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Abstract

We present a variant of an algorithm of Oliver Atkin for counting the number of points on an
elliptic curve over a finite field. We describe an implementation of this algorithm for prime fields.
We report on the use of this implementation to count the the number points on a curve over F,,
where p is a 210-digit prime.

1 Introduction

In this paper we study the problem of counting the number of points on an elliptic curve over a
finite field. This problem is not only very interesting for number theorists but has recently gained
a lot of attention among cryptographers. The use of elliptic curves in public key cryptography was
suggested by Koblitz [Ko86] and Miller [Mi86]. The security of their elliptic curve cryptosystems
is based on the intractability of the problem of computing discrete logarithms in the elliptic curve
group. The best algorithms known for solving this problem for arbitrary elliptic curves are the
exponential square root attacks [Od86] which have running time proportional to the largest prime
factor dividing the group order. Consequently, in order to guarantee the security of the system it
is necessary to find this group order and its prime factorization. Although Schoof [Scho85] proved
that the cardinality of an elliptic curve group over a finite field can be computed in polynomial
time, his algorithm is extremely inefficient in practice.

We present a short description of an variant of an algorithm of Oliver Atkin for counting
points on elliptic curves over finite prime fields [At91]. We also describe an implementation of this
algorithm and report on its effectiveness. With this implementation we were able to compute the
group order of a curve defined over F),, where p is a 210-digit prime. The total time used was
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approximately 186 MIPS-days (this time does not include the time for precomputations that are
independent of the input).

Background on the theory of elliptic curves can be found in [Si86]; a detailed description of
the algorithm (including proofs of the theorems used) is given in [Mii94]. The implementation

makes use of a library of routines for efficient computations with large polynomials over finite fields
described in [Sho94].

2 Elliptic Curves and the Frobenius Endomorphism

Let F, be the finite field with ¢ elements, and let p be its characteristic. We shall assume that
p > 3. Let £/ be an elliptic curve defined over F, by the equation

y? =2+ az +0, (1)

where a and b are in F,, and the discriminant 4a3 + 27b% is nonzero.

Let F, be the algebraic closure of F,. For a field K, F, C K C F,, the set E(K) of K-rational
points consists of the affine solutions (z,y) € K? of (1), together with the point @ “at infinity”
obtained by considering the projective closure of (1). The set E(K') has a group structure given
by the well-known “tangent and chord method,” with O acting as the identity element. The sum
of two given points can be computed by simple formulas (see, e.g., [BuMii91]).

We will describe an algorithm that takes as input elements @ and b defining an elliptic curve
as in (1), and produces as output the order of the group £ (F,). An important tool for solving this
problem is the Frobenius Endomorphism for F.

Definition 1 The Frobenius Endomorphism for £ is the map

¢p: E(F,) — E(F,)
(z,y) — (2% 9%

The connection between this map and the problem of computing the order #E(F,) of E(F,)
follows from following well-known theorem of Hasse.

Theorem 1 (Hasse) Let ¢ = ¢+ 1 — #E(F,). Then |c| < 2,/q, and moreover the Frobenius
FEndomorphism ®g of E satisfies the equation f(®g) =0 in the endomorphism ring of F, where

f(X)=X*—¢cX +q€Z[X].

The value ¢ in this theorem is the trace of ®g. The algorithm of Atkin consists of two steps:
(1) for small primes [, compute a small set of possible values for ¢ mod /; (2) use the Chinese
remainder theorem to get a set of possible values for ¢, and then determine ¢ from among these
possible values.



3 Computing possible values for ¢ mod

In this section we describe an algorithm for computing a small set of possible values for ¢ mod
[. Schoof showed in [Scho85] how to compute ¢ mod / exactly with the help of (12 — 1)/2-degree
polynomials. We will make use of a polynomial of degree [ 4+ 1, but in general we are not able to
compute ¢ mod [ exactly.

Let £ be a fixed elliptic curve over F, and [ an odd prime, [ # p. The [-torsion group E[l] of

E is the subgroup of points P € E(F,) such that /- P = O. It is well-known that
EN=Z/IZ xZ]IZ.

It follows that there are exactly [ + 1 (cyclic) subgroups of E(F,) of order [, which we denote by
01, SN CH—I-

Since ¢ (F[l]) C E[l], we can consider the restriction of the Frobenius Endomorphism to E[l],
yielding an automorphism on E[l] whose characteristic polynomial is f(X) € F;[X], obtained by
reducing the coefficients of the polynomial f(X)in Theorem 1 mod I.

We can compute information about ¢ mod [ by examining the behavior of the groups C; under
the action of the Frobenius Endomorphism and its powers. The following theorem relates this
behavior to the splitting type of f(X).

Theorem 2 For1 <1 <I[+1, let d; be the least positive integer such that @%(Ci) =C;.

1 If f(X) = (X —a)? with a € Fy, then either d; = 1 for all 1 <i <[+ 1 or there exists exactly
one j withd; =1 and d; =1 for all 1 <i<I1+4+1,i#j.

2. If f(X) = (X —a) (X = B) with a,3 € F; and a # 3, then there exist iy # iy with
diy =di, =1 and d; =d = ord(a /) for 1 < i <[+ 1,i# i1,13.

3. If f(X) is irreducible over ¥, then d; = d for all 1 < i <1+ 1, where d = ord(a'=1) and «
is a root of f(X) in Fp.

Thus we know the splitting type of f(X) mod [/ if we know the behavior of the groups C; under
powers of the Frobenius Endomorphism. Possible values for ¢ mod / can then easily be determined:
we obtain two possible values for ¢ mod [/ in case 1 and ¢(d) possible values in the cases 2 and 3.

The next problem is the determination of the values d; in Theorem 2. Let C' be a finite subgroup
of E(F,). Then it is known that there exists an elliptic curve (unique up to isomorphism) which
we denote by E/C and an isogeny 1 : E(F,) — (E/C)(F,) such that the kernel of 7 is C. We
write 7/C to denote the j-invariant of £'/C. The following theorem gives the connection between
such j-invariants and the values d; in Theorem 2.

Theorem 3 Let £ be a non supersingular elliptic curve over F, such that there exists no F,-
isogeny (i.e. an isogeny defined over F,) to an elliptic curve of j-invariant 0 or 1728. Then for
1 <1<+ 1 we have

d = kmeiﬁ{j/ciquk}.



For supersingular elliptic curves the group order is given by a theorem of Waterhouse; the
group order of elliptic curves which are F,-isogenous to curves with j-invariant 0 or 1728 can be
computed by finding elements of given norm in some maximal order of an imaginary quadratic
field. More details can be found in [Mii94]. Thus we can assume that the assumptions of Theorem
3 are fulfilled.

So to compute d;, we have to find minimal extensions of F, which contain the j-invariants
j/C;. This problem is solved by finding the splitting type of a special polynomial, as the following
theorem shows.

Theorem 4 Let FE be an elliptic curve and C;,(1 < i < [+ 1) be all subgroups of E(F,) of

exact order |. There exists a modular polynomial ¢;(X, Y) eF [X Y] such that all roots of
®)(X,j(E)) € Fy[X] are given by the j-invariants j/C;, 1 <1 <[+41

Note that by Theorem 4 the degree of the [-th modular polynomial is exactly {+ 1. Combining
all Theorems of this section we obtain the following algorithm for computing some information
about the trace ¢ of the Frobenius Endomorphism of an elliptic curve £ over F; modulo some odd
prime [:

1. compute the [-th modular polynomial ®;(X,Y) € F,[X,Y].
2. substitute the j-invariant of £ and obtain ®;(X,j(E)) € F,[X].
3. compute the splitting type of this polynomial and obtain {d;};=1 . i41.

4. compute information about ¢ mod ! with Theorem 2.

4 Computing modular polynomials

In the last section we described how to compute partial information about the order of E(F,)
modulo some odd prime [ if we know the /-th modular polynomial for fields of characteristic p.
There is also a notion of modular polynomials for elliptic curves defined over C, the field of complex
numbers (see [Si86]). We recall this briefly, and mention how it is related to the notion of modular
polynomials over finite fields.

An elliptic curve defined over C is isomorphic to C/L, where L = Z + Z71 (3(r) > 0) is a
two-dimensional lattice in C. The j-invariant of an elliptic curve over C can be interpreted as the
j-invariant j(7) of the corresponding lattice L. The classical modular polynomial for the complex
numbers is a polynomial in(X,Y) € Z[X,Y], such that the roots of ‘i)g(X,j(T)) are given by

](T—;n) for 0<n<l and j(lr).

It is known that a modular polynomial for F, is equal to the reduction modulo p of the corre-
sponding modular polynomial for C.

Actually, we have chosen to work with a different modular polynomial: one that has the same
splitting type as the above modular polynomial, but is slightly easier to compute. We now describe
this polynomial.



Let g, = exp(27it) and n(7) = q$/24 T152, (1 — ¢7) be the Dedekind n-function. Let s € N be

minimal such that v = (s(/ —1))/12 € N and define

o - G

Using the function f(7) we can prove the following theorem (see [Mii94]).

Theorem 5 There exist coefficients a,, € Z such that S0 SV a,p - 5(I7)F - f(7)" = 0. For an
elliptic curve £ over F, the polynomial

+1 v
GX) = DD a-J(E)- X7 € FX]

r=0 k=0

has the same splitting type as the [-th modular polynomial ®(X,j(F)) for F,.

Next we describe the ideas for computing the coefficients a, j used in the definition of G(X).
We can show that the roots of the polynomial

{+1 v
H(X) = )] (Z r.k 'j(lT)k) X7
k=0

=ik, (1)

are given by

f<7'—|—ﬁ) 0<n<l and P .

1)’ - fr)

Since we can expand the functions f(7) and f(/7) as power series in ¢, with some precision, we
can compute the power series expansions of the power sums of all zeroes of H;(X ). Note that the
r-th power sum of the “first” [ zeroes can be computed by changing the power series expansion of
f(r)" appropriately. Then we can use Newton’s identities to compute power series expansions of
the coefficients k,(7) of the polynomial H;(X). Knowing the coefficients k,(7) we can compute the
values of a, ; by comparing minimal powers in the power series expansions of k,(7) and powers of
(i),

The advantage of G;(X) in comparison to the original /[-th modular polynomial is the smaller
precision which we need in the computation of power series expansions. For [ = 1 mod 12 the
precision of power series expansions we need for G;(X) is about 11—2 of the precision of power series
expansions for computing ®;(X).

The method explained above works for all odd prime numbers [, but for some [ we have used yet
other functions for computing an analogue to G;(X'), but which are sometimes easier to compute.

5 Computing ¢ mod ! exactly

One problem with our method as we have described it so far is that we obtain only partial informa-
tion about ¢ mod /. As we consider more and more primes [, the set of possible values for ¢ grows
exponentially in the number of primes.



Fortunately, for primes [ such that f(X) splits mod [, (which we expect to happen about half
the time), we can compute the value of ¢ mod [ exactly. We now describe the method.

Assume that the modular equation G;(X) has at least one root in F,. By the theorems of
section 3 there exists at least one group C; which is invariant under the Frobenius Endomorphism.
Consider the polynomial

X)) = I (x-a(r).

+PeC;—{0}

This polynomial has degree (I — 1)/2, and since C; is invariant under ®g, its coefficients lie in
F,. We can efficiently compute f;(X) with the help of one root of the modular equation. This
computation is somewhat complicated; a detailed description can be found in [Mii94].

Assume that we know fi;(X). By the invariance of C; under @z there exists a number 1 < o </
such that the Frobenius Endomorphism satisfies for all points P € C}

®p(P) = a-P.

Similar to Schoof’s algorithm, we transform this equation in the Endomorphism ring of C; into
polynomial equations modulo f;(X). For 1 < j <[ we have to check whether

2t pHX) = w-H(X) =i (X) - (X) mod fi( X)
and
4(X7 4 aX +0) X)) = (X)) - 9R(X) = 9 a(X) - $F 1 (X) mod fi(X)

holds, where %;(X) is the reduced j-th division polynomial (compare [BuMii91]). For j = a both
equations are true and we have found a. From Theorem 2 we know that

X?—eX+q = (X—a)(X-5)

holds in F;[X] and since we know « and ¢, we can compute 3 and ¢ by comparing coefficients.

6 Combining possible values

We will describe how we actually compute the order of the group E(F,) after knowing possible
values for ¢ mod /; for odd primes /y,...,l, with [[{_; /; > 4,/q. Using Chinese remaindering we
can compute moduli m;,¢ = 1,2, 3, a value ¢3, and sets Ly, L such that

e ¢ =c3mod m3
o c=cy mod my, where ¢4 € Ly = {e11,...,¢c14,}-
o ¢ =cymod my, where ¢; € Ly = {¢31,...,¢24,}

Note that we do not know the values of ¢; and ¢;. We use a so-called “baby step/giant step”
strategy to compute these values. Write

¢ = cz3+mz-(myreg+mgry),



where 71,79 are numbers which satisfy
_ —1 _ —1
T = ¢ (myms)” — c3 mod my and r1 = c¢1(mgems)” — ¢3 mod my.

If we choose c3 as the least positive residue mod m3 and the number 71 as the least absolute residue
mod mq, we can show that |ry| < ma.

By Lagrange’s theorem, a random point @ € E(F,) satisfies (¢+1—¢)-@) = O and—substituting
the equation for c—we get

(g+1—c3)-Q—mimgry-Q = mamsary-Q. (2)

Since we do not know ¢; and ¢y, we compute corresponding numbers 7y ;, 7o ; for all elements in
the sets Ly and L;. Then we check (2) for all these possibilities 71 ; and ry ; with the following
algorithm:

1. forall 1 <j <k
(a) compute H; = (¢+1—¢3)-Q —mymary;-Q

(b) If H; = O then return ¢ + 1 — c3 — my mg 7y
(c) store (H;,ry ;) in a table 7.

2. forall 1 <1<k

(a) compute K; = mgamsgry;-Q

(b) If (K;,z) exists in T" for some number z, return ¢ + 1 — ¢3 — mqy m3 z — mgms3 rq ;.

Obviously this algorithm doesn’t guarantee that the result really is the correct order of the
group E(F,); it returns only a multiple of the order of the point ) which lies in the interval
given by Hasse’s theorem. In practice the result is equal to the desired group order, which can be
probabilistically checked by using a few more random points. Moreover there is an algorithm which
really proves the correctness of the group order (see [Mii94]).

7 Computational results and implementation details

We have recently implemented this algorithm and used it to compute the group order of a curve
defined over F,, where p is a 210-digit prime. We chose p = 10?*? 4 103, and the curve

E:y? = 2% + 9051969z + 11081969.

The group order was computed as

10000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000004179063042315198589540022\
67099915195519032247333419733547622071791625087426579598414738335\
917295830214295.



This number happens to be particularly easy to factor and its factorization is
32.5-13-19 - 53623 - 12342839 - P,

where P is a prime number. Using this factorization, we were able to prove the correctness of the
group order.

The total computation (not including the computation of modular polynomials, which is a
precompuation that is independent of the input), took approximately 186 MIPS-days, of which 163
were used in computing the splitting type and 13 MIPS-days to perform the baby step/giant step
computation.

In the computation, we used modular polynomials for [ up to 503. Of the 95 odd primes up
to 503, we found that for this curve, 39 were so-called Elkies primes, i.e., primes for which the
polynomial f(X) splits, and we can quickly compute ¢ mod [ exactly.

We have computed modular polynomials for [ up to 503, and have stored these on disk. The
storage requirement is approximately 40 MBytes. Individual modular equations are relatively
expensive to compute. For example, in our implementation, we used 155 MIPS-days to compute
the modular polynomial for [ = 503.

It is fairly easy to distribute much of the computation over a network of workstations. We have
done so using LiPS [Li93]. This proved quite effective.

We now give some details of the implementation.

7.1 Computing Modular Polynomials

To compute the [-th modular polynomial, we compute it modulo several small primes, and then
use Chinese remaindering to get the coefficients over Z. These small primes are chosen so that each
prime r fits in one computer word, and so that r — 1 is divisible by a high power of 2. This allows
us to multiply polynomials of very large degree modulo r very quickly using the FFT. Arithmetic
modulo r is performed using floating point operations (which is both portable and fast).

We distributed the computation modulo different primes r over a network of workstations.

7.2 Computing the splitting type

Assuming we have precomputed all of the necessary modular polynomials, the most time consuming
step is the computation of the splitting type of Gi(X) modulo p, and to compute a root should it
admit one.

These problems are special cases of the polynomial factorization problem, and the techniques
used are closely related.

To compute the splitting type of the modular polynomial G;(X), we first compute X? mod
G1(X). Then we compute ged(X? — X, Gy(X)). If this ged is non-trivial, then we can compute
a root of G;(X) modulo p, and from this we compute the value of ¢ mod [ exactly. If this gcd
is trivial, then we know that G(X) factors as a product of distinct irreducibles, all of the same
(unknown) degree d. We can still obtain partial information about ¢ mod ! by computing this value
d.

To carry out these computations, we need to perform polynomial arithmetic modulo G(X).
Multiplication of polynomials is done using a combination of Chinese remaindering and the FF'T.
Small primes r are chosen so that r» — 1 is divisible by a high power of two, and the product of these



primes is a bit bigger than p*. To multiply two polynomials over F,,, the coefficients (represented
as nonnegative integers less than p) are reduced modulo the small primes; then we compute the
product polynomial modulo each small prime via the FF'T; finally, we apply the Chinese remainder
algorithm to each coefficient, and reduce modulo p.

In practice, this runs much faster than the classical “school” method for the size of polynomials
we are considering (the cross-over point being less than degree 50), and is critical in obtaining
reasonable running times.

Division by G;(X) with remainder is done using a standard reduction to polynomial multiplica-
tion; however, as G;( X ) remains fixed for many divisions, it pays to perform some precomputation
on Gi(X). With this precomputation, one squaring modulo G(X) costs about 1.5 times the cost
of simply multiplying two degree | polynomials.

Also, a new algorithm for computing the value d was employed which is quite efficient in
practice—the number of polynomial multiplications is a small multiple of {/2 logg 1.

We also remark that very good performance for these algorithms was obtained, despite the fact
that the algorithms were implemented in C' and are very portable. Details on these algorithms and
their implementation can be found in [Sho94].

The computation for different primes [ was distributed over a network of workstations.

7.3 Baby step/giant step computation

Several tricks were used to speed up the baby step/giant step computation in section 6.

1. We store only one computer word of the z-coordinate of points computed in the baby step
part. After having done all baby steps we sort the table according to the “z-coordinate”
(using quicksort). Thus we are able to use binary search for checking a match in the following
giant step part. If we find a match, we recompute the original baby step point (using the
second component of the table entry) and compare.

2. For doing fast steps we sort the numbers 7y ;, 72 ; such that we can do one step by adding
some small multiple of (). These different multiples of () are computed with the following
trick: precompute the table

1-Q,2-Q,....,.L-Q,2L-Q,4L-Q,...,L*-Q,2L*-Q,4L%-Q,..., L>-Q

for some constant L =~ 200. Since with z - () we directly know the point —z - ), we can
compute the point z - @ for all |z| < L3 with at most three additions by expanding = as

r = ;Z'1+;I]2'(2L)—|-;Z‘3'(2L2), |z;| < L.
3. The most time consuming part of point addition is the inversion of some field element. We

are doing several steps in this part in parallel so that we can use a trick of Montgomery which
reduces the number of inversions on the cost of a few multiplications (see [Mo87]).
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