Private Information Storage
(Extended Abstract)

Rafail Ostrovsky* Victor Shoup!
Bellcore Bellcore, IBM

May 1997

Abstract

This paper deals with the problem of efficiently and privately stor-
ing and retrieving information that is distributively maintained in sev-
eral databases that do not communicate with one another. The goal is
to minimize the communication complexity while maintaining privacy
(i.e., so that individual databases do not get any information about
the data or the nature of the users’ queries). The question of private
retrieval from multiple databases was introduced in a very nice paper
of Chor, Goldreich, Kushilevitz and Sudan (FOCS '95), but the ques-
tion whether it is possible to perform both reading and writing in a
communication-efficient manner remained open. In this paper, we an-
swer this question in the affirmative, and show that efficient read/write
schemes are indeed possible. In fact, we show a general information-
theoretic reduction from reading and writing to any read-only scheme
that preserves the communication complexity of the read scheme to
within a poly-logarithmic factor (in the size of the database), thus es-
tablishing that read/write schemes could be implemented as efficiently
(up to poly-log factors) as read-only schemes. Additionally, we con-
sider the question of both reading and writing in the computational
security setting.

*Bell Communications Research, MCC-1C365B, Morristown, NJ 07960-6438, USA.
Email: rafail@bellcore.com

"Work done while at Bellcore. Current addr: IBM Research-Zurich, Saumerstr. 4,
8803 Riischlikon, Switzerland. Email: sho@zurich.ibm.com

1 Introduction

The setting

In this paper, we address the issue of privacy for the database maintenance
problem. However, before we address this issue, let us first state what
the setting is without the privacy considerations. Suppose a collection of
“users” wish to maintain a “database”, where the “database” (in its simplest
form) is just an n-bit array. The users wish to be able to execute both
“read(address)” and “write(address,value)” operations. In this setting, we
measure the amount of communication which must be sent between some
“user” and the “database”. If we do not care about privacy, then both read
and write operations clearly take O(logn) bits of communication only.

Now, let us address privacy. Suppose the “users” do not trust the
database administrator and wish to conceal from the “database” all their
data and the nature of their queries. That is, they wish to conceal from the
database administrator not only the contents of the data, but also the access
pattern, i.e., which particular addresses of the database are being read from
or written to. This could be done in two different settings, as explained
below:

SINGLE DATABASE [G-87, OsT-90, GO-96]: In a single database
scheme there is only one database from which users wish to hide infor-
mation, while still using it to store data. In this setting, all participating
users agree on an encryption/decryption scheme which they use to encrypt
every value stored in the database. In addition, however, they must also
hide from the database which particular addresses are being accessed. One
simple way out of this is to read and re-encrypt the entire database for ev-
ery read/write operation—then clearly the database has no clue as to which
particular location is really read and/or modified. What are the drawbacks
of this scheme? We list some of them: (1) the communication complexity is
huge (proportional to the size of the database times the security parameter);
(2) users must maintain small amount of secret information (private key);
and (3) the security achieved is only computational. The first drawback
(i.e., communication complexity) was resolved in [Ost-90, GO-96], where
they show how to construct a communication-efficient scheme, where com-
munication for each read or write operation is poly-logarithmic in the size of
the database times the security parameter of the underlying cryptographic
scheme. Their scheme, however, still suffers from the second and third
drawbacks. A suggestion made in the paper of Chor, Goldreich, Kushilevitz

and Sudan [CGKS-95] is to use multiple databases that do not talk to one
another:

MULTIPLE DATABASES [CGKS-95]: The second way to proceed is to
distribute the database, so that the composite database is implemented as
a number of non-communicating, constituent databases. The advantage of
this setting is that the users need not keep any state information, and the
security achieved is information-theoretic. This is the approach we follow in
this paper. The case of reading-only schemes was considered in [CGKS-95,
Amb-96, CG-97]; here we address the question of both writing and reading.

A TRIVIAL EXAMPLE: Before we proceed let us present a simple (but
communication-inefficient) example of a private read /write scheme on n bits,
to demonstrate that information-theoretic security is indeed easy to attain,
as long as we do not care about communication complexity. The idea is to
use the most rudimentary form of “secret sharing,” representing each bit
of the database as two random bits, or “shares,” and placing each share
in a separate constituent database. We then use the idea of scanning the
entire database, similar to the single-database approach of hiding the access
pattern. Here are the details. The two constituent databases physically
maintain bit vectors D; and Dj, respectively, both of length n. At any
point in time, the composite database logically maintains the bit vector
D = D; ¢ Dy, i.e., the bit-wise exclusive-or of D; and Dj;. To read a single
bit, the user simply asks for copies of D; and D,. To write a single bit,
the user does the following: (1) asks for copies of Dy and Dpy; (2) computes
D; (3) changes the desired bit of D; (4) picks a random bit vector D; and
computes Dy, (subject to D = D; & Dj); (5) gives the new D; and Do
back to the respective databases. The communication complexity of this
scheme is ©@(n). One of the objectives of this paper is to present multiple-
database (information-theoretically) private read/write schemes with much
lower communication complexity. Before we state our main results, let us
make the problem more precise.

Model and Problem statement

We suppose that the composite database “logically” maintains a bit vector
of length n. The composite database is implemented as some number & of
non-communicating constituent databases, each of which is responsible for
“physically” maintaining its own bit vector. These latter bit vectors need

bear no particular relation with each other or with that of the composite
database.

A user may perform a read operation, read(z), for a given address 0 <
1 < m, obtaining the bit stored at location 7, or a write operation write(z, b),
for a given address 0 < ¢ < n and bit b € {0, 1}, setting location ¢ to b.
When a user performs a read or write operation on the composite database,
she engages in a protocol with the k constituent databases. After engaging
in one or more such protocols, each constituent database has its own view,
consisting of the messages it has received from the user(s), along with any
random bits it may have generated while executing the protocol.

Formally, we model the above setting in a way similar to the multi-prover
interactive proof setting of [BGKW-88]. That is, we model k constituent
databases and the user as k£ + 1 interactive Turing machines DBy, ..., DBy
and U of [GMR-85] defined as follows:

e Let DBy, DB,,..., DBy are interactive Turing machines. Each DB;
has distinct read-only input tape, a work-tape, and two communication
tapes: a write-only communication tape for sending messages to U and
read-only communication tape for received messages from U.

e U is an interactive probabilistic polynomial time Turing machine with
input tape, a work tape, a read-once random tape, a write-only output
tape, and k read-only and k write-only communication tapes, each
read /write communication tape shared with each each D;.

The protocol for k databases consists of the the probabilistic polynomial
time initialization algorithm Init, DBy,..., DBy and U. Init takes as an
input an n-bit vector (the initial value of the database) and outputs k-tuple
of strings to be used as inputs for each corresponding D B;. The syntax of the
input for U is as follows: it consists of sequence of “read(z)” or “write(v, 7)”
instructions, where 1 < ¢ < n and v € {0,1}. We insist that U operates as
follows:

e it reads the next single instruction from its input tape;

e it then engages in the interactive protocol with all the databases of
polynomial (in n) number of rounds, where a round consists of 2k
messages, consisting of k& “questions” to all the databases and their &
“responses”;

e U must then output a single bit on its output tape, (which in case of
a write instruction could be arbitrary, but in case of read instruction
corresponds to the bit “retrieved” from the database);

e U must then completely erase its work tape, and only then read the
next instruction on its input tape.

Correctness means that for any n-bit string which corresponds to the ini-
tial value of the database, and for any coin-flips of the initialization process,
and for any coin-flips of U, the output produced by the user is consistent
with the usual read/write sequence.

We define the view of the constituent database DB, to be the value
of its input tape and the sequence of messages written on its read/write
communication tapes.

Privacy means that for every length n and any initial value of the Init al-
gorithm (of length n) and for any sequence of instructions (i.e., read or write
operations of U) the probability distribution (over the coin-tosses of the ini-
tialization algorithm and coin-tosses of U) of each constituent database’s
view is independent of the initialization vector (of the Init algorithm,) of
addresses in the read and write instructions, and of the value of the data in
the write operations.

We will call such a scheme a k-database private read/write scheme (onn
bits). For a given scheme, its communication complezity is the total number
of bits transmitted during one execution of either the read or write protocols.
Throughout this paper, communication complexity will be expressed as a
function R(k,n) of k and n, and measured in terms of worst-case (as opposed
to amortized or average-case) behavior.

VARIANTS OF THE PROBLEM: There are several variants of the above
setting:

e Number of Constituent Databases. In [CGKS-95, Amb-96,
CG-97] as well as in the current paper, we examine the dependence
between the number of constituent databases k& and the total commu-
nication complexity, between the user and all the databases.

e Identical vs. Distinct Databases. In the original model of
[CGKS-95], there was no distinction made between a constituent
database and a global database. That is, since the objective there
was to hide the reading pattern only, each constituent database sim-
ply held an identical copy of the actual database. In case of writing,

where we wish to hide the data as well, we allow constituent databases
to hold “shares” [S-79] of the actual database. Thus, in our setting
we allow (and utilize the fact) that constituent databases need not be
identical.

Rounds. In the setting of [CGKS-95, Amb-96, CG-97], a single round
of interaction between the user and the constituent databases (where
the user sends a single message to each constituent database and gets
an answer back) is used. In our solutions, we use multiple rounds.

Privacy. The definition of privacy could be relaxed to the compu-
tational setting. In this setting, we model constituent databases as
probabilistic polynomial time Turing machines, and rely on complex-
ity assumptions. Hence, we only require that the views of the con-
stituent databases will be computationally indistinguishable instead of
identical.

Isolated vs. Active Security [G-96]: In the model described above,
constituent databases are not allowed to communicate with one an-
other and are only allowed to communicate with the user. We call
such a model an “isolated” model. A stronger type of an adversary,
suggested by Oded Goldreich [G-96], is the one where databases are
also allowed to “hire users” and query all other databases, pretending
to be legitimate users. Indeed, in such an “active” model, any con-
stituent database can find out all the data of the actual database. One
can still insist, however, that if afterwards, a “legitimate” user reads
a bit, then it is still remains hidden as to which address she read,
and if the constituent databases do not again re-read the database
(by pretending to be users again), then the subsequent write opera-
tion should also remain hidden (i.e., both the address and the value
of the updated data should remain hidden). We remark that the pri-
vate reading schemes of [CGKS-95, Amb-96] (where all constituent
databases are identical) are resistant against this stronger type of an
adversary. However, if constituent databases keep different “shares”
of the actual database, and for the case of writing, more care must be
exercised against this stronger adversary.

Computational Efficiency. In addition to communication complex-
ity, we also consider computational complexity needed to execute the
protocol by both the user and the constituent databases.

Our Results

We consider both information-theoretic and computational setting.

INFORMATION-THEORETIC SETTING.

As mentioned above, our work builds on that of [CGKS-95]. They consider
a restricted version of our problem where users are only allowed to perform
read operations (further efficiency improvement was suggested by [Amb-96].)
All of their schemes have the additional property that each constituent
database simply maintains identical copies of the composite database. We
will call such a scheme a private read scheme.

We give a general reduction, showing how to build private read/write
schemes from private read schemes, with only a modest increase in both the
number of databases required and in communication complexity.

Theorem 1 For any k > 2, if there is a k-database private read scheme on n
bits with communication complexity R(k,n), then there is a (k + 1)-database
private read/write scheme on n bits with communication complexity

O(R(k,nk) -k - (logn)®).
Each constituent database maintains O(nk) bits.

Theorem 2 For any k& > 2, if there is a k-database private read scheme on
n bits with communication complexity R(k,n), then there is a 2k-database
private read/write scheme on n bits with communication complexity

O(R(k,n) - (logn)?).
Each constituent database maintains O(n) bits.

REMARKS:

e For both theorems above, the communication complexity bounds
are independent of the order of reading and writing. In fact, it is
strait-forward to hide even whether we perform reading or writing,
by always performing both read and write and just re-writing the
same value in case of an actual read.

e Notice that the difference when going from (k + 1) databases to
(2k) databases in our two results is a k£ multiplicative factor in the
communication complexity and the size of each constituent database.
For a number of databases between k+1 and 2k simple tradeoffs can
be achieved.

e For reading schemes where privately reading a contiguous block of
[bits has smaller communication complexity them reading ! single
bits, our reductions are more efficient, and the poly-log exponent
can be further reduced. Moreover, the savings on reading schemes
for blocks could be used to achieve savings in our schemes when
reading/writing blocks of bits.

e Using secret sharing [S-79], our results could be adopted to the case
where coalitions of databases are allowed to communicate. Moreover,
we can adopt our solution to the malicious case, in the sense of
certifying (with overwhelming probability) if data has been tampered
with, as long as there exists at least one non-corrupted database.

e Our reductions “preserve” active security, in the sense that if the
underlying read-only scheme is secure against such an active attack
(which does hold in the case of [CGKS-95, Amb-96]) then our result-
ing read/write scheme is also secure in this stronger active security
model.

e In case of writing, one can consider the number of bits not to
be fixed, but grow as a function of time. In this case, we get
poly-log overhead results as well. For example, we get an analog
of information-theoretically secure Oblivious RAM simulation (see
[G-87, Ost-90, GO-96]), where ¢ steps of the original program can be
simulated in an oblivious manner using O(R(k,t) - (logt)®) overhead
per step using k databases. Moreover, all the solutions for the Obliv-
ious RAM model of [GO-96] are amortized, where as all our solutions
are not.

Combining our general reductions with the private read schemes of
[CGKS-95] and of [Amb-96], we obtain the following corollary:

Corollary 3 To store n bits of data, we have

e a three-database private read/write scheme with active security and
communication complexity O(n!/3 - (logn)3);

e for all constants £ > 2, a (k + 1)-database private read/write
scheme with active security and communication complexity O(nl/(2k_1)-
(logn)%);

e an O(log n)-database private read/write scheme with active security and
communication complexity O((logn)® loglogn).

Notice that we show a general reduction from reading and writing to
reading, with only poly-logarithmic overhead. Hence, due to the general na-
ture of our reduction, any improvement in the efficiency of reading schemes
would yield a more efficient reading and writing scheme as well. We remark
that prior to the current paper no trivial (i.e., sub-linear) bounds for private
information storage were known.

COMPUTATIONAL SETTING.

Chor and Gilboa [CG-97] show how in the computational setting, one can
keep two identical databases and in one-round perform private reading with
O(n®) communication complexity.

We consider a weaker model, where we allow constituent databases
to keep different data and allow a multi-round scheme. In this setting,
Gene Itkis (private communication by Goldreich [G-96]) has shown a four-
database scheme which achieves poly-logarithmic amortized overhead for
both reading and writing. We extend his result, and show how to achieve
poly-logarithmic overhead without amortization and with just two con-
stituent databases:

Theorem 4 Suppose one-way trapdoor permutations exist, and let g be a
security parameter. Then to store n bits of data, we have a two-database
computationally-private read/write scheme with active security and communi-
cation complexity O(g%() . (log n)0(1)).

In fact, in order to show the above result, we exhibit how to make all the
results in the Oblivious RAM simulation paper of [GO-96] non-amortized,
which we believe is of interest in its own right.

Comparison with Previous Work

The general approach of distributing information to maintain privacy has
been used in many situations, including the previous work on reading from

a distributed database [CGKS-95, Amb-96, CG-97], the U. S. Government’s
Clipper Chip proposal [U.S.-93], Micali’s fair-cryptosystems [M-92], secret-
sharing schemes [S-79], and instance-hiding schemes [RAD-78, AFK-89,
BF-90, BFKL-90].

Closely related to the private storage problem is the oblivious RAM
stmulation problem, studied in [G-87, Ost-90, GO-96], and indeed the tech-
niques we employ here build on those used to solve the oblivious RAM
simulation problem. So, let us mention that setting here. The problem
is to simulate a random-access machine (RAM) with another so that the
memory contents and access patterns of the latter machine are indepen-
dent of the input. In the oblivious RAM simulation problem, the central
processing unit (CPU) plays the role of the user, and the main memory
plays the role of the database. It is perhaps worth pointing out the techni-
cal differences between these two problems: (1) unlike the main memory of
the RAM, the databases are distributed; (2) for our general reduction, we
require information-theoretic privacy, whereas in the oblivious RAM simu-
lation problem, complexity-theoretic assumptions are used and only com-
putational privacy is achieved (either that, or access to a random oracle is
required); (3) unlike the CPU, the user does not maintain any state; (4)
whereas the techniques of [Ost-90, GO-96] yield bounds on the amortized
communication complexity, our techniques yield worst-case bounds.

The problem of performing private database queries with multiple
databases that do not interact with one other was studied in two other
settings: in instance hiding schemes of [BF-90, BFKL-90] and on private
database queries of [CGKS-95, Amb-96, CG-97]. In both of these settings,
the contents of the database is static, and each constituent database main-
tains exact copies of the database. Our work shows how to support dy-
namic databases, while maintaining privacy. One technical difference is
that the constituent databases in our schemes must maintain somewhat
larger amounts of non-identical data.

A TECHNICAL REMARK: why can’t we do it much easier?

At a first glance, the following (incorrect) argument seem to give a much
stronger result in a trivial manner. Take the Oblivious RAM solution of
[Ost-90, GO-96] and implement it using two databases: one to represent
the RAM memory and another one to represent the CPU memory. This
seems to trivially give us a solution with poly-logarithmic amortized over-
head, using just two databases. However, this does not work. The reason

10

is that [Ost-90, GO-96] use in an essential way pseudo-random functions
of [GGM-86] in order to implement a random oracle in their construc-
tion. Thus, the guarantees are only computational by the nature of the
[Ost-90, GO-96] construction. Moreover, even if we are willing to opt for
the computational security only and are willing to settle for an amortized
solution, this does not work if we require Active Security (see “variants of
the problem” section of the introduction). The main technical contribu-
tion of our information theoretic reduction is to show that if we are given
an information-theoretically secure reading scheme, then we can implement
information-theoretically secure reading and writing in an efficient manner
without any need for pseudo-random functions or random oracles. Moreover,
in the computational case, we show how Active Security can be achieved,
while still maintaining only two databases.

Overview of the paper

In §2 we discuss some elementary solutions as a means of illustrating several
techniques used in our general reduction. These elementary solutions are
asymptotically inferior to our general reduction (but are useful to explain
our general reduction). Then in §3 we prove Theorem 2, and show how
to modify this proof to obtain Theorem 1. Finally, in §4 we discuss the
computational setting and show how to obtain Theorem 4.

2 Elementary methods

Elementary linear solution—another way to look at it

Recall that the method presented in the introduction uses two databases and
represents each bit as the exclusive-or of two bits in two different databases.
This allows users to hide from each database the value of each bit that is
being stored. Thus, one can think of this operation as “encrypting” data so
that each database sees the access pattern (just scanning the database from
left to right) but does not see the actual values of the bits, and hence does
not know which bit was re-written. This technique allows us to implement
semi-private writes, where the access pattern is visible to each constituent
database but the value being written as not visible.

11

Separating writing from reading

In this subsection we show how the above elementary scheme for writing
could be augmented to have efficient reading with four databases. Recall
that [CGKS-95] show that with two databases which contain identical n bits
of data, it is possible to privately read a bit with O(n1/3) communication
complexity. Notice, however, that in the two-database scheme presented
in the previous subsection, the two databases contain different data, since
every bit is represented as the exclusive-or of two corresponding bits from
two databases. The idea is very simple: using four databases, maintain
two identical copies of each database-pair of the previous subsection. Now,
writing still takes O(n) steps, since we still must re-write the entire database
(and in fact maintain two copies), but reading can be done in O(n!/3) steps
just by reading the appropriate bit from both identical pairs of databases
using twice the reading scheme of [CGKS-95] and then just computing the
exclusive-or of these two bits.

An Elementary Sub-linear Scheme

In this subsection, we present an elementary 8-database private read/write
scheme with communication complexity O(n'/?) for writing and O(n!/3)
for reading. The idea will be an extension of the solution of the previous
section, but with more efficient writing. Here is the overall strategy. We
assume we have 4 databases that already support private reading but non-
private writing. Using these 4 databases, we show how to implement private
writing as well. Then we replace each of the 4 constituent databases with 2
identical copies of ordinary databases, and apply a result of

Assume we have 4 databases, Dy (s,t € {0,1}), each of which supports
private reading and non-private writing. As in the simple two-database
scheme discussed in the introduction, we will split each bit of the database
in shares, but this time four shares. That is, at any point in time, each bit in
the composite database is represented as the exclusive-or of the four corre-
sponding bits in the constituent databases. We now show how to privately
toggle a particular bit in the database. Let d = |'n1/2'|. For any address
1€ {0,...,n— 1}, we can write

i=jd+k (0<j<d, 0<Fk<d).

To toggle bit 4, the user generates two random bit-vectors v, w € {0,1}%. To

12

each component database D,;, the user sends vectors v’, w’ € {0,1}¢ where

1) u if I # 7,
UTY ums ifl=7,
for 0 <[< d, and
) wm, if m #k,
Wm = Wy, Bt if m=k,

for 0 < m < d. Upon receiving vectors v’, w’, the database D,; toggles all
bits whose address is of the form Id + m, where v; = 1 and w], = 1.

Consider the effect of this operation on an arbitrary bit in the database
whose address is Id 4+ m:

Case 1. If | = j and m = k, then exactly 1 term in (1) are toggled, effectively
toggling the sum.

Case 2. If | # j and m # k, then either none or all of the terms in (1) are
toggled, leaving the sum unchanged.

Case 8. If | # j or m # k, but not both, then either 0 or 2 of the terms in
(1) are toggled, again leaving the sum unchanged.

From the above discussion, it is clear that this operation has the effect of
toggling bit 7 in the database. Moreover, each constituent database receives
two random bit-vectors that are independent of 2. Thus, a write operation
(a read followed by a toggle) is private. The communication complexity
is O(n!/?). To complete the discussion, we observe that each of the four
constituent databases, which support private reading, can be implemented
using a pair of identical, ordinary databases. Using a result of [CGKS-95],
a private query can then be implemented with communication complexity
O(n1/3). Putting all of this together, we get an 8-database scheme where
private read operations have a communication complexity of O(n1/3), and
private write operations have a communication complexity of O(nl/Z).

Remark: Michael Fischer independently discovered this 8-database method
also (communicated by Oded Goldreich [G-96].)

Remark: The above method could be naturally extended to higher dimen-
sions, similar to [CGKS-95] approach for constant k. However, our general
reductions in the next two sections yield asymptotically better results, and
thus we do not present this simple extension.

13

3 Proof of Theorem 2

In this section, we present the proof of theorem 2. That is, we assume
that we have a k-database private read scheme on n-bits with communica-
tion complexity R(k,n) and we show how to construct a 2k-database pri-
vate read /write scheme with communication complexity O(R(k,n)-(logn)3).
Each constituent database will hold O(n) bits.

The reduction will proceed in two steps. First, we will assume that we
have a scheme that supports private reading and semi-private writing —
that is, where reading can be done in a completely private way, but writing
can be done while hiding (from the databases) the value that is begin written
but not the address in the memory where it is written to. Second, we will
show how to implement the private read/semi-private write scheme using
just a private read scheme.

Part 1: using a private read/semi-private write scheme

We make use of a variant of the memory-hierarchy idea used in [Ost-90,
GO-96] for the oblivious RAM simulation problem. However, there are
several obstacles that we must overcome:

e in the oblivious RAM simulation solution, the user (i.e. CPU) ac-
cesses a random oracle (or pseudo-random functions), whereas in our
case the user is allowed to flip coins, but she does not has access to
a random oracle;

e in the oblivious RAM simulation solution, the user has local stor-
age, whereas in our case the user is completely memoryless from one
read /write operation to the next;

e the solution presented in [Ost-90, GO-96] is amortized while here we
do not allow any amortization.

Offsetting these difficulties is our assumption that we already have a
private read/semi-private write scheme at our disposal: all we have to do is
hide the access pattern of the write operations.

The data structure

The data structure is a kind of “memory hierarchy.” There are m + 2
” where m = |log,(n/logn)|; the levels are numbered 0,1, ..., m+1.
Intuitively, data stored at lower-numbered levels is more recent than at

“levels,

14

higher-numbered levels; as data ages, it is gradually moved from lower-
numbered levels to higher-numbered levels.

We will need a counter ctr that keeps track of the number of write
operations that have been performed. This counter is maintained modulo
2m+1 and is initially 0.

For 0 <[< m, level [is structured as follows. There are three vectors
of length 2!, each component of which contains an address/data pair (3,5),
where 0 < i < n, and b € {0, 1}.

At any instant, one of the vectors is assigned the role of a “buffer,” one
the role of “primary data vector,” and the other the role of “secondary data
vector.” The roles of the vectors will change over time; we need to maintain
a constant amount of state information at this level to keep track of the
current assignment.

For each of the three vectors we maintain a length variable, which ranges
between 0 and 2'. These variables denote the current effective length of the
corresponding vector. Initially, these length variables are 0.

The components of the three vectors are always sorted in order of in-
creasing addresses.

For each of the two data vectors, we will need two pointer variables,
which range between 0 and 2!. These are initially zero. (These variables are
needed to move data from one level to the next, as will be explained below.)

The last level, level m + 1, is simply a bit vector of length n. This is
initialized to zero (or to any desired default initial value).

Performing a private read

To read the contents of address ¢, we do the following. For [= 0,...,m, we
perform a binary search first on the primary data vector at level [, and then
on the secondary data vector in at level [. The first place that we find (2, b),
we take b as the current value stored at location 2. If we do not find address
1 at levels 0,..., m, we then we simply obtain the current value by reading
the bit vector at level m + 1.

Since we are assuming the underlying database supports private reading,
we only need to ensure that the number of read operations we perform is
always the same. This is easily accomplished by performing an equal number
of “dummy” reads for all the levels, even if we already have the value.

15

Performing a private write

Suppose we want to write b into location 2.

— First, we insert (7,b) into the buffer at level 0 (as will be seen, this
buffer is always empty just before the insertion).

— Now, for I =0,1,...,m — 1, we do the following:

o If [ctr/2!| is odd, we perform two steps of the merge-sort
algorithm on the data vectors. With each merge-sort step,
we do the following. Using the pointer variables as indices
into the two data vectors, we compare the two correspond-
ing addresses. If the addresses are different, we copy the
corresponding component (¢,b) of the smaller address to the
next level, and increment the corresponding pointer variable.
If the addresses are identical, we copy the component (z,b)
from the primary data vector into the next level, and incre-
ment both pointer variables (this gives precedence to the data
in the primary data vector).

e To copy (,b) to level [+ 1, we simply insert (¢,b) into the
buffer vector at level [+ 1 at the next available slot in the
buffer (as will be seen, this buffer will never overflow).

— Level m requires special treatment. If |ctr/2™] is odd, then we
update [n/2™] (which is O(logn)) successive entries in the vector
at level m + 1. This is done using a similar merge-sort technique as
above.

— As the data vectors at each level may not be completely full, we
have to perform an appropriate number of “dummy reads” and also
“dummy writes” to the appropriate locations.

— After performing the above steps, we increment ctr modulo 2™+,

— Now we go back through levels [= 0,1,...,m, and at each level, if
ctr = 0 mod 2!, we do the following:

If ctr /2% is odd,

switch the roles of the buffer and primary data vectors,
and clear the pointer variables;

16

otherwise (i.e. ctr/2! is even),

make the primary and secondary data vectors empty
(by clearing the corresponding length variables) and
then switch the roles of the buffer and secondary data
vectors.

An illustration

Before proceeding with the analysis, we illustrate the data-movement at
a level [, where 0 < [< m. Starting with ctr = 0, we divide sequences
write operations into periods consisting of 2! write operations, and cycles
consisting of two periods. We illustrate the first four periods.

Period 0. During period 0, the buffer gets filled with some data (at most
ot items), call it A. So during period 0, the vectors at level [look like this:

‘buﬂfer: A primary: — secondary: —

At the end of period 0, we swap the buffer and the primary vector point-
ers:

primary: A buffer: — secondary: —

Period 1. During period 1, the buffer gets filled with data, call it B.
Also during this period, we merge and copy to the next level the contents
of the primary and secondary vectors. Right now, the secondary vector is
empty so this just has the effect copying A to the next level. During period
1, the situation looks like this:

primary: A buffer: B secondary: —

At the end of period 1, we clear the primary and secondary vectors, and
then swap the buffer and secondary vector pointers:

‘primary: — secondary: B buffer: —‘

Period 2. During period 2, the buffer is filled with data, call it C:

‘primary: — secondary: B buffer: C"

At the end of period 2, we swap the buffer and primary vector pointers:

17

buffer: — secondary: B primary: C

Period 8. During period 3, the buffer is filled with data, call it D. Also
during this period, B and C are merged and copied to the next level. Notice
that merge-sort is running at “double speed,” so there is enough time to copy
all of B and C during this period. The situation looks like this:

buffer: D secondary: B primary: C

At the end of period 3, we clear the secondary and primary vectors, and
swap the buffer and the secondary vector pointers:

secondary: D buffer: — primary: —

Finally, note that at each cycle of length 2!*! the total “flow of data” into
level [and out of level [is “balanced”. We now proceed with the analysis.

Analysis

We first make some observations about the movement of data from one level
to the next. Consider level [, where 0 < [< m. The actions performed
at this level cycle are cyclical, repeating themselves once every 2!*! write
operations. Let us say that a cycle begins when ctr = 0 mod 211, As above,
we divide each cycle into a first period (when |ctr/2!]| is even) and a second
period (when |ctr/2!] is odd).

We make several claims:

(1) At the beginning of a cycle, the buffer and primary data vectors at
this level are empty.

(2) During one cycle, at most 2/*1 address/data pairs are copied to level
[+ 1; in particular, these address/data pairs are the merged contents
of the two data vectors at the start of the second period of the cycle.

(3) The buffer at this level never overflows.

Claim (1) is certainly true at the beginning of execution, when ctr = 0.
Moreover, at the end of every cycle, we clear the two data vectors and then
switch the roles of the buffer and secondary data vectors, so at this point
the buffer and primary data vectors are again empty. That proves (1).

18

We now prove (2). During the first period of the cycle, the buffer gets
filled with data from the previous level. As we will argue below, the buffer
does not overflow, but for now, assume that any insertion into the buffer
that would cause an overflow is simply discarded. At the end of the first
period of the cycle, the buffer has been filled (perhaps only partially) and
we switch the roles of the buffer and primary data vector. So now the buffer
is empty, and the primary data vector contains the contents of what was the
buffer. During the second period of this cycle, the buffer again gets filled
with data from the previous level. Also during the second period of the
cycle, the entire contents of both data vectors is merged and copied to the
next level. To see that everything is copied, suppose first that [< m. Note
that both data vectors together contain at most 2!*! items, and every write
operation we copy two items; therefore, after the 2! write operations of the
second period of the cycle, all of the items from the two data vectors have
been copied. The case [= m is also straightforward to analyze; we omit the
details. That proves (2).

Claim (3) for level [follows immediately from claim (1) at level [and
claim (2) it level [— 1.

It is also straightforward to see that the value returned by a read from
location 7 is equal to the last value written to location 7. To see this, consider
what happens at the end of a cycle at level [. We make the two data vectors
empty at this point, so we have to show that no data is lost. However, by
claim (2), all of the contents of the two data vectors has been transferred to
the next level. If [= m, then the bit vector has been properly updated, and
there is nothing more to show. If [< m, then the end of the cycle at level [
is either the end of the first or second period of the cycle at level [+ 1. In
the former case, the buffer at level [+ 1 (which now contains the contents
of the old data vectors at level [) becomes the primary data vector at level
[+ 1; thus, the data is available at level [4+ 1, and takes precedence over
the other data at level [4+ 1 (which is in the secondary data vector). In the
latter case, the buffer at level [+ 1 becomes the secondary data vector at
level [+ 1, but the primary data vector at level [+ 1 becomes empty; thus,
the data is available at level [+ 1, and is the only data available at this level.

That these algorithms attain privacy has already been argued. During
a read operation, we only need to ensure that the number of reads on the
underlying database is constant. This we do by performing the appropriate
number of dummy reads. During a write operation, the locations that are
read from and written to on the underlying database depend only on the
value of ctr, provided care is taken to perform dummy writes as necessary; in

19

particular, whenever as we perform merge-sort steps at one level, we should
always write something to successive locations of the buffer at the next level,
even if the data vectors at the current level have already been exhausted.

It is straightforward to see that during a read operation, O((logn)?)
read operations are performed on the underlying database, and during a
write operation, O((logn)?) read and write operations are performed on the
underlying database.

Part 2: implementing a private read/semi-private write
scheme

The approach here is essentially the same used in the two-database scheme
in the introduction. We utilize a k-database private read scheme. Each bit
in the database is split into two random bits, or “shares,” whose exclusive-or
is the value of the bit. The database is partitioned into two components, and
each share is stored in one component. Each component is then distributed
and replicated k times, and the k-database scheme for private reads is then
used for reading bits in one component. This gives rise to a 2k-database
private read/semi-private write scheme whose communication complexity is
bounded by a O((logn)?)) times that of the underlying k-database private
read scheme. The size of each of the 2k databases is O(n).

Finally, it is easy to see that if the underlying read scheme is secure
against active adversary, then so is our reduction: the case of reading consists
of a serious of calls to reading of the underlying scheme, and in the case of
writing, the new values always enter in a fixed manner into the database.

4 Proof of Theorem 1

In this section, we show how to modify the proof of Theorem 2 to obtain
Theorem 1. The only change is in Part 2 of the construction: implementing
a private read/semi-private write scheme. The approach presented in the
previous section requires 2k databases. Here, we show how to do this using
only k + 1 databases. Before we show the general construction, let us the
three database scheme, which achieves communication complexity O(n1/3 .

(1og m)?):

e We represent each bit b in the original database as as a random three-
bit vector {b1, ba, b3} subject to the constraint that b = by @ by & b3.

20

o We distribute these three bits among the three constituent databases
as follows: DBy < {b2,bs}; DBy « {b1,b3}; DB3 < {b1,b2}. We

do so for every bit.

e Notice that the original bit b is still hidden from each constituent
database. On the other hand every bit b, appears in two different
databases, so we can use the [CGKS-95] reading scheme with O(n!/3)
communication complexity.

We now generalize this in a strait-forward manner as follows. Each bit
in the private read/semi-private write database is split into k& + 1 random
bits, or “shares,” whose exclusive-or is the value of the bit. Number the
constituent databases and shares 1 through k& + 1. Then share ¢ is given
to all databases except database 7. Thus, each database contains only &k of
the shares, which keeps the value of the bit private. To read a bit from the
database, one needs to obtain all k£ + 1 shares. To obtain share 7, one uses
a k-database private read scheme on all databases other than database 1.
This gives rise to a (k+ 1)-database private read/semi-private scheme whose
communication complexity is O(k) times that of the underlying k-database
scheme for private queries. Notice also that the sizes of each of the £ + 1
databases is O(nk).

The above construction, combined with the construction in the previous
section, proves Theorem 1.

5 Computational case

Our starting point is the Oblivious RAM simulation of [Ost-90, GO-96],
which consists of a protected CPU and an encrypted memory. We also
remark that their scheme is tamper-proof (for definitions, see [GO-96].) Un-
fortunately, their scheme is amortized.

Our first step is to get rid of the amortization in the manner similar to our
information-theoretic reduction of section §3 as follows. First it is easy to
note that except for the smallest level, the oblivious re-hash operations of
[GO-96] always move data from the previous (i.e., smaller) level, which is
available beforehand, and is only changed during such move. Thus, the ran-
dom function can be picked in advance, and the process of oblivious re-hash
can be done slowly at each level, building in advance the next level, and then
just doing “copy” as follows: we keep two versions of each level, one com-
pletely constructed “current version” and one “under construction” version,

21

which is being slowly built from “current version” and the previous level
“current version”, analogous to the information-theoretic solution presented
in section §3. When the construction of the level is complete, we just switch
pointers which is the “current version” and which is the “under construc-
tion” version, thus doing the copy in the non-amortized sense, by spreading
the cost uniformly. Thus, we are able to realize the Oblivious RAM and the
software protection results of [GO-96] in a non-amortized sense.

Now, if we keep one database to store the contents of the CPU (which a
user reads before she begins) and another database to represent the memory,
then combined with the above, this gives us a two-database computationally-
secure scheme with poly-logarithmic cost, but only with Isolated security.
That is, (as pointed out by Goldreich [G-96]) in case if the database that
represents the memory is malicious and is allowed to hire a “user” and
accesses the value of the “CPU” database component (i.e., if we consider
active security — see introduction), then the database that represents the
memory learns the value of the key of the pseudo-random function stored
in the CPU, and now the access pattern to the memory component is no
longer oblivious.

In the computational setting, the way around this problem (of active
security) was suggested by Gene Itkis (communicated by [G-96]): Itkis sug-
gested to use three databases to represent the CPU, and the fourth database
to represent the memory, where the key new observation (due to Itkis) is
that the three DB’s that hold “shares” of the state of the CPU can engage in
a multi-party secure function evaluation (communicating through the user)
in order to evaluate the pseudo-random function (stored in a distributed
fashion among the three databases that represent the CPU) and that the
evaluation of the pseudo-random function and other CPU operations can
be represented as a small (poly-logarithmic times the security parameter)
circuit, hence yielding a 4-database scheme with poly-logarithmic (in his
case amortized) overhead with active security. Finally, we note that his so-
lution could be reduced to just two databases, where both databases keep
“shares” of the state of the CPU, and additionally one of the databases also
keeps the contents of the Oblivious RAM memory. The main reason why
we can allow one of the constituent databases to keep both the “share” of
the CPU and the Oblivious RAM memory and still show that the view of
this constituent database is computationally indistinguishable for all execu-
tions is that the Oblivious RAM memory component is kept in an encrypted
(and tamper-resistant) form (see [GO-96]), according to a distributed (be-

22

tween both databases) private-key stored in the CPU. For every step of the
CPU computation, both databases execute secure two-party function evalu-
ation of [Y-82, GMW-87] which can be implemented based on any one-way
trapdoor permutation family (again communicating through the user) in
order to both update their shares and output re-encrypted value stored in
a tamper-resistant way in Oblivious RAM memory component. Thus, the
key observation is that the database that holds both the share of the CPU
state and Oblivious RAM memory, holds both of them in an encrypted and
tamper-resistant manner. Hence, it can not modify the memory compo-
nent in any way, accept via the CPU access, which, in turn, requires secure
function evaluation and thus can not be modified without both databases.
Thus, the proof reduces to the software protection proof of [GO-96] and we
are done.

Note that since we use two-party secure function evaluation of [Y-82,
GMW-87], we need stronger cryptographic assumptions (i.e., the existence
of trapdoor permutations instead of general one-way functions needed for
four databases). We also remark that the above scheme also achieves sub-
linear (in the size of the database) computational efficiency, where a single
read /write operation requires only g% (where g is the security parameter
of the underlying trapdoor permutation) times poly-logarithmic (in the size
of the database) computational steps by all the constituent databases and
the user.

6 Conclusion

We have given several constructions for distributed databases that support
private reading and writing — both in the information-theoretic and in the
computational setting.

In the information-theoretic setting we have shown that the communication
complexity of private reading and writing is within a poly-logarithmic factor
of private reading. Many of the extensions in [CGKS-95] (such as privacy
against coalitions and efficient, private access to blocks of data) apply to
our constructions as well. One of our schemes achieves a communication
complexity of O(n1/3(10g n)%) using just three databases. An open ques-
tion is whether there exists a two-database information-theoretic private
read /write scheme with sub-linear communication complexity.

23

We also addressed the computational case, where assuming that databases
are allowed to keep different data, and we allow a multi-round schemes, we
have shown an efficient (both in communication and computational com-
plexity) two-database read/write scheme based on any one-way trapdoor
permutation family. This should be contrasted with the reading scheme of
Chor and Gilboa [CG-97], where they only assume the existence of general
one-way functions, keep identical databases and use only a single round of
interaction. Clearly, achieving optimal performance with minimal assump-
tions, with the minimal number of databases and with minimal number of
rounds would be interesting both for read-only and read/write computa-
tional schemes.

Acknowledgments

We thank Oded Goldreich and Eyal Kushilevitz for many helpful discussions.

References

[AFK-89] M. Abadai, J. Feigenbaum, and J. Kilian. On hiding information from an
oracle. JC§5 39(1):21-50, 1989.

[N-89] N. Adam and J. Wortmann. Security control methods for statistical
databases: a comparative study. ACM Computing Surveys 21(4):515-555,
1989.

[Amb-96] A. Ambainis. Upper bound on the communication complexity of private

information retrieval. On-line version published in Theory of Cryptogra-
phy Library, http://theory.les.mit.edu/ tcryptol, May 1996.

[BF-90] D. Beaver and J. Feigenbaum. Hiding instances in multi-oracle queries. In

Proc. of 7th STACS, Springer-Verlag LNCS, Vol. 415, pp. 37-48, 1990.

[BFKL-90] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Security with low
communication overhead. In Advances in Cryptology—Proc. Crypto '90,

1990.

[BGKW-88] M. Ben-or, S. Goldwasser, J. Kilian and A. Wigderson. Multi prover
interactive proofs: How to remove intractability. STOC 88.

[B-79] G. R. Blakley. Safeguarding cryptographic keys. In Proc. NCC AFIPS,
pp. 313-317, 1979.

24

[CG-97]

[CGKS-95]

[G-96]

[RAD-78]

[G-87]

[GMR-85]

[GMW-87]

[GO-96]

[GGM-86]

[M-92]

[Ost-90]

[S-79]

[U.S.-93]

[Y-82]

B. Chor and N. Gilboa. Computationally Private Information Retrieval
In this proceedings — STOC '97.

B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information
retrieval. In Proc. 86th Annual IEEE Symp. Foundations Comp. Sci., pp.
41-50, 1995.

O. Goldreich. Personal communication, June of 1996.

R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and
privacy homomorphisms. In Foundations of Secure Computation (eds. R.

DeMillo, D. Dobkin, A. Jones, and R. Lipton). Academic Press, 1978.

O. Goldreich. Towards a theory of software protection and simulation by

oblivious RAMs. In Proc. 19th Annual ACM Symp. Theory Comp., 1987.

S. Goldwasser, S. Micali and C. Rackoff, The Knowledge Complexity of
Interactive Proof-Systems, SIAM J. Comput. 18 (1989), pp. 186-208; (also
in STOC 85, pp. 291-304.)

O. Goldreich, S. Micali, and A. Wigderson. “How to Play Any Mental
Game”. Proc. of 19th STOC, pp. 218-229, 1987.

O. Goldreich and R. Ostrovsky. Software protection and simulation by
oblivious RAMs. JACM, 1996.

Goldreich, O., S. Goldwasser, and S. Micali, “How To Construct Random
Functions,” Journal of the Association for Computing Machinery, Vol.

33, No. 4 (October 1986), 792-807.

S. Micali. Fair public-key cryptosystems. In Advances in Cryptology—
Proc. Crypto '92, pp. 113-138, 1992.

R. Ostrovsky. Software protection and simulation on oblivious RAMs.
M.LT. Ph. D. Thesis in Computer Science, June 1992. Preliminary version
in Proc. 22nd Annual ACM Symp. Theory Comp., 1990.

A. Shamir. How to Share a Secret. CACM 22:612-613, 1979.

A proposed federal information processing standard for an escrowed en-
cryption standard. Federal Register, July 30, 1993.

Yao, A.C., “Theory and Applications of Trapdoor Functions”, 28rd
FOCS, 1982, pp. 80-91.

25

