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Abstract

A new public key cryptosystem is proposed and analyzed. The
scheme is quite practical, and is provably secure against adaptive
chosen ciphertext attack under standard intractability assumptions.
There appears to be no previous cryptosystem in the literature that
enjoys both of these properties simultaneously.

1 Introduction

In this paper, we present and analyze a new public key cryptosystem that
is provably secure against adaptive chosen ciphertext attack (as defined by
Rackoff and Simon [20]). The scheme is quite practical, requiring just a few
exponentiations over a group. Moreover, the proof of security relies only
on a standard intractability assumption, namely, the hardness of the Diffie-
Hellman decision problem in the underlying group.



The hardness of the Diffie-Hellman decision problem is essentially equiv-
alent to the semantic security of the basic El Gamal encryption scheme [12].
Thus, with just a bit more computation, we get security against adaptive cho-
sen ciphertext attack, whereas the basic El Gamal scheme is completely in-
secure against adaptive chosen ciphertext attack. Actually, the basic scheme
we describe also requires a universal one-way hash function. In a typical im-
plementation, this can be efficiently constructed without extra assumptions;
however, we also present a hash-free variant as well.

While there are several provably secure encryption schemes in the liter-
ature, they are all quite impractical. Also, there are several practical cryp-
tosystems that have been proposed, but none of them has been proven secure
under standard intractability assumptions. The significance of our contribu-
tion is that it provides a scheme that is provably secure and practical at the
same time. There appears to be no other encryption scheme in the literature
that enjoys both of these properties simultaneously.

Chosen Ciphertext Security

Semantic security, defined by Goldwasser and Micali [14], captures the intu-
ition that an adversary should not be able to obtain any partial information
about a message given its encryption. However, this guarantee of secrecy is
only valid when the adversary is completely passive, i.e., can only eavesdrop.
Indeed, semantic security offers no guarantee of secrecy at all if an adversary
can mount an active attack, i.e., inject messages into a network or otherwise
influence the behavior of parties in the network.

To deal with active attacks, Rackoff and Simon [20] defined the notion
of security against an adaptive chosen ciphertezt attack. If an adversary can
inject messages into a network, these messages may be encryptions, and the
adversary may be able to extract partial information about the corresponding
cleartexts through its interactions with the parties in the network. Rackoft
and Simon’s definition models this type of attack by simply allowing an ad-
versary to obtain decryptions of its choice, i.e., the adversary has access to
a “decryption oracle.” Now, given an encryption of a message—the “tar-
get” ciphertext—we want to guarantee that the adversary cannot obtain any
partial information about the message. To achieve this, we have to restrict
the adversary’s behavior in some way, otherwise the adversary could simply
submit the target ciphertext itself to the decryption oracle. The restriction



proposed by Rackoff and Simon is the weakest possible: the adversary is not
allowed to submit the target ciphertext itself to the oracle; however, it may
submit any other ciphertext, including ciphertexts that are related to the
target ciphertext.

A different notion of security against active attacks, called non-
malleability, was proposed by Dolev, Dwork, and Naor [9]. Here, the ad-
versary also has access to a decryption oracle, but his goal is not to obtain
partial information about the target ciphertext, but rather, to create another
encryption of a different message that is related in some interesting way to
the original, encrypted message. For example, for a non-malleable encryp-
tion scheme, given an encryption of n, it should be infeasible to create an
encryption of n + 1. It turns out that non-malleability and security against
adaptive chosen ciphertext attack are equivalent [10].

A cryptosystem secure against adaptive chosen ciphertext attack is a very
powerful cryptographic primitive. It is essential in designing protocols that
are secure against active adversaries. For example, this primitive is used in
protocols for authentication and key exchange [11, 10, 2] and in protocols for
escrow, certified e-mail, and more general fair exchange [1, 22]. The practical
importance of this primitive is also highlighted by the adoption of Bellare
and Rogaway’s OAEP scheme [4] (a practical but only heuristically secure
scheme) as an internet encryption standard and for use in the SET protocol
for electronic commerce.

There are also intermediate notions of security, between semantic security
and adaptive chosen ciphertext security. Naor and Yung [19] propose an
attack model where the adversary has access to the decryption oracle only
prior to obtaining the target ciphertext, and the goal of the adversary is to
obtain partial information about the encrypted message. Naor and Yung
called this type of attack a chosen ciphertexzt attack; it has also been called
a “lunch-time” or “midnight” attack. In this paper, we will always use the
phrase adaptive chosen ciphertext attack for Rackoff and Simon’s definition,
to distinguish it from Naor and Yung’s definition.

Previous Work

Provably Secure Schemes. Naor and Yung [19] presented the first scheme
provably secure against lunch-time attacks. Subsequently, Dolev, Dwork,
and Naor [9] presented a scheme that is provably secure against adaptive



chosen ciphertext attack.

Rackoff and Simon [20] present and prove the security of an encryption
scheme, but their scheme is actually not a public key scheme in the traditional
sense: in their scheme, all users—both senders and receivers—require public
keys, and moreover, a trusted center is required to perform certain functions.
In contrast, all other schemes mentioned in this paper, including our own,
are traditional public key systems: encryption is a probabilistic function of
the message and the receiver’s public key, decryption is a function of the
ciphertext and the receiver’s secret key, and no trusted center is required.
This distinction can be important: adding extra system requirements as in
the Rackoff and Simon scheme can greatly restrict the range of application
of the scheme.

All of the previously known schemes provably secure under standard in-
tractability assumptions are completely impractical (albeit polynomial time),
as they rely on general and expensive constructions for non-interactive zero-
knowledge proofs. This includes non-standard schemes like Rackoff and Si-
mon’s as well.

Practical Schemes. Damgard [8] proposed a practical scheme that he conjec-
tured to be secure against lunch-time attacks; however, this scheme is not
known to be provably secure, and is in fact demonstrably insecure against
adaptive chosen ciphertext attack.

Zheng and Seberry [24] proposed practical schemes that are conjectured
to be secure against chosen ciphertext attack, but again, no proof based on
standard intractability assumptions is known. Lim and Lee [16] also proposed
practical schemes that were later broken by Frankel and Yung [13].

Bellare and Rogaway [3, 4] have presented practical schemes for which
they give heuristic proofs of adaptive chosen ciphertext security; namely, they
prove security in an idealized model of computation, the so-called random
oracle model, wherein a hash function is represented by a random oracle.

Shoup and Gennaro [22] also give El Gamal-like schemes that are secure
against adaptive chosen ciphertext attack in the random oracle model, and
that are also amenable to efficient threshold decryption.

We stress that although a security proof in the random oracle model is
of some value, it is still only a heuristic proof. In particular, these types of
proofs do not rule out the possibility of breaking the scheme without breaking
the underlying intractability assumption. Nor do they even rule out the



possibility of breaking the scheme without finding some kind of weakness in
the hash function, as recently shown by Canetti, Goldreich, and Halevi [7].

Outline of paper

In §2 we review the basic definitions that we need for security and intractabil-
ity assumptions. In §3 we outline our basic scheme, and in §4 we prove its
security. In §5 we discuss some implementation details and variations on the
basic scheme.

2 Definitions

2.1 Security against adaptive chosen ciphertext attack

We recall Rackoff and Simon’s definition.

Security is defined via the following game played by the adversary.

First, the encryption scheme’s key generation algorithm is run, with a
security parameter as input. Next, the adversary makes arbitrary queries to
a “decryption oracle,” decrypting ciphertexts of his choice.

Next the adversary chooses two messages, mg, m1, and sends these to
an “encryption oracle.” The encryption oracle chooses a bit b € {0,1} at
random, and encrypts mp. The corresponding ciphertext is given to the
adversary (the internal coin tosses of the encryption oracle, in particular b,
are not in the adversary’s view).

After receiving the ciphertext from the encryption oracle, the adversary
continues to query the decryption oracle, subject only to the restriction that
the query must be different than the output of the encryption oracle.

At the end of the game, the adversary outputs & € {0,1}, which is
supposed to be the adversary’s guess of the value b. If the probability that
b’ =bis 1/2 + ¢, then the adversary’s advantage is defined to be e.

The cryptosystem is said to be secure against adaptive chosen ciphertext
attack if the advantage of any polynomial-time adversary is negligible (as a
function of the security parameter).



2.2 The Diffie-Hellman Decision Problem

There are several equivalent formulations of the Diffie-Hellman decision prob-
lem. The one that we shall use is the following.

Let G be a group of large prime order g, and consider the following two
distributions:

e the distribution R of random quadruples (g1, g2, u1, u2) € G*;

e the distribution D of quadruples (g1, g2, u1,u2) € G*, where g1, g, are
random, and u; = ¢g] and uy = g3 for random r € Z,.

An algorithm that solves the Diflie-Hellman decision problem is a statisti-
cal test that can effectively distinguish these two distributions. That is, given
a quadruple coming from one of the two distributions, it should output 0 or
1, and there should be a non-negligible difference between (a) the probability
that it outputs a 1 given an input from R, and (b) the probability that it
outputs a 1 given an input from D. The Diflie-Hellman decision problem is
hard if there is no such polynomial-time statistical test.

This formulation of the Diffie-Hellman decision problem is equivalent to
several others. First, making the substitution

g — g, 92— g, ur — g%, ug = g%,

one sees that this is equivalent to distinguishing Diffie-Hellman triples
(9%, 9¥, g*¥) from non-Diffie-Hellman triples (g%, g%, g*). Note that by a trivial
random self-reducibility property, it does not matter if the base g is random
or fixed.

Second, although we have described it as a problem of distinguishing
two distributions, the Diffie-Hellman decision problem is equivalent to the
worst-case decision problem: given (g%, g¥, g*), decide—with negligible error
probability—if z = zy mod g. This equivalence follows immediately from a
random self-reducibility property first observed by Stadler [23] and later by
Naor and Reingold [17].

Related to the Diffie-Hellman decision problem is the Difhie-Hellman prob-
lem (given g, ¢* and ¢¥, compute ¢*¥), and the discrete logarithm problem
(given g and ¢*, compute z).

There are obvious polynomial-time reductions from the Diffie-Hellman de-
cision problem to the Diffie-Hellman problem, and from the Diflie-Hellman



problem to the discrete logarithm problem, but reductions in the reverse di-
rection are not known. Moreover, these reductions are essentially the only
known methods of solving the Diffie-Hellman or Diffie-Hellman decision prob-
lems. All three problems are widely conjectured to be hard, and have been
used as assumptions in proving the security of a variety of cryptographic
protocols. Some heuristic evidence for the hardness of all of these problems
is provided in [21], where it is shown that they are hard in a certain natural,
structured model of computation. See [23, 17, 6] for further applications and
discussion of the Diffie-Hellman decision problem.

Note that the hardness of the Diffie-Hellman decision problem is equiva-
lent to the semantic security of the basic El Gamal encryption scheme. Recall
that in the basic El Gamal scheme, we encrypt a message m € G as (¢", h"m),
where h is the public key of the recipient.

On the one hand, if the Diflie-Hellman decision problem is hard, then
the group element A" could be replaced by a random group element without
changing significantly the behavior of the attacker; however, if we perform
this substitution, the message m is perfectly hidden, which implies security.

On the other hand, if the Diffie-Hellman decision problem can be efh-
ciently solved, then an attacker can break El Gamal as follows. The attacker
chooses two messages mg, m1, giving these to an encryption oracle. The en-
cryption oracle produces an encryption (u,e) = (g”, h"ms), where b € {0,1}
is chosen at random. The attacker’s task is to determine b, which he can do by
simply determining which of (u, k,e/myg) and (u, h, e/m;) is a Diffie-Hellman
triple.

Note that the basic El Gamal scheme is completely insecure against adap-
tive chosen ciphertext attack. Indeed, given an encryption (u, €) of a message
m, we can feed the (u,g - e) to the decryption oracle, which gives us g - m.

2.3 Collision-resistant Hash Functions

A family of hash functions is said to be collision resistant if upon drawing
a function H at random from the family, it is infeasible for an adversary to
find two different inputs z and y such that H(z) = H(y).

A weaker notion is that of a universal one-way family of hash functions
[18]. Here, it should be infeasible for an adversary to choose an input z,
draw a random hash function H, and then find a different input y such that
H(z) = H(y). Such hash function families are also called target collision



resistant. See [5] for recent results and further discussion.

3 The Basic Scheme

We assume that we have a group G of prime order ¢, where g is large. We
also assume that cleartext messages are (or can be encoded as) elements of G
(although this condition can be relaxed—see §5.2). We also use a universal
one-way family of hash functions that map long bit strings to elements of Z,
(although we can do without this—see §5.3).

Key Generation. The key generation algorithm runs as follows. Random
elements g1, g2 € G are chosen, and random elements

T1,T2,Y1,Y2,2 € Zq

are also chosen. Next, the group elements

c=g7'93, d=91"97", h=g]
are computed. Next, a hash function H is chosen from the family of universal
one-way hash functions. The public key is (g1, g2, ¢, d, h, H), and the private
key 1s (wla T2,Y1,Y2, Z)
Encryption. Given a message m € @, the encryption algorithm runs as
follows. First, it chooses r € Z, at random. Then it computes

r r T r jgra
ur =gi, u2 = g5, e = h"m, a = H(ui,us,e), v=_cd*
The ciphertext is
(u1,ug, €,v).

Decryption. Given a ciphertext (ug,us,e,v), the decryption algorithm runs
as follows. It first computes o = H(uy,uz,€), and tests if

uflt1+y1au:2t2+y2a — .
If this condition does not hold, the decryption algorithm outputs “reject”;
otherwise, it outputs
m = e/u;.



We first verify that this is an encryption scheme, in the sense that the
decryption of an encryption of a message yields the message. Since u; = ¢
and up = g3, we have

urtuyt =917 gy = ¢
Likewise, u{'uy’ = d" and u} = h" Therefore, the test performed by the

decryption algorithm will pass, and the output will be e/h" = m.

4 Proof of Security
In this section, we prove the following theorem.

Theorem 1 The above cryptosystem is secure against adaptive chosen ci-
phertezt attack assuming that (1) the hash function H is chosen from a uni-
versal one-way family, and (2) the Diffie-Hellman decision problem is hard
in the group G.

To prove the theorem, we will assume that there is an adversary that
can break the cryptosystem, and that the hash family is universal one-way,
and show how to use this adversary to construct a statistical test for the
Difhie-Hellman decision problem.

For the statistical test, we are given (g1, g2, u1, u2) coming from either the
distribution R or D. At a high level, our construction works as follows. We
build a simulator that simulates the joint distribution consisting of adver-
sary’s view in its attack on the cryptosystem, and the hidden bit b generated
by the generated oracle (which is not a part of the adversary’s view).

We will show that if the input comes from D, the simulation will be
nearly perfect, and so the adversary will have a non-negligible advantage in
guessing the hidden bit b. We will also show that if the input comes from R,
then the adversary’s view is essentially independent of b, and therefore the
adversary’s advantage is negligible. This immediately implies a statistical
test distinguishing R from D: run the simulator and adversary together,
and if the simulator outputs b and the adversary outputs &, the distinguisher
outputs 1 if b = b, and 0 otherwise.

We now give the details of the simulator. The input to the simulator is
(91,92, u1,u2). The simulator runs the following key generation algorithm,



using the given g1, g2. The simulator chooses

T1,T2,Y1,Y2, 21,22 € Zq

at random, and computes

c=dr'gs d=91"95, h=91'97"
The simulator also chooses a hash function H at random. The pub-
lic key that the adversary sees is (g1,92,¢,d,h, H). The simulator knows
(mla L2,Y1, Y2, 21, Z2)'

Note that the simulator’s key generation algorithm is slightly different
from the key generation algorithm of the actual cryptosystem; in the latter,
we essentially fix z, = 0.

The simulator answers decryption queries as in the actual attack, except
that it computes m = e/(uj'u3?).

We now describe the simulation of the encryption oracle. Given mg, m1,
the simulator chooses b € {0,1} at random, and computes

21 ,,%2

_ _ _ L, Zitya
e = ufuy?my, a = H(ui,ug,e), v=uj

T2ty 0
2

u )

and outputs
(u1,ug, €,v).

That completes the description of the simulator. As we will see, when the
input to the simulator comes from D, the output of the encryption oracle is
a perfectly legitimate ciphertext; however, when the input to the simulator
comes from R, the output of the decryption oracle will not be legitimate, in
the sense that log, u; # log,, us. This is not a problem, and indeed, it is
crucial to the proof of security.

The theorem now follows immediately from the following two lemmas.

Lemma 1 When the simulator’s input comes from D, the joint distribution
of the adversary’s view and the hidden bit b is is statistically indistinguishable
from that in the actual attack.

Consider the joint distribution of the adversary’s view and the bit b6 when
the input comes from the distribution D. Say u; = ¢7 and uy = gj.
It is clear in this case that the output of the encryption oracle has the

right distribution, since ui*u3? = ¢, u¥'uy* = d", and uPu® = h"; indeed,
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these equations imply that e = myh” and v = ¢"d"®, and « itself is already
of the right form.

To complete the proof, we need to argue that the output of the decryption
oracle has the right distribution. Let us call (u},u},e’,v') € G* a valid
ciphertext if log, uj = log,, uj.

Note that if a ciphertext is valid, with u|, = g7 and u}, = g}, then

R = (u})* (u})?; therefore, the decryption oracle outputs e/h", just as it
should. Consequently, the lemma follows immediately from the following:

Clatim. The decryption oracle—in both an actual attack against the cryptosys-
tem and in an attack against the simulator—rejects all invalid ciphertexts,
except with negligible probability.

We now prove this claim by considering the distribution of the point
P = (z1,22,y1,¥2) € Z;, conditioned on the adversary’s view. Let log(-)
denote log,, (-), and let w = log g,.

From the adversary’s view, P is a random point on the plane P formed
by intersecting the hyperplanes

logc = z1 + wz, (1)

and

log d = y1 + wys. (2)

These two equations come from the public key. The output from the en-
cryption oracle does not constrain P any further, as the hyperplane defined
by

logv = rzy + wrzy + ary; + arwy; (3)

contains P.

Now suppose the adversary submits an invalid ciphertext (uf, u),v’, ') to
the decryption oracle, where log u] = r{ and log uy = wrj, with r] # 5. The
decryption oracle will reject, unless P happens to lie on the hyperplane H
defined by

logv' = riz1 + wryzy + o'riys + o'rywys, (4)

where o' = H(uj,uj, e'). But it is clear that the equations (1), (2), and (4)
are linearly independent, and so H intersects the plane P at a line.

It follows that the first time the adversary submits an invalid ciphertext,
the decryption oracle rejects with probability 1 —1/q. This rejection actually

11



constrains the point P, puncturing the plane H at a line. Therefore, for
1 = 1,2,..., the ¢th invalid ciphertext submitted by the adversary will be
rejected with probability at least 1 — 1/(¢ — ¢+ 1). From this it follows that
the decryption oracle rejects all invalid ciphertexts, except with negligible
probability.

Lemma 2 When the simulator’s input comes from R, the distribution of the
hidden bit b is (essentially) independent from the adversary’s view.

Let uy = gi* and uy = ¢g;">. We may assume that r; # 73, since this

occurs except with negligible probability. The lemma follows immediately
from the following two claims.

Claim 1. If the decryption oracle rejects all invalid cipherterts during the at-
tack, then the distribution of the hidden bit b is independent of the adversary’s
view.

To see this, consider the point Q = (z1,22) € Zg. At the beginning of the
attack, this is a random point on the line

log h = z1 + waz,, (5)

determined by the public key. Moreover, if the decryption oracle only
decrypts valid ciphertexts (uf,u},e’,v’), then the adversary obtains only
linearly dependent relations r'logh = 7’21 + r'wzy (since (uj)™ (uh)? =
g{,zl ggl‘Q = h""). Thus, no further information about Q is leaked.

Consider now the output (u1,u2, e,v) of the simulator’s encryption oracle.

We have e = € m;, where € = ui*u3?. Now, consider the equation

log e = r121 + wrazs. (6)

Clearly, (5) and (6) are linearly independent, and so the conditional distri-
bution of e—conditioning on b and everything in the adversary’s view other
than e—is uniform. In other words, € is a perfect one-time pad. It follows
that b is independent of the adversary’s view.

Claim 2. The decryption oracle will reject all invalid ciphertexts, except with
negligible probability.

12



As in the proof of Lemma 1, we study the distribution of P =
(z1,22,Y1,Y2) € Z;, conditioned on the adversary’s view. From the adver-
sary’s view, this is a random point on the line £ formed by intersecting the
hyperplanes (1), (2), and

logv = rizy + wrazs + ariy; + cwrays. (7)

Equation (7) comes from the output of the encryption oracle.

Now assume that the adversary submits an invalid ciphertext
(uf,uh, e, v') # (u1,us,e,v), where logu} = r] and loguy = wrjy, with
ry #rh. Let o = H(uj,u),€’).

There are three cases we consider.

Case 1. (u},u),e') = (u1,uz,e). In this case, the hash values are the same,
but v’ # v implies that the decryption oracle will certainly reject.

Case 2. (uy,uy, €') # (u1,uq, €) and o' # a.

The decryption oracle will reject unless the point P lies on the hyperplane
‘H defined by (4). However, the equations (1), (2), (7), and (4) are linearly
independent. This can be verified by observing that

1 w 0 0
O 0 1 w

T Wre Aarp awrs

det = w?(ry — r1)(rh —r))(a — ) £ 0.

! ! 1.1 ! !
T Wry Ty wWr,

Thus, H intersects the line £ at a point, from which it follows (as in the
proof of Lemma 1) that the decryption oracle rejects, except with negligible
probability.

Case 8. (uf,uh,e') # (u1,uz,e) and o/ = a. We argue that if this happens
with nonnegligible probability, then in fact, the family of hash functions is not
universal one-way—a contradiction. Note that if we made the stronger as-
sumption of collision resistance, there would be essentially nothing to prove,
but with the weaker universal one-way assumption, an argument is needed.
We use the adversary to break the universal one-way hash function as fol-
lows. We modify the encryption oracle in the simulator, so that it outputs
(u1,uz,e,v) as before, except that now, e € G is simply chosen completely
at random. Up until such time that a collision occurs, the adversary’s view
in this modified simulation is statistically indistinguishable from the view

13



in the original simulation, and so the adversary will also find a collision
with nonnegligible probability in the modified simulation. But the argument
(u1, uz, €) to H is independent of H, and in particular, we can choose it before
choosing H.

5 Implementation Details and Variations

In this section, we briefly discuss some implementation details and possible
variations of the basic encryption scheme.

5.1 A simple implementation

We choose a large prime p such that p — 1 = 2q, where ¢ is also prime.
The group G is the subgroup of order g in Z;. We restrict a message to be
an element of the set {1,...,q}, and “encode” it by squaring it modulo p,
giving us an element in G. We can recover a message from its encoding by
computing the unique square root of its encoding modulo p that is in the set
{1,...,q}.

For the hash function, one could use a function like SHA-1, or possibly
some keyed variant, and make the appropriate collision-resistance assump-
tion. However, it is only marginally more expensive to do the following,
which is based only on the hardness of discrete logarithms in G. Say we
want to hash a bit string to an integer mod ¢. Write the bit string as a
sequence (ay,...,ax), with each a; € {0,...,¢g— 1}. To define the hash func-
tion, choose hi,...,h; in G at random. The hash of (ay,...,ax) is then the
least non-negative residue of +£A7' ---hi* € Z3, where the sign is chosen so
that this value is in {1,...,q}.

This hash function is collision resistant, provided computing discrete log-
arithms in G i1s hard. To see this, note that from a collision, we obtain a
nonzero sequence (ay,...,a) mod g such that

ho b2 e {1,-1}N G = {1}.

Using a standard argument, it is easy to see that finding such a relation is
equivalent to computing discrete logarithms.

Note that the group elements g¢1,92 and hy,...,hg can be system-wide
parameters, used by all users of the system.

14



5.2 A hybrid implementation

It would be more practical to work in a smaller subgroup, and it would be
nice to have a more flexible and efficient way to encode messages.

To do this, assume we have a symmetric-key cipher C' with a key length
of [ bits. Now choose a large prime p such that p — 1 = gm, where ¢ is a
31-bit prime. The group G is the subgroup of order g in Z;. A message in this
scheme is just an arbitrary bit string. To encrypt a message m, we modify
our encryption algorithm, computing e = Cx(m), where the encryption key
K is computed by hashing A" to an [-bit string with a public 2-universal hash
function.

For the hash function H used in the encryption scheme, something like
SHA-1, possibly keyed, would be appropriate.

The security of this variant is easily proved using the techniques of this
paper, along with the left-over hash lemma [15], assuming the cipher C is
semantically secure.

5.3 A hash-free variant

We can actually eliminate the hash function H from the scheme, so that
the security can be based strictly on the Diffie-Hellman decision problem for
an arbitrary group G. Suppose the strings we need to hash in the original
scheme are of the form (ay,...,ax), where 0 < a; < p. In the modified
scheme, we replace the group element d in the public key by di, ..., dg. For
1 <1<k, we have d; = gi* g5, where y;; and y;» are random elements of
Z, included in the secret key. When encrypting, we compute

k
__r a;r
v=c [,
=1

and when decrypting, we verify that

k k
z1 +Ei_1 ;Y1 m24—2:%._1 aiYi2
v = ul - ’LI,2 - .

Using the same proof techniques as for the basic scheme, it is straightfor-
ward to prove that this modified version is secure against adaptive chosen
ciphertext attack, assuming the Diffie-Hellman decision problem in G is hard.

15



5.4 A “lite” version secure against lunch-time attacks

To achieve security against lunch-time attacks only, one can simplify the
basic scheme significantly, essentially by eliminating d, y;, y2, and the hash
function H. When encrypting, we compute v = ¢", and when decrypting, we

verify that v = w7 u3?.

Acknowledgments

We would like to thank Moni Naor for his very useful comments on an earlier
draft of this paper, and in particular, for pointing out that a universal one-
way hash function is sufficient to prove the security of our basic scheme, and
for suggesting the hash-free variant in §5.3.

References

[1] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of
digital signatures. In Advances in Cryptology—FEurocrypt ’98, 1998.

[2] M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the
design and analysis of authentication and key exchange protocols. In

30th Annual ACM Symposium on Theory of Computing, 1998.

[3] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm
for designing efficient protocols. In First ACM Conference on Computer
and Communications Security, pages 62-73, 1993.

[4] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Ad-
vances in Cryptology—Crypto ’94, pages 92-111, 1994.

[5] M. Bellare and P. Rogaway. Collision-resistant hashing: towards making
UOWHFs practical. In Advances in Cryptology-Crypto ’97, 1997.

[6] D. Boneh and R. Venkatesan. Hardness of computing the most sig-
nificant bits of secret keys in Diffie-Hellman and related schemes. In
Advances in Cryptology—Crypto ’96, pages 129-142, 1996.

16



[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

R. Canetti, O. Goldreich, and S. Halevi. The random oracle model,
revisted. In 30th Annual ACM Symposium on Theory of Computing,
1998. To appear.

I. Damgard. Towards practical public key cryptosystems secure against
chosen ciphertext attacks. In Advances in Cryptology-Crypto 91, pages
445-456, 1991.

D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In
23rd Annual ACM Symposium on Theory of Computing, pages 542-552,
1991.

D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography, 1998.
Manuscript (updated, full length version of STOC paper).

C. Dwork and M. Naor. Method for message authentication from non-

malleable cryptosystems, 1996. U. S. Patent No. 05539826.

T. El Gamal. A public key cryptosystem and signature scheme based
on discrete logarithms. IEEE Trans. Inform. Theory, 31:469-472, 1985.

Y. Frankel and M. Yung. Cryptanalysis of immunized LL public key
systems. In Advances in Cryptology—Crypto '95, pages 287-296, 1995.

S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Com-
puter and System Sciences, 28:270-299, 1984.

R. Impagliazzo, L. Levin, and M. Luby. Pseudo-random number gener-
ation from any one-way function. In 21st Annual ACM Symposium on
Theory of Computing, pages 12-24, 1989.

C. H. Lim and P. J. Lee. Another method for attaining security against
adaptively chosen ciphertext attacks. In Advances in Cryptology—Crypto
’93, pages 420-434, 1993.

M. Naor and O. Reingold. Number-theoretic constructions of efficient
pseudo-random functions. In 38th Annual Symposium on Foundations
of Computer Science, 1997.

17



18]

[19]

[20]

[21]

[22]

23]

[24]

M. Naor and M. Yung. Universal one-way hash functions and their
cryptographic applications. In 21st Annual ACM Symposium on Theory
of Computing, 1989.

M. Naor and M. Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In 22nd Annual ACM Symposium on Theory
of Computing, pages 427-437, 1990.

C. Rackoft and D. Simon. Noninteractive zero-knowledge proof of knowl-
edge and chosen ciphertext attack. In Advances in Cryptology—Crypto
'91, pages 433-444, 1991.

V. Shoup. Lower bounds for discrete logarithms and related problems.
In Advances in Cryptology—FEurocrypt ’97, 1997.

V. Shoup and R. Gennaro. Securing threshold cryptosystems against
chosen ciphertext attack. In Advances in Cryptology—Furocrypt 98,
1998.

M. Stadler. Publicly verifiable secrete sharing. In Advances in
Cryptology—FEurocrypt ’96, pages 190-199, 1996.

Y. Zheng and J. Seberry. Practical approaches to attaining secu-
rity against adaptively chosen ciphertext attacks. In Advances in
Cryptology—Crypto ’92, pages 292-304, 1992.

18



