Similarly, there are two equations

e(fj , Hij
) · y−H(xj+1) = xj ,

e(f ′
j , Hij

) · y−H(x′

j+1) = xj ,

that imply
yH(xj+1)−H(x′

j+1) = e(fj/f
′
j , Hij

). (2)

Consider two possibilities. IfH(M) = H(M ′) in type I orH(xj+1) = H(x′
j+1)

in type II forgery, then we find a collision in the hash function. Otherwise, we
solved equation (1) or (2) of the type

yd = e(f̂ , Ĥ),

for d and f̂ , where d 6= 0 and Ĥ is one of H,H1, . . . , Hn.
Recall that y = e(g2, G3). Since the simulation of the adversary’s view is

perfect, the probability that Ĥ = G1 is 1
n+1 . Thus e(f̂1/d, G1) = e(g2, G3) and

f̂1/d = g∗, i.e. a solution to the challenge.
Therefore an efficient algorithm for forging a signature can be used to either

find a collision in the hash function or disprove security of e. This completes the
proof of the theorem. �

6 Concrete signature scheme

To obtain a concrete secure signature scheme we instantiate the bilinear map
e : G0 × G1 → G2 with a map for which there is an efficient collision finding
algorithm. Let E/Fp be an elliptic curve. We denote by E(Fpr ) the group of
points of E over Fpr . Let q be a prime divisor of |E(Fp)|.

When using a supersingular curve over Fp, p > 3 we can take G0 = G1 as
the subgroup containing all points of order q in E(Fp). The group G2 is the
subgroup of order q of F

∗
p2 . The modified Weil pairing [BF01], denoted ê, is a

non-degenerate bilinear map on G0×G1. Since the CDH assumption is believed



to hold for the group G0, we know by Claim 2 that ê is secure in the sense
of Definition 2. Since the modified Weil pairing is symmetric (i.e. ê(G,H) =
ê(H,G) for all H,G ∈ G0) a collision finding algorithm for ê is immediate: given
G,H ∈ G1 we output H,G ∈ G0 as a collision. Indeed, ê(G,H) = ê(H,G) and
hence H,G is a collision for G,H. Since ê is secure and there is an efficient
collision finder we obtain the following corollary to Theorem 1:

Corollary 1. The signature scheme of Section 5 instantiated with the modified
Weil pairing ê is existentially unforgeable under a chosen message attack if the
CDH assumption holds for the group G0 = G1 defined above.

To obtain shorter signatures one can avoid using supersingular curves and
instead use a family of curves due to Miyaji et al. [MNT01]. Curves E/Fp, p > 3
in this family are not supersingular and have the property that if q divides
|E(Fp)| then E[q] is contained in E(Fp6). Let G0 be the subgroup of order q
in E(Fp) and let G1 be some other subgroup of order q in E(Fp6). The Weil
pairing e on G0 × G1 is not degenerate. Furthermore, since CDH is believed
to be hard on G0 × G1, we know by Claim 2 that e is a secure bilinear map
in the sense of Definition 2. To build a collision finder for e we use the trace
map tr : E(Fp6) → E(Fp). For almost all choices of G1 the map tr defines an
isomorphism from G1 to G0. Then, a collision finder for e works as follows:
given (G,H) ∈ G1 it outputs as a collision the pair (tr(G), tr(H)) ∈ G0. Indeed,
one can verify that e(tr(G), H) = e(tr(H), G). Therefore, by Theorem 1 our
signature scheme is secure when using this family of curves.

We note that the RSA function r(x, d) = xd mod N while being bilinear
does not satisfy the condition of Theorem 1 since the orders of groups G0 and
G1 are not known to the simulator. Nevertheless, the signature scheme can be
instantiated with this function, which would yield a scheme similar to the Dwork-
Naor scheme.

7 Conclusion

We presented a new signature scheme secure in the standard model (i.e. without
random oracles) using groups in which the Computation Diffie-Hellman assump-
tion holds. Our scheme can be implemented using any secure bilinear map (secure
in the sense of Definition 2). Instantiating our signature scheme using the Weil
or Tate pairings gives the most efficient known discrete-log type signature secure
without random oracles.
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