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Abstract
Canetti et al. [11] recently proposed a new framework — termed Generalized Universal Composability

(GUC) — for properly analyzing concurrent execution of cryptographic protocols in the presence of a global
setup. While arguing that none of the existing solutions achieved the desired level of security in the GUC-
framework, the authors constructed the first known GUC-secure implementations of commitment (GUCC) and
zero-knowledge (GUC ZK), which suffice to implement any two-party or multi-party functionality under several
natural and relatively mild setup assumptions. Unfortunately, the feasibility results of [11] used rather inefficient
constructions: the commitment scheme was bit-by-bit, while the zero-knowledge proof for a relationR was
implemented using the generic Cook-Levin reduction to a canonical NP-complete problem.

In this paper, we dramatically improve the efficiency of (adaptively-secure) GUCC and GUC ZK assuming
data erasures are allowed. Namely, using the same minimal setup assumptions as those used by [11], we build
• a direct and efficient constant-round GUC ZK forR from any “dense”Ω-protocol [31] forR. As a

corollary, we get a semi-efficient construction from anyΣ-protocol forR (without doing the Cook-Levin
reduction), and a very efficient GUC ZK for proving the knowledge of discrete log representation.

• the firstconstant-rate(and constant-round) GUCC scheme.

Additionally, we show how to properly model a random oracle (RO) in the GUC framework without losing
deniability, which is one of the attractive features of the GUC framework. As an application, by adding the
random oracle to the setup assumptions used by [11], we buildthe first two-round (which we show is optimal),
deniable, straight-line extractable and simulatable ZK proof for any NP relationR.
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1 Introduction
UC FRAMEWORK. The Universal Composability(UC) framework introduced by Canetti [10] is a growingly
popular framework for analyzing cryptographic protocols which are expected to be concurrently executed with
other, possibly malicious. The UC framework has many very attractive properties, one of which is a very strong
composition theorem, enabling one to split the design of a complex protocol into that of simpler sub-protocols.
In particular, Canetti, Lindell, Ostrovsky and Sahai [17] showed that, under well established cryptographic as-
sumptions, UC-secure commitments and zero-knowledge (ZK) proofs are sufficient to implement any other func-
tionality, confirming our long-standing intuition that commitments and ZK proofs arefundamental cryptographic
primitives.1

Unfortunately, a series of sweeping impossibility results [10, 13, 16] showed that most useful cryptographic
functionalities, including commitment and ZK, are impossible to realize in the “plain UC” framework. This means
that some form of a “trusted setup”, such as a common reference string (CRS) or a public-key infrastructure
(PKI), is necessary to build UC-secure protocols (unless one is willing to relax some important consequences of
UC-security, such as polynomial-time simulation [39, 8]). To address this issue, the original UC framework was
augmented to allow trusted setup. However, until the recent work of [11],this extension only allowed one to model
such setup as alocal setup. This means that the setup cannot be seen by the environment or other protocols, and, as
a consequence, it only exists meaningfully in the real model. In particular, the simulator had complete control over
the setup in the ideal model. For example, in the CRS model the simulator had a freedom to choose its own CRS
and embed some trapdoor information into it. As was argued in a series of papers [13, 19, 4, 11], this modeling
creates several serious problems not present in the “plain UC”. Two most significant such problems arelack of
deniabilityandrestrictive composition. For example, an ideal ZK proof is “deniable”, since the verifier only learns
that the statement is true, but cannot reliably prove it to a third party. Unfortunately, it was argued in [11] that any
UC-secure realization of ZK in the CRS model isnever deniable. The composition problem is a bit more subtle
to explain. In essence, one can only compose several instances ofspecially-designed protocols. In particular, it is
not safe to use protocols which can depend on the setup information (e.g. the CRS), even if these protocols are
perfectly secure in the ideal model. We give a simple and convincing example of this phenomenon (illustrated for
ZK proofs in the CRS model) in Appendix A, but refer the reader to [11, 41], where the problems of local setup
are discussed in more detail.

GUC FRAMEWORK. Motivated by solving the problems caused by modeling the setup as a local subroutine,
Canetti et al. [11] introduced a new extension of the UC framework — termedGeneralized Universal Compos-
ability (GUC) — for properly analyzing concurrent execution of cryptographic protocols in the presence of a
global setup. We stress that GUC is a generalframeworkstrictly more powerful than UC. Namely, one can still
model local setup as before. However, the GUC framework also allows one to modelglobal setupwhich is directly
accessible to the environment. More precisely, the GUC framework allows one to design protocols that share state
via shared functionalities(such as aglobal CRSor global PKI). Since the same shared functionality will exist in
multiple sessions, the environment effectively has direct access to the functionality, meaning that the simulator
cannot “tamper” with the setup in the ideal model. In fact, the same setup exists both in the realand in the ideal
models. As the result, modeling the global setup in this manner regains the attractive properties of the “plain UC”,
including deniability and general composition. This was formally shown by [11] for the case of composition, and
informally argued for deniability (since the simulator no longer has any “unfair” advantage over the real-model
attacker, so the real-model attacker can run the simulator “in its head” to make up transcripts of conversation which
never happened in real life). To put this (convincing but) informal argument on firmer ground, in Appendix B we
give a very strong definition of deniable zero-knowledge (much stronger than previous notions appearing in the lit-
erature), and show that GUC-security implies this notion, as long as the setupis modeled as a shared functionality
(see Definition 6 and Theorem 8 for the precise definition and statement).

Of course, having introduced GUC, a natural question is whether one can actually build GUC-secure protocols
undernatural setup assumptions. On the positive side, one can always artificially model “local setup” as “global

1Although [17] presented their results in the common reference string (CRS) model using the JUC theorem [19], one can extract a
general implication which is independent of the CRS and does not use JUC. See page 131 of Walfish’s thesis [41] for details.
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setup”, by ensuring that a fresh instance of a setup is run for every protocol instance, and, more importantly, that
only the participants of a given protocol have reliable access to this setup information. For example, the CRS
setup of UC could be equivalently modeled in GUC as “secretreference string” (SRS) functionality: the SRS will
pick a fresh reference string for each protocol instance, and will makethis string available precisely to the parties
running this instance, but nobody else. However, on a technical level,UC+CRS is equivalent to GUC+SRS, so
the feasibility result of [17] would apply to the “global SRS” setup. Of course, such a “secret reference string”
model is very unrealistic and difficult to implement, and one may wonder if atruly global CRS setup would
suffice as well. Unfortunately, [11] showed that the (global) CRS model (as well as other global setup which only
providespublic information, such as the random oracle model [32]) isnot enough to sidestep the impossibility
results of [10, 13, 16]. (In particular, the protocols of [17, 32] are insecure in the GUC framework with the
global CRS/random oracle.) This means that any setup sufficient for GUCfeasibility must provide some secret
information, as was the case with the SRS model (where the SRS was hidden from the environment and other
protocols).

ACRS MODEL. Luckily, Canetti et al. [11] introduced a new setup assumption, calledAugmented CRS(ACRS),
and demonstrated how to GUC-realize commitment and ZK (and, thus, any otherfunctionality) in the ACRS
model, in the presence of adaptive adversaries.2 The ACRS model is very close to the (global) CRS model, but is
(necessarily) augmented so as to circumvent the impossibility result for plain CRS. As in the CRS setup, all parties
have access to a short reference string that is taken from a pre-determined distribution. In addition, the ACRS setup
allows corrupted parties to obtain “personalized” secret keys that are derived from the reference string, their public
identities, and some “global secret” that is related to the public string and remains unknown. It is stressed thatonly
corrupted partiesmay obtain their secret keys. This may sound strange at first, but is actuallya huge advantage of
the ACRS model over the more traditional “identity-based” setup, where even honest partiesneedto obtain (and,
therefore, safeguard) their keys. Namely, the ACRS setup implies that the protocol may not include instructions
that require knowledge of the secret keys, and, thus, honest partiesdo not need their secret keys. In fact, they can
only losetheir ownsecurity by obtaining these keys and using them carelessly. This is consistent with any secret-
key cryptosystem, where a party will loose its security by publishing its secret key. Luckily, though, the ACRS
model permits the luxury of never worrying about losing one’s secret key, since one should not get it in the first
place. In contrast, malicious parties provably cannot gain anything by obtaining their keys (i.e., they cannot break
the security of honest parties). Hence, as a practical matter, one expects that ACRS model is very similar to the
CRS model, where parties cannot access any secret information. However, themere abilityto get such information
is what gives us security, even though we expect that a “rational” party, either honest or malicious, will not utilize
this ability: honest parties do not need it, and malicious parties do not gain from it.

Of course, one may justifiably criticize the ACRS model because of the need for a trusted party who is always
available, as opposed to the (global) CRS model, where no party is needed after the CRS is generated. Indeed, it
is a non-trivial setup to realize (althoughmuchmore natural than the SRS model, and seemingly minimal in light
of the impossibility result mentioned above). However, as pointed out by [12], the ACRS model has the following
“win-win” guarantee. Assume that one proves some protocol secure in the GUC+ACRS model, but in reality the
trusted party will only generate the CRS, but will be unavailable afterwards. Then, from a syntactic point of view,
we are back in the (global) CRS model. In particular, the protocol is still secure in the “old UC+CRS” setting!
On an intuitive level, however, it seems to bemore securethan a protocol proven secure in the “old UC+CRS”
setting. This is because the simulator does not need to know a global trapdoor (which is deadly for the security of
honestparties in thereal model), but only the secret keys of thecorruptedparties, which are guaranteed to never
hurt the security of honest parties in the real model. For example, the CRS can be safely reused by other protocols
and the “restricted composition” problem of UC (see Appendix A) is also resolved, so properties associated with
deniability/non-transferability appear to be the only security properties lostby “downgrading” ACRS into CRS.

EFFICIENCY IN THE GUC FRAMEWORK. Thus, from the security and functionality perspectives, the GUC+ACRS
model appears to be strictly superior to the UC+CRS model. The question, however, is what is the price in terms

2[11] also showed similar results in a variant of a PKI-like “key registrationwith knowledge (KRK)” setup from [4]. However, since
the ACRS model is more minimal and all our results easily extend to the KRK model, we only concentrate on the ACRS model.
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of efficiency? Unfortunately, the GUC-feasibility results of [11] are quiteinefficient: the commitment scheme
committed to the message in a bit-by-bit manner, while the zero-knowledge prooffor a relationRwas implemented
using the generic Cook-Levin reduction to a canonical NP-complete problem. Thus, now that the GUC-feasibility
of secure computation has been established, it is natural to ask if one can build efficient, GUC-secure commitment
and ZK proofs in the ACRS (resp. KRK; see Footnote 2) model. In this paper, we provide such efficient GUC-
secure commitment and ZK proofs which are secure against adaptive corruptions, therefore making the ARCS
model an attractive alternative to the CRS model on (nearly, see below) all fronts.

The only drawback of our solution is that we rely ondata erasures, which is not the case for most efficient UC
protocols, such as that of Damgard and Nielsen [25] (or the inefficient GUC feasibility results of [11]). However,
unlike sacrificing adaptive security, which is acritical concern (addressed in our work) given the highly dynamic
nature of protocols concurrently running on the Internet,3 we believe that the assumption of data erasures is very
realistic. In particular, this assumption is widely used in practice (for example,for analyzing most key exchange
protocols, such as Diffie-Hellman), and was already used in several works on UC security as well (e.g., [15, 31,
36, 14], although there it was hidden deep within the paper). Coupled with the fact that erasures allow us to obtain
dramatically more efficient (in fact,practical) protocols, we believe that this assumption is justified. Of course, we
hope that future research will remove/weaken this restriction, and commenton this more in the last paragraph of
the introduction, when we discuss the random oracle model.

OUR RESULTS ON GUC ZK. We present an efficient compiler giving a direct, efficient, constant-round and
GUC-secure ZK proof (GUC ZK) for any NP relationR from any “denseΩ-protocol” [31] forR. The notion
of Ω-protocol’s was introduced by Garay, MacKenzie and Yang [31]. Briefly, Ω-protocol’s are usualΣ-protocol’s
(i.e., they satisfy special soundness and ZK properties ofΣ-protocol’s), with an extra property that one can generate
the public parameterρ of the system together with a trapdoor informationτ , such that the knowledge ofτ allows
one to extract the witness from any valid conversation between the proverand the verifier (as opposed to the
usual special soundness, where one needs two different transcripts with the same first flow). [31, 36] usedΩ-
protocol’s for a similar task of building UC-secure ZK proofs in the CRS model(which was modeled in the
“unfair” way mentioned earlier and is not GUC-secure). As a result, ourcompiler isconsiderablymore involved
than the compiler of [31, 36] (which also used erasures). For example, inthe GUC setting the simulator is not
allowed to knowτ , so we have to sample the publicρ in the ACRS model using a special coin-flipping protocol
introduced by [11]. As a result, our compiler requiresΩ-protocol’s whose reference parameters are “dense” (i.e.,
indistinguishable from random), and none of the previousΩ-protocol’s of [31, 36] is suitable for our purpose.

Thus, of independent interest, we show several noveldenseΩ-protocol’s. First, we show how to build a
direct, but only semi-efficient denseΩ-protocol for any NP relationR from any Σ-protocol forR. Although
this Ω-protocol uses the cut-and-choose technique (somewhat similar to the technique of Pass [38], but in a very
different setting), it is very general and gives a much more efficientΩ-protocol than the technique of [17, 11]
requiring a generic Cook-Levin reduction. Second, we show avery efficient, number-theoretic based denseΩ-
protocol for proving the knowledge of discrete log representation. Once again, thisΩ-protocol had to use some
interesting additional tools on top on the “non-dense” priorΩ-protocol of [31], such as a special “projective Paillier
encryption” of Cramer and Shoup [20]. As a result, we get a semi-efficient GUC ZK for anyR having an efficient
Σ-protocol, and a very efficient GUC ZK for proving the knowledge of discrete log representation.

OUR RESULTS ONGUC COMMITMENTS. Using the techniques developed for ZK, we proceed to build the first
constant-rate(and constant-round) GUC-secure commitments (GUCC) in the ACRS model. Inspirit our result is
similar to the result of Damgard and Nielsen [25], who constructed the first constant-rate UC-secure commitments
in the “old” CRS framework. However, our techniques are very different, and it seems hopeless to adapt the
protocol of [25] to the GUC framework. Instead, we essentially notice thatthe required GUCC would easily
follow from our techniques for GUC ZK, provided we can build an efficient Ω-protocol for a special relation
onR on identity-based trapdoor commitments(IBTCs) — a notion introduced by [11] to implement the ACRS
setup. Intuitively, a prover needs to show that he knows the message being committed by a valuec w.r.t. a

3We remark that adaptive security with erasures trivially implies static security, and is usually much harder to achieve than the latter.
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particular identity. In particular, if one can build an IBTC scheme where the required relationR would involve
the proof of knowledge of some discrete log representation, our previous GUC ZK protocol would complete the
job. Unfortunately, the IBTCs constructed by [11] had a much more complicated form. Therefore, of independent
interest, we build a new IBTC scheme which is based on Water’s signature [42]. The resulting IBTC not only
has the needed form for its relationR, but is also much simpler and more efficient than prior IBTCs built in the
standard model. Combining these results, we finally build the required GUCC.

RESULTS ON MODELINGRANDOM ORACLE IN GUC. Finally, we briefly comment on using the random oracle
(RO) model in conjunction with the GUC framework. The RO is simply modeled as a shared functionality available
both in the real and in the ideal model. As such, the simulator cannot “reprogram” the RO. Even more counter-
intuitively, it cannot even “prematurely extract” the values used by the real-model attacker! This is because we can
assume that all such queries are made by the environment (which the simulatorcannot control), and the inputs are
only given to the attacker on the “need-to-know” basis. Correspondingly, the RO model is much more restricted in
the GUC framework (in particular, by itself it is provably insufficient to GUC-realize most functionalities [11, 12]).
However, we still show that onecan meaningfully use it in the conjunction with the ACRS model, because we
are allowedto extract and reprogram the RO in the proof of security. In particular, by applying the Fiat-Shamir
heuristics to our GUC ZK protocols, we obtain an efficient, two-round (which we show is optimal; see Theorem 4),
straight-line extractable and simulatable (in fact, GUC-secure!) ZK proof for any relationR having an efficient
denseΩ-protocol (see above for examples of suchΩ-protocols). Moreover, in this protocol one only needs to
erase some short data during alocal computation(i.e., no sensitive data needs to be stored while waiting for some
network traffic).4 This makes the need for data erasures really minimal. We briefly compare the resulting deniable
ZK protocol to previous related work on deniable ZK (e.g., [38, 34]) in Section 6.

2 Definitions and Tools
2.1 GUC Security. At a high level, the UC security framework formalizes the following emulation requirement:

A protocolπ that emulates protocolφ does not affect the security of anything else in the environment
differently thanφ would have – even whenπ is composed with arbitrary other protocols that may run
concurrently withπ.

Unfortunately, the UC security framework requires that parties running ina session ofπ do not share state with
any other protocol sessions at all, limiting the legitimate applicability of that framework. In particular,global
setupssuch as a Common Reference String (CRS) or Public Key Infrastructure (PKI) are not modeled. The GUC
security framework, introduced in [11], formalizes the same intuitive emulationrequirement as the UC framework.
However, the GUC framework does so even for protocolsπ that make use of shared state information that is
common to multiple sessions ofπ, as well as other protocols in the environment running concurrently withπ.

More formally, the security framework of [10] defines a notion called “UC-emulation”. A protocolπ is said to
UC-emulate another protocolφ if, for everyadversaryA attackingφ, there exists asimulatorS attackingπ such
that noenvironmentZ can distinguish betweenA attackingφ, andS attackingπ. In the distinguishing experiment,
the environment isconstrainedto interact only with parties participating in a single session of a challenge protocol
(eitherπ orφ), along with its corresponding attacker (eitherA orS, respectively). This limited interaction prevents
the model from capturing protocols that may share state with other protocols that might be running within the
environment, since the environment in the distinguishing experiment cannot access the state of the parties it is
interacting with.

The Generalized Universal Composability (GUC) security framework of [11] extends the original UC security
framework of [10] to incorporate the modeling of protocols that share statein an arbitrary fashion. In particular,
the GUC framework provides mechanisms to support direct modeling of global setups such as a CRS or PKI. This
is done by first defining the notion ofshared functionalitiesthat can maintain state and are accessible to any party,

4Of course, we can get a less efficient2-round GUC ZK protocol with these properties, which doesnot rely on data erasures at all, by
applying the Fiat-Shamir heuristics to the inefficient protocol of [11]. Thismeans that we get a general feasibility of round-optimal GUC
ZK for NP in the ACRS+RO model, which does not rely on data erasures.
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Functionality Gacrs

Initialization Phase: At the first activation, run an algorithmSetup to generate a public key/master secret
key pair(PK ,MSK ).

Providing the public value: When activated by any party requesting the CRS, returnPK to the requesting
party and to the adversary.

Dormant Phase:Upon receipt of a message(retrieve, sid, ID) from acorruptpartyP whose identity is
ID , return the valueSK ID ← Extract(PK , ID ,MSK ) to P . (Receipt of this message from honest
parties is ignored.)

Figure 1: The Identity-Based Augmented CRS Functionality

in any protocol session. GUC then allows the environment to access any shared functionalities. GUC also removes
the constraint on the protocols invoked by the environment, allowing it to interact with any (polynomial) number
of parties running arbitrary protocols (including multiple sessions) in additionto the usual UC model interactions
with the challenge protocol and its attacker. That is, we allow the environmentto directly invoke and observe
arbitrary protocols that run alongside the challenge protocol – and the arbitrary protocols may even share state
information with the challenge protocol and the environment via shared functionalities. If a protocolπ (that may
share state with other protocols) “UC-emulates” a protocolφ with respect to suchunconstrained environments, we
say thatπ GUC-emulatesφ. We say that a protocolπ is a GUC-securerealizationof a particular functionalityF
if π GUC-emulates the ideal protocol forF . Further details of the formal modeling for UC and GUC security can
be found in [10] and [11, 41]. In this work, we will focus on the construction of efficient GUC-secure realizations
of commitments and zero knowledge, with security even against adversariescapable of adaptive corruptions. As
is common throughout the UC literature, we will assume the availability of secure (i.e., private and authenticated)
channels. The realization of such secured channels over insecure networks (such as the Internet) is a non-trivial
problem studied in further detail in [41], but is beyond the scope of this work.

2.2 The ACRS model.Unfortunately, it is impossible to GUC-realize most useful two-party functionalities in the
plain model, or even in the CRS model (see [11]). To avoid this impossibility, we make use of a specialAugmented
Common Reference String(ACRS) trusted setup (which we denote by the functionalityGacrs), as was first proposed
in [11]. Another possible alternative would be to use a PKI model supporting “Key Registration with Knowledge”
[4, 11] (which we denote by the functionalityGkrk) – indeed, our efficient protocols can easily be transformed to
use theGkrk setup – but the more minimal ACRS model suffices and is clearly less costly to implement than a
PKI. Thus, we will focus on the ACRS setting. The shared functionalityGacrs describing ACRS setup, which is
parameterized by the algorithmsSetup andExtract, is given in Figure 1.

Intuitively, the ACRS setup provides a simple CRS to all parties, and also agrees to supply an identity-based
trapdoor for identityP to any “corrupt” partyP that asks for one. The provision that only corrupt parties can get
their trapdoors is used to model the restriction that protocols run by honestparties should not use the trapdoor –
i.e. honest parties should neverhaveto obtain their trapdoors in order to run protocols. In reality, a trusted party
will perform the ACRS initialization phase, and then supply the trapdoor forP to any partyP that asks for its
trapdoor. Of course, in practice, most parties will never bother to request their trapdoors since the trapdoors are not
useful for running protocols. (Ultimately, these trapdoors will be used to enable corrupt parties to simulate attacks
by usingS, a task that no honest party should need to perform.)

In the following sections, we show how to construct efficient GUC-secure realizations of commitments and
zero knowledge using this instantiation of theGacrs shared functionality. (As explained in Section 4 of [12], this is
enough to GUC-realize any other well-formed functionality.) We then show how to optimize the round complexity
of these protocols by usingGacrs in conjunction with the RO model.

2.3 Omega Protocols.The notion of anΩ-protocol was introduced in [31]. We recall the basic idea here. While
our notion of anΩ-protocol is the same in spirit as that in [31], we also introduce some new properties, and there
are a few points where the technical details of our definition differ. Details are in Appendix C.

Let ParamGen be an efficient probabilistic algorithm that takes as input1λ, whereλ is a security parameter,
and outputs asystem parameterΛ. The system parameterΛ determines finite setsX, L ⊂ X, W , and a relation
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R ⊂ L ×W , where for allx ∈ L, we have(x,w) ∈ R for somew ∈ W . The setsX andW , and the relationR
should be efficiently recognizable (givenΛ). An elementx ∈ X is called aninstance, and for(x,w) ∈ R, w is
called awitnessfor x.

There is also an efficient probabilistic algorithmRefGen that takes as input a system parameterΛ and outputs
a pair(ρ, τ), whereρ is called areference parameter, andτ is called atrapdoor.

An Ω-protocolΠ is played between aproverP and averifierV . BothP andV take as common input a system
parameterΛ, a reference parameterρ, and an instancex ∈ X. An honest proverP is only run forx ∈ L, and
always takes a witnessw for x as an additional, private input. Execution runs in three steps: in the first step, P
sends a messagea to V ; in the second,V sends a random challengec to P ; in the third,P sends a responsez to
V . ThenV eitheracceptsor rejectstheconversation(a, c, z).

Of course, there is a basiccompletenessrequirement, which says that if both prover and verifier follow the
protocol, then the verifier always accepts.

We say thatΠ is trapdoor soundif there exists an efficienttrapdoor extractor algorithmEtd such that the
following holds: for every efficient cheating prover̃P , it should be infeasible for̃P (given input(Λ, ρ)) to make
V (given input(Λ, ρ, x)) accept a conversation(a, c, z) for an instancex such that execution ofEtd on input
(Λ, τ, x, a, c, z) fails to produce witnessw for x. Here,(Λ, ρ) are generated by the algorithmsParamGen and
RefGen; c is generated byV ; andx, a, andz are generated adversarially.

We shall also make use of the following variant of trapdoor soundness. Very roughly, we say thatΠ is partial
trapdoor sound for a functionf , if it is a proof of knowledge (in the traditional, rewinding sense) of a witnessw
of the instancex, such that the value calculated by the trapdoor extractorEtd (on the same inputs as above) is equal
to f(w). As we will see, partial trapdoor soundness is sufficient for some applications, and can be realized using a
somewhat more efficient protocol.

We say thatΠ is honest verifier zero-knowledge (HVZK)if there is asimulator algorithmZKSim that on input
(Λ, ρ, x, c) can produce a simulation of the conversation(a, c, z) that would arise from an interaction between an
honest proverP with input (Λ, ρ, x, w), and a cheating verifier̃V , subject to the constraint that̃V ’s challengec
must be generated before it seesa. Here,(Λ, ρ) are generated by the algorithmsParamGen andRefGen; andx,
w, andc are generated bỹV . The requirement is that̃V should not be able to distinguish the output of the simulator
from the output of the real prover.

We note that the notion of anΩ-protocol extends that of aΣ-protocol ([22, 25]). The distinguishing feature
is the reference parameter, and the trapdoor soundness property thatsays that a witness may be extracted using a
trapdoor in the reference parameter, rather than by rewinding. The notion of trapdoor soundness is closely related
to that ofverifiable encryption[1, 21]. Indeed, all known constructions ofΩ-protocols boil down to using a public
key for a semantically secure encryption scheme as reference parameter, where the trapdoor is the secret key; the
prover encrypts a witness, and then proves that it did so using aΣ-protocol.

For our application to GUC ZK and GUC commitments, we introduce an additional property that we require of
anΩ-protocol. A given system parameterΛ determines a set̂Φ of possible reference parameters. Suppose there is
some setΦ that containŝΦ, with the following properties: (i) the uniform distribution onΦ is efficiently samplable;
(ii) membership inΦ is efficiently determined; (iii)Φ is an abelian group (which we write multiplicatively), such
that the group and group inverse operations are efficiently computable; (iv) it is hard to distinguish a random ele-
ment ofΦ (generated uniformly), from a random element ofΦ̂ (as generated byRefGen). If all of these conditions
obtain, we sayΠ hasdense reference parameters, and we callΦ the set ofextended reference parameters.

2.4 Identity-based trapdoor commitments. The notion of an identity-based trapdoor commitment scheme
(IBTC) was introduced in [2] (as ID-based Chameleon Hash functions), with some additional refinements ap-
pearing in [11]. We recall the basic idea here. Details in Appendix D.

An IBTC scheme has aSetup algorithm that takes as input1λ, whereλ is the security parameter, and outputs
a public keyPK and amaster secret keyMSK . The public keyPK determines a setD of decommitment values.
To generate a commitment to a messagem, a user computesd

$
← D andκ ← ComID(d,m). Here,ComID is a

deterministic algorithm (which implicitly takesPK as a parameter, but we shall in general omit this). The valueκ
is called acommitmenttom, while the pair(d,m) is called anopeningof κ.
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Functionality FR

zk

Fzk, parameterized by a binary relationR and running with a proverP , a verifierV , and an adversaryS,
proceeds as follows upon receipt of a message(ZK-prover, sid, P, V, x, w) from the proverP :

If (x,w) ∈ R, then send(ZK-proof,sid, P, V, x) to V andS and halt. Otherwise halt.

Figure 2: The Zero-Knowledge Functionality for RelationR

Like any commitment, a IBTC should bebinding: it should be hard to open a commitment under some
ID to two different messages; that is, it should be hard to findID , d,m, d′,m′ such thatm 6= m′ and
ComID(d,m) = ComID(d′,m′). In addition, there should be anidentity-based trapdoor, which allows foridentity-
based equivocationof commitments. More precisely, there are three algorithmsExtract, ECom, andEqv, which
work as follows. Given(PK , ID ,MSK ) as input,Extract computes a trapdoorSK ID for the identityID . Us-
ing this trapdoor, algorithmECom may be invoked with input(PK , ID ,SK ID) to produce a pair(κ, α), where
κ is a “fake” commitment, andα is a trapdoor specifically tuned toκ. Finally, running algorithmEqv on input
(PK , ID ,SK ID , κ, α,m) for any messagem produces a decommitmentd, such that(d,m) is an opening ofκ.
The security property for equivocation is that is should be hard to distinguish a valued produced in this way from
a random decommitment. Moreover, this equivocation property should not interfere with the binding propertyfor
identities whose trapdoors have not been extracted.

3 GUC Zero-Knowledge in the ACRS Model
The ideal Zero-Knowledge functionality for relationR, Fzk, is described in Figure 2.5

Here we give a general transformation from anyΩ-protocolΠ for a relationR to a GUC-secure zero-knowledge
proof for the relationR in the augmented CRS (Gacrs) model. We need to assume that theΩ-protocol satisfies
the correctness, trapdoor soundness, honest verifier zero knowledge (HVZK), and dense reference parameters
properties. We denote byΦ the space of extended reference parameters forΠ. We also need an identity-based
trapdoor commitment (IBTC) scheme. Commitments in this scheme are writtenComID(d,m).

The augmented CRS is instantiated using the IBTC. In addition, any system parametersΛ for theΩ-protocol
are placed in the public value of the augmented CRS. Note that there is no trapdoor associated with the system pa-
rameter for theΩ-protocol, so this system parameter is essentially a “standard” CRS. A critical difference between
our approach and that of Garay et al [31] is that the reference parameter for theΩ-protocol are not placed in the
CRS; rather, a fresh reference parameterρ is generated with every run of the protocol, using a three-move “coin
toss” protocol, which makes use of the IBTC.

Here is how the GUC ZK protocol between a proverP and verifierV works. The common input is an instance
x (in addition toPK and the identities of the players). Of course,P also has a witnessw for x as a private input.

1. V computesρ1
$
← Φ, forms a commitmentκ1 = ComP (d1, ρ1), and sendsκ1 to P .

2. P computesρ2
$
← Φ and sendsρ2 to V .

3. V first verifies thatρ2 ∈ Φ, and then sends the opening(d1, ρ1) to P .
4. P verifies that(d1, ρ1) is a valid opening ofκ1, and thatρ1 ∈ Φ.

BothP andV locally computeρ← ρ1 · ρ2.
5. P initiates theΩ-protocolΠ, in the role of prover, using its witnessw for x. P computes the first messagea

of that protocol, forms the commitmentκ′ = ComV (d′, a), and sendsκ′ to V .
6. V sendsP a challengec for protocolΠ.
7. P computes a responsez to V ’s challengec, and sends(d′, a, z) to V .
P thenerasesthe random coins used byΠ.

8. V verifies that(d′, a) is a valid opening ofκ′ and that(a, c, z) is an accepting conversation forΠ.

Theorem 1. The protocol described above GUC-emulates theFR
zk functionality in the secure-channels model,

with security against adaptive corruptions (with erasures).

5Technically, the relationR may be determined by system parameters, which form part of a CRS. Here, we note that the same CRS
must be used in both the “ideal” and “real” settings.
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Proof (sketch).We first observe that the protocol above only makes use of a single shared functionality,Gacrs.
Therefore, we are free to make use of the equivalence theorem and EUC model of [11]. This allows us to prove the
GUC security of the protocol using the familiar techniques of the UC framework, with only a single (but crucial)
modification – we will allow the environment access to the shared functionality.

LetA be any PPT adversary attacking the above protocol. We describe an ideal adversaryS attacking the ideal
protocol forFR

zk that is indistinguishable fromA to any distinguishing environmentZ, in the presence of a shared
setupGacrs. In standard fashion,S will run a copy ofA internally. We now formally describe howS interacts with
its internal copy ofA. We focus here on the non-trivial aspects of the simulator.

Simulating a proof between an honestP and corrupt V . The following simulation strategy is employed when-
everP is honest andV is corrupted at any point prior to, or during, the execution of the protocol.
S, upon notification fromFR

zk of a successful proof fromP of statementx, proceeds as follows.
First, acting on behalf of the corrupt partyV , S obtains the trapdoorSK V from Gacrs.
Next,S runs the coin-tossing phase of the protocol with the corrupt partyV (being controlled byS ’s internal

copy ofA) normally. Upon completion of the coin-tossing phase at Step 5, rather than sending a commitment to
the first message sent byΠ (which would require the witnessw as an input) as per the protocol specification,S
obeys the following procedure for the next3 steps of the protocol:

5. S computes(κ̂′, α)← ECom(V,SK V ). S then sends the equivocable commitmentκ̂′ to the corrupt verifier
V (which is part ofS ’s internal simulation ofA).

6. S receives a challengec from the corrupt verifierV .
7. S runs the HVZK simulatorZKSim for protocolΠ on input(Λ, ρ, x, c), obtaining messagesa andz. S then

equivocateŝκ′, by computingd′ ← Eqv(V,SK V , κ̂
′, α, a), and sendsd′, a, z to the corrupt verifierV .

Observe that this simulation is done entirely in a straight-line fashion, and requires only the trapdoorSK V

belonging to corrupt partyV .
If P is also corrupted at some point during this simulation,S must generateP ’s internal state information

and provide it toA. If P is corrupted prior to Step 5, thenS can easily provide the random coins used byP
in all previous steps of the protocol (since those are simply executed byS honestly). A corruption after Step 5
but before Step 7 is handled by creating an honest run of protocolΠ using witnessw (which was revealed toS
immediately upon the corruption ofP ), and computing the internal valued′ via d′ ← Eqv(V,SK V , a). κ′, wherea
is now the honestly generated first message ofΠ. Finally, if corruption ofP occurs after Step 7 of the simulation,
the internal state is easily generated to be consistent with observed protocol flows, since they already contain all
relevant random coins, given the erasure that occurs at the end of Step 7.

Intuitively, the faithfulness of this simulation follows from the equivocability and binding properties of com-
mitments, and the HVZK and dense reference parameters properties of theΩ-protocolΠ. We stress that while the
proofof this requires a rewinding argument (specifically, see Appendix F), thesimulation itself is straight-line.

Simulating a proof between a corruptP and honestV . The following simulation strategy is employed whenever
V is honest, andP is corrupted at any point prior to or during the execution of the protocol.

First, acting on behalf of the corrupt partyP , S obtains the trapdoorSKP from Gacrs.
ThenS generates a pair(ρ, τ) using theRefGen algorithm forΠ, and “rigs” the coin-tossing phase of the pro-

tocol by playing the role ofV (communicating with the internal simulation of the corrupt partyP ) and modifying
the initial steps of the protocol as follows:

1. S computes(κ̂1, α)← ECom(P,SKP ), and sendŝκ1 to P .
2. P replies by sending some stringρ2 to V .
3. S computesρ1 ← ρ · ρ−1

2 , andd1 ← Eqv(P,SKP , κ̂1, α, ρ1).
S first verifies thatρ2 ∈ Φ. ThenS sends the opening(d1, ρ1) to P .

The remainder of the protocol is simulated honestly.
Observe that the outcome of this coin-flipping phase will be the sameρ generated byS at the start of the

protocol (along with its corresponding trapdoor informationτ ). If and when the verifier accepts,S runs the
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Functionality Fcom

FunctionalityFcom proceeds as follows, with committerP and recipientV . .

Commit Phase: Upon receiving a message(commit, sid, P, V,m) from partyP , record the valuem and
send the message(receipt, sid, P, V ) to V and the adversary. Ignore any futurecommit messages.

Reveal Phase:Upon receiving a message(reveal, sid) from P : If a valuem was previously recorded,
then send the message(reveal, sid,m) to V and the adversary and halt. Otherwise, ignore.

Figure 3: The Commitment FunctionalityFcom (see [13])

trapdoor extractorEtd for Π on input(Λ, τ, x, a, c, z) to obtain a witnessw for x. S then sends the pair(x,w) to
the ideal functionalityFR

zk on behalf of the corrupt proverP .
In the event thatV is also corrupted at any point prior to completion of the protocol,S simply produces internal

state forV consistent with the visible random coins in the transcript (none of the verifier’s random coins are hidden
by the honest protocol).

Intuitively, the faithfulness of this simulation follows from the equivocability and binding properties of com-
mitments, and the trapdoor soundness and dense reference parameters properties of theΩ-protocolΠ. Again, we
stress that while theproof of this requires a rewinding argument (e.g., the Reset Lemma of [5]), the simulation
itself is straight-line.

Now that we have fully described the behavior ofS, it remains to prove thatS interacting withFR
zk (the ideal

world interaction) is indistinguishable fromA interacting with the protocol (the real-world interaction), from the
standpoint of any environmentZ with access toGacrs. We stress that evenZ cannot obtain trapdoor information
from Gacrs for any honest parties, sinceGacrs will not respond to requests for such trapdoors. The proof of indis-
tinguishability follows from a relatively straightforward argument, using the security properties of the IBTC and
Ω-protocol. Details are in Appendix E.

4 GUC Commitments in the ACRS Model
The ideal functionality for a commitment scheme is shown in Figure 3. Messagesm may be restricted to some
particularmessage space.

Our protocol makes use of anΩ-protocol for the IBTC opening relation; here, a witness for a commitmentκ
with respect to an identityID is a valid opening(d,m) (i.e.,ComID(d,m) = κ). Instead of trapdoor soundness,
we only require partial trapdoor soundness with respect to the functionf(d,m) := m.

Our new GUC commitment protocol has two phases. The commit phase is the same as the ZK protocol in the
previous section, except that Step 5 now runs as follows:

5.′ P generates a commitmentκ = ComV (d,m), and then initiates theΩ-protocolΠ, in the role of prover,
using its witness(d,m).
P computes the first messagea of that protocol, forms the commitmentκ′ = ComV (d′, a), and sendsκ and
κ′ to V .

In the reveal phase,P simply sends the opening(d,m) to V , who verifies that(d,m) is a valid opening ofκ.

Theorem 2. The protocol described above GUC-emulates theFcom functionality in the secure-channels model,
with security against adaptive corruptions (with erasures).

The proof is analogous to that of our zero knowledge protocol, but entails some minor changes that include the
partial trapdoor soundness requirement forΠ. The details are sketched in Appendix G.

5 Efficient implementations
5.1 Constructing Ω Protocols from Σ Protocols. We now briefly sketch how to efficiently construct anΩ-
protocolΠ for a relationR, given any efficientΣ-protocolΨ for relationR.

Intuitively, we must ensure that the dense reference parameter and trapdoor extractability properties ofΠ will
hold, in addition to carrying overΣ-protocolΨ’s existing properties.
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Let the reference parameter forΠ be the public keypk for a “dense” semantically secure encryptionE (where
the dense property of the encryption scheme simply satisfies the requirementsof the Dense Reference Parameter
property ofΩ protocols). Standard ElGamal encryption will suffice for this purpose (under the DDH assumption).
Letψ = Epk (s,m) denote an encryption of messagem with random coinss.

Let a, zc denote the first and last messages (respectively) of the prover in protocol Ψ when operating on input
(x,w, r) and with challengec, where(x,w) ∈ R andr denotes the random coins of the prover. The three messages
to be sent in protocolΠ will be denoted asa′, c′, z′.

Intuitively, we will use a cut-and-choose technique to provide extractability, and then amplify the soundness
by parallel repetitionk times. The first messagea′ of Π is constructed as follows:

1. Fori = 1, . . . , k, choose random coinsri and computeai, z0
i , andz1

i using the prover input(x,w, ri).
2. Fori = 1, . . . , k, compute ciphertextsψ0

i = Epk (s
0
i , z

0
i ) andψ1

i = Epk (s
1
i , z

1
i ).

3. Seta′ := (ψ0
1, ψ

1
1, . . . , ψ

0
k, ψ

1
k).

The challengec′ sent to the prover inΠ is ak-bit stringc′ = c′1c
′
2 . . . c

′
k. The last messagez′ of protocolΠ is

then constructed as follows.

1. Fori = 1, . . . , k, setz′i := (s
c′
i

i , z
c′
i

i ).
2. Setz′ := (z′1, . . . , z

′
k).

The verifier’s algorithm forΠ is simply constructed accordingly, verifying that all the ciphertexts were correctly
constructed, and that the corresponding conversations forΨ are valid.

Theorem 3. Π constructed as above is anΩ-protocol for relationR, provided thatΨ is aΣ-protocol for relation
R andE is a dense one-time semantically secure public key encryption scheme.

This is a standard argument, and we omit the proof for lack of space.

5.2 An efficient identity-based trapdoor commitment withΩ-protocol. While the protocol in§5.1 is certainly
much more efficient than that in [11], at least for languages with efficientΣ-protocols, we would like to get an
even more efficient protocol that avoids the cut-and-choose paradigmaltogether. In this section, we briefly show
how we can obtain such a protocol for GUC commitments. Unlike the GUC commitment scheme in [11], which
could commit bits, our GUC commitment scheme can be used to commit to values in a much larger set. Moreover,
because of the special algebraic structure of the scheme, our GUC commitment protocol can be combined with
other, well-known protocols for proving properties on committed values (e.g., the that product of two committed
integers is equal to a third committed integer).

To achieve this goal, we need an IBTC scheme that supports an efficientΩ-protocol, so that we can use this
scheme as in§4. As observed in [11], based on a variation of an idea in [27], to build anIBTC scheme, one
can use a secure signature scheme, along with aΣ-protocol for proof of knowledge of a signature on a given
message. Here, the message to be signed is an identityID . Assuming theΣ-protocol is HVZK, we can turn it into
a commitment scheme, as follows. For a conversation(a, c, z), the commitment isa, the value committed to isc,
and the decommitment isz. To commit to a valuec, one runs the HVZK simulator. The trapdoor for a givenID is
a signature onID , and using this signature, one can generate equivocable commitments just byrunning the actual
Σ-protocol.

For our purposes, we suggest using the Waters’ signature scheme [42]. Let G andH be a groups of prime
order q, let e : G → H be an efficiently computable, non-degenerate bilinear map, and letG∗ := G \ {1}.
A public reference parameter consists of random group elementsg1,g2,u0,u1, . . . ,uk ∈ G, a description of a
collision-resistant hash functionH : {0, 1}∗ → {0, 1}k, and a group elementh1. A signature on a messagem is
a pair(s1, s2) ∈ G × G, such thate(s1, ũ

−1
m ) · e(s2,g1) = e(h1,g2), whereũm := u0

∏
bi=1 ui andH(m) =

b1 · · · bk ∈ {0, 1}
k. Waters signature is secure assuming the CDH for the groupG. With overwhelming probability,

the signing algorithm will produce a signature(s1, s2) where neithers1 nors2 are1, so we can effectively assume
this is always the case.

To prove knowledge of a Waters signature(s1, s2) ∈ G × G on a messagem ∈ {0, 1}∗, we may use the

following protocol. The prover choosesw1, w2 ∈ Z∗
q at random, and computes̄s1 ← s

1/w1

1 and s̄2 ← s
1/w2

2 .
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The prover then sends̄s1 ands̄2 to the verifier, and uses a standardΣ-protocol to prove knowledge of exponents
w1, w2 ∈ Zq such thatγw1

1 γw2

2 = γ whereγ1 := e(s̄1, ũ
−1
m ), γ2 := e(s̄2,g1), andγ := e(h1,g2).

The identity-based commitment scheme derived from the aboveΣ-protocol works as follows. LetID ∈ {0, 1}∗

be the identity, and letm ∈ Zq be the message to be committed. The commitment is computed as follows:

s̄1, s̄2
$
← G∗, d1, d2

$
← Zq, γ1 ← e(s̄1, ũ

−1
ID ), γ2 ← e(s̄2,g1), γ ← e(h1,g2), γ̄ ← γd1

1 γd2

2 γm. The commitment
is (s̄1, s̄2, γ̄).

A commitment(s̄1, s̄2, γ̄) ∈ G∗ × G∗ × H is opened by revealingd1, d2,m that satisfies the equation
γd1

1 γd2

2 γm = γ̄, whereγ1, γ2, γ are computed as in the commitment algorithm, using the given valuess̄1, s̄2.
The trapdoor for such a commitment is a Waters signature on the identityID . Using such a signature, one

can just run theΣ-protocol, and open the commitment to any value. The commitment will look the same as
an ordinary commitment, unless either component of the signature is the identity element, which happens with
negligible probability.

As the opening of a commitment is essentially just a representation of a group element relative to three bases,
there is a standardΣ-protocol for proving knowledge of an opening of a given commitment. Moreover, using
techniques from Camenisch and Shoup [21], we can actually build anΩ-protocol for such a proof of knowledge,
which avoids the cut-and-choose paradigm.

Garay et al [31] give anΩ-protocol for a very similar task, which could easily be adapted for our purposes,
except that the protocol in [31] does not satisfy the dense referenceparameters property, which is crucial for our
construction of a GUC commitment. To appreciate the technical difficulty, the MacKenzie et al. protocol is based
on Paillier encryption, using an RSA modulusN . The secret key for this encryption scheme is the factorization of
N , and this is used as “global” trapdoor to a CRS in their proof of security in theUC/CRS model. However, in the
GUC framework, we cannot have such a global trapdoor, which is why we make use of Camenisch and Shoup’s
approach.6

The Camenisch and Shoup approach is based on a variant of Paillier encryption, introduced in Cramer and
Shoup [20], which we call hereprojective Paillier encryption. While the goal in [21] and [20] was to build a
chosen ciphertext secure encryption scheme, and we only require semantic security, it turns out their schemes
do not require that the factorization of the RSA modulusN be a part of the secret key. Indeed, the modulus
N can be generated by a trusted party, who then erases the factorization and goes away, leavingN to be used
as a shared system parameter. We can easily “strip down” the scheme in [21], so that it only provides semantic
security. The resultingΩ-protocol will satisfy all the properties we need to build a GUC commitment, under
standard assumptions (the Quadratic Residuosity, Decision Composite Residuosity, and Strong RSA).

Due to lack of space, all these details are relegated to appendices: Appendix H for the IBTC scheme, and
Appendix I for theΩ-protocol for proof of knowledge of a representation.

6 Achieving Optimal Round Complexity with Random Oracles
While our constructions for GUC zero knowledge and commitments are efficient in both computational and com-
munication complexity, and the constant round complexity of6 messages is reasonable, it would be nice improve
the round complexity, and possibly weaken the data erasure assumption. Inthis section we address the question
if such improvements are possible in the random oracle (RO) model [6]. We first remark that even the RO model,
without any additional setup, does not suffice for realizing GUC commitments or zero knowledge (see [11, 12]).
However, we may still obtain some additional efficiency benefits by combining the ACRS and RO models. Ideally,
we would like to achieve non-interactive zero knowledge (NIZK), and, similarly, a non-interactive commitment.
Unfortunately, this is not possible if we insist upon adaptive security, even if we combine the ACRS or PKI setup
models with a random oracle.

Theorem 4. There do not existadaptively secureandnon-interactiveprotocols for GUC-realizingFcom andFR
zk

(for most natural and non-trivial NP relationsR) in the ACRS or PKI setup models. This impossibility holds even
if we combine the setup with the random oracle model, and even if we allow erasures.

6It should be noted that the “mixed commitments” of Damgard and Nielsen [25] also have a very similar global extraction trapdoor,
which is why we also cannot use them to build GUC commitments.
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We give a more formal statement and proof of this result in Appendix K. Intuitively, there are two conflicting
simulation requirements for GUC-secure commitments/ZK proofs that pose a difficulty here: a) given knowledge
of the sender/prover’s secret key, they must be “extractable” to the simulator, yet b) given knowledge of the recip-
ient/verifier’s secret key, they must be “simulatable” by the simulator. It is impossible for a single fixed message
to simultaneously satisfybothof these conflicting requirements, so an adversary who can later obtain both of the
relevant secret keys via an adaptive corruption will be able to test them and see which of these requirements was
satisfied. This reveals a distinction between simulated interactions and real interactions, so we must resort to an
interactive protocol if we wish to prevent the adversary from being ableto detect this distinction. Accordingly, we
will now show that it is possible to achieveoptimal 2-round ZK and commitment protocols in the GUC setting
using both the ACRS and RO setups.

ROUND-OPTIMAL ZK USING RANDOM ORACLES. We achieve our goal by simply applying the Fiat-Shamir
heuristic [28] to our efficient zero knowledge and commitment protocols, replacing the first three and last three
messages of each protocol with a single message. We defer a more formal discussion and analysis of GUC security
in the combined ACRS and RO model with the Fiat-Shamir heuristic to full version7 of the paper, but briefly
comment on three important points. First, note that the only erasure requiredby our protocols now occurs entirely
during asingle local computation, without delay – namely, during the computation of the second message, where
an entire run of three-round protocol is computed and the local randomness used to generate that run is then
immediately erased. Thus, the need for data erasures is really is really minimal for these protocols.

Second, the proof of security for the modified protocols is virtually unaltered by the use of the Fiat-Shamir
heuristic. In particular, observe that the GUC simulatorS uses identical simulation strategies, anddoes notneed
to have access to a transcript of oracle queries, nor does it require theability to “program” oracle responses. Thus,
only in theproof of security(namely, that the environment cannot tell the real and the ideal worlds) dowe use the
usual “extractability” and “programmability” tricks conventionally used in the RO model.

Third, we stress that since the GUC modeling of a random oracle (accurately) allows the oracle to be accessed
directly by all entities – including the environment – the aforementioned featurethatS does not require a transcript
of all oracle queries, nor the ability to program oracle responses, iscrucial for deniability. It was already observed
by Pass [38] that deniable zero knowledge simulators must not program oracle queries. However, we observe that
even using a “non-programmable random oracle” for the simulator is still notsufficient to ensure truly deniable
zero knowledge. In particular, if the modeling allows the simulator to observe interactions with the random oracle
(even without altering any responses to oracle queries), this can lead to attacks on deniability. In fact, there is a
very practical attack stemming from precisely this issue that will break the deniability of the protocols proposed
by Pass [38] (see Appendix J). Our GUC security modeling precludes thepossibility of any such attacks.8

Of course, unlike the model of [38], we superimpose the ACRS model on theRO model, providing all parties
with implicit secret keys. This bears a strong resemblance to the model of [34], which employs the following
intuitive approach to provide deniability for the proverP : instead proving the statement,P will prove “either the
statement is true, or I know the verifier’s secret key”. Indeed, our approach is quite similar in spirit. However, we
achieve a much stronger notion of deniability than that of [34]. Our zero knowledge protocols are the first constant
round protocols to simultaneously achieve straight-line extractability (required for concurrent composability) and
deniability against an adversary who can perform adaptive corruptions. In contrast, the protocol of [34] is not
straight-line extractable, and is not deniable against adaptive corruptions (this is easy to see directly, but also
follows from Theorem 4, by applying the Fiat-Shamir heuristics to the 3-round protocol of [34]).

Finally, if one does not care about efficiency, applying our techniquesto the inefficient protocols of [11], we
get a general, round-optimal feasibility result for all of NP:

Theorem 5. Under standard cryptographic assumptions, there exists a (deniable)2-round GUC ZK protocol for
any language in NP in the ACRS+RO model, which does not rely on data erasures.

7Additional details can be found in [41] as well.
8Similarly, the modeling of [33] also rules out such attacks. However, theirprotocols make use of special hardware based “signature

cards” and require more than2 rounds. They also do not consider the issue of adaptive corruptions.
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A Deniability and Composability Problems of UC with Local Setup
In this section we show two main problems of the original UC framework when used with a local modeling of
the setup. First, it does not preserve deniability, and, second, it restricts the kind of composition which is safe to
do. We illustrate both of these problems using a zero-knowledge functionalityanalyzed in the UC model with the
(local) CRS setup. As was shown by [23], appropriately-designednon-interactiveZK proofs of knowledge can be
shown to be UC-secure (against static corruptions) in the CRS model. Let us call this non-interactive protocolπ.
In particular, on inputx, witnessw and CRSi, in produces a proofσ = π(x,w, i). This means that there exists an
efficiently verifiable relationR = Rx,i (which depends on the CRSi but not on its trapdoor!) such that, without
knowing a witness forw for x it is computationally hard to produce a non-interactive proofσ satisfyingR(σ) = 1.

DENIABILITY . Although we give the formal definition of deniable ZK in Appendix B, the failure of UC in terms
on deniability is obvious. In the ideal ZK functionality, if a prover proves some hard statement to a verifier, the
verifier has no way to convince a third party of this fact. Thus, the provercan later deny proving the theorem to the
verifier. Needless to say, this property no longer holds with a non-interactive proof: the proofσ can be transfered
to any third party who will be convinced that the statement is true, even if the prover wants to deny it.

COMPOSITION. As for the composition, using a local CRS leaves one with two options. Either abrand new CRS
must be created for each fresh protocol run, which is obviously impractical, or one can use the Joint-state UC
(JUC) theorem of Canetti and Rabin [19]. The JUC theorem allows one to reuse the same setup, but restricts one
to only usespecially-designed protocols. In particular, no guarantees are provided if even one of the composed
protocols can depend on the true reference string. As a consequence, composability falls prey tochosen-protocol
attacks, when a maliciously designed secure protocol (which depends on the truesetup) can suddenly become
insecure when composed with another secure protocol.

For example, assume some partyP is willing to prove in zero-knowledge some statementx that onlyP knows
the witnessw of. Second, let us consider a functionalityF , parameterized by our relationR above, which does
nothing except if a party can provide a satisfying proofσ makingR true. In this case, this party would learnP ’s
sensitive witnessw, but otherwise would learn nothing. We remark, in the ideal model,F is secure forP : since
only P knowsw and nobody butP can fake a valid proofσ of this fact, nobody should learn the value ofw.
Moreover, this should hold even ifP is willing to run an ideal ZK functionality together withF . However, the
moment we implement the ideal ZK functionality by our UC-secure protocolπ, the ideal security ofF is suddenly
broken: the verifier will obtain a valid non-interactive proofσ which will passπ, and then can extract the witness
w of x. Notice, in this example

• The description ofF depends on the CRS, but not on the trapdoor (which nobody knows).

• The users ofF (in particular,P ) might not even realize that the CRS is used in the description ofF . From
their perspective, the environment just designed a protocol which is secure forP in the ideal model.

• A maliciously designedsecureprotocol became insecure, when composed with the UC-secure protocol
proven so using thelocal setup modeling.
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• The security ofF breaks even ifF is implemented using a trusted party, completely independent of the
real-model implementation. In particular, we do not need to implementF using the CRS model to get the
break. In fact, we already mentioned that the users ofF need not even know about the CRS.

B GUC Security Implies Deniability
In this section we give a formal definition of a very strong type of deniability for zero-knowledge proofs, which we
call on-line deniability. Roughly, it implies that an attacker (called theinformantin this context) cannot convince
the “judge” that a zero-knowledge proof is taking place, even if the attacker corrupts either the prover or the verifier,
and even if the informant is constantly connected to an on-line judge. As faras we know, this is the strongest known
definition of deniable zero-knowledge.9 Nevertheless, we show that this extremely demanding definition10 almost
trivially follows from GUC-security, for any trusted setup which is modeled as a shared functionality (i.e., if the
setup isglobal). This implication solidifies the (convincing but) informal claim of [11] that the GUC-framework
is naturally equipped to provide deniability.

THE “PLAYERS”. We start by introducing the relevant parties. We will have aproverP who is presumably proving
a true statementx to averifierV (for some languageL), ajudgeJ who will eventually rule whether or not the proof
was attempted, aninformantI who witnessed the proof and is trying to convince the judge, and amisinformant
M who did not witness any proof whatsoever, but still wants to convince the judge that it did. Jumping ahead, the
judge will not know whether it is talking to a true informantI or a “smart enough” misinformantM (who simply
made up fake “evidence”), andJ ’s task will be actually to determine which of the two it is talking to. In other
words, the judge does not trust the (mis)informant, but is willing to work with it together in order to “incriminate”
an honest prover or verifier.

THE “RULES”. We assume that the prover and the verifier are part of some network environment, which might
include some trusted parties (i.e., trusted setup like PKI) and some means of communication (i.e., a direct secure
channel or a pair of secure channels to some trusted party). The exactdetails of this environment are not important
for now. What is important, however, is that we assume that the judge shouldhave a direct, private and “always-
on” line to the (mis)informant (whichever it is talking to). Intuitively, this on-linechannel between the judge and
the (mis)informant, coupled with the fact thatJ cannot be “rewound”, will guarantee us theon-line deniability
property that we are after.11 Additionally, we assume that the judge does not have a direct access to the players (for
example, it does not learn the players’ outputs), except through the (mis)informant and trusted setup (for example,
it can know the CRS available to all the parties, or their public keys if a PKI is used).12 Both the informantI
and the misinformantM will have the capability of adaptively corrupting either the proverP or the verifierV
(who start as honest) at any moment during the computation, and learning theentire state of the corrupted party
following the corruption. Additionally, once eitherP or V is corrupt, the judge learns about the corruption, while
the (mis)informant can totally control the actions of this party going forward.We assume the (mis)informant
cannot corrupt the trusted setup: for example, in the case of a CRS, the misinformant cannot replace the CRS with
a fake one (say, for which it knows a trapdoor). Finally, depending onthe network structure, the (mis)informant

9For example, much stronger than concurrent zero-knowledge introduced by [26] (which required rewinding in the plain model) or
“deniable ZK” in the RO model of [38] (which required extractability of RO). Of course, this means that in order to realize our notion much
stronger setup assumptions are needed as well. Nevertheless,the definition itselfappears to be the strongest and most demanding known in
the context of deniability.

10Note, since this is not a paper about deniability, we tried to make the simplest possible definition which is already stronger than previous
definitions. It might be possible to give even stronger definitions, as we hint in the sequel, but this was not the goal of this work.

11We notice that even if the real-world judge is actually “off-line” during the protocol run, the informant can still make use of some online
resource,e.g., some on-line bulletin board. Such bulletin board can record messages posted and provide unique identification numbers to
them. Since the board cannot be rewound, by using these random numbers that the board (unknowingly) provided to the informant, the
informant is effective creating a “judge” which cannot be rewound. In particular, prior technique for “off-line” deniability will not be
sufficient in this pretty realistic scenario.

12In some situations, we might want an even stronger guarantee allowing thejudge to have some limited interaction with the players, but
we do not explore this possibility here. Thus, depending on the exact formalization of such partial interaction, our definition may or may
not satisfy such stronger requirements.
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might have partial control over the network. In our setting, where we envision secure channels, this means that it
can only delay or block some messages (not knowing what they are), butother settings can be modeled as well.

THE “GAME”. Now, assume we have a protocolπ in our network which presumably implements a deniable zero-
knowledge proof fromP to V . In terms of correctness, we require that for any true statementx for which (honest)
P has a valid witnessw, if the informantI is passive, thenV will always accept the proof. Additionally, the
probability that a dishonestP ∗ can make an honest verifierV accept a false statementx is negligible.
As for (on-line) deniability, we define it as follows:

Definition 6. We say that a protocolπ achieveson-line deniabilityfor zero-knowledge if for any efficient informant
I there exists an efficient misinformantM such that that no efficient judgeJ can distinguish the following two
experiments with non-negligible probability. In both experiments, after gettingaccess to the setup (i.e., a CRS), the
judgeJ chooses an arbitrary pair(x,w), such thatw is a valid witness forx.

1. Informant Experiment. P gets an input(x,w), V andI get inputx, andP andV are instructed to run
the protocolπ on their inputs against an informantI (who, in turn, interacts with the judgeJ on-line).

2. Misinformant Experiment. P gets an input(x,w), V andI get inputx, butP andV arenot instructed to
run the protocolπ. Instead, they run an “empty” protocol against a misinformantM (who, in turn, interacts
with the judgeJ on-line).

We make a few comments about this definition. First, without loss of generality the“real” informantI can
simply be a “dummy” attacker13 who blindly follows the instructions of the judge and truthfully reports back
everything it sees. Second, the fact that the inputx and a witnessw are selected by the judge simultaneously serves
two purposes. On the one hand, it ensures that the informant cannot incriminate an honest party even if the entire
instance(x,w) is adversarially chosen. On the other hand, it ensures that the potential incrimination would happen
becauseP andV really ranπ, and not becausex in itselfhas some incriminating information impossible to obtain
otherwise (i.e.,irrespective of whether or notπ was actually run). Also, we gave the proverP the witnessw even
in the misinformant experiment, since we are not trying to deny thatP knows the witness (maybe judge knows
thatP does), but rather thatP proved the statement toV (who may or may not know its truth). Finally, we remark
that although our definition is extremely strong (e.g., stronger than previously proposed models of deniable ZK),
by itself it only protects the deniability of parties during the time that theyhonestly followed the protocolπ. In
particular, after a corruption, onlypastZK proofs of a given party are guaranteed to be “deniable”.14

DENIABILITY OF IDEAL ZK. Although this is not needed for our proof that GUC-security implies deniability, it is
instructive to consider anideal ZK functionalityFzk (for some relationR) described in Figure 2. Informally,Fzk is
“deniable” because, despite informing the adversary that the statementx is true , it does not provide the adversary
with any useful “evidence” of it. Using Definition 6, we can easily formalize this intuitive claim. Indeed, assumeP
andV have access to a trusted partyT implementingFzk (using private authenticated channels between the players
andT ), and consider a canonical “ideal-model” protocolφ, whereP andV simply useT to implement message
authentication. It is almost immediately clear that this protocol satisfies Definition 6(irrespective if additional
setup is available), formalizing the fact thatFzk is “deniable”.

Lemma 7. The canonical protocolφ achieves on-line deniability.

Proof. Given the simplicity ofφ, the misinformantM only has to report the state of a corrupted prover or verifier
back to the judge. For the prover, it learns the witnessw after the corruption, so it can just pretend thatP activated
Fzk on input(x,w). As for the verifier, it appends a fake receipt of the proof fromFzk (which does not depend on

13This is analogous to a result in [10], which shows that UC security has an equivalent formulation with respect to such a “dummy”
adversary.

14At this stage, we do not even know how todefinethe deniability of acorrupt party after the corruption (which could be similar in
spirit to the notion of “receipt-freeness” in electronic voting [7]). Depending on such a future formalization, our notion may or may not be
applicable to this stronger setting.
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w) only if the verifier was corrupted after the receipt of this receipt fromT . Clearly, the view ofJ is identical in
both experiments.2

DOES UC IMPLY DENIABILITY ? Informally, since we just established the deniability of the ideal functionality
Fzk in Lemma 7, one would imagine that if it wererealizedwith a “secure protocol” analyzed via a sufficiently
strong security definition/framework, such a realization of the ideal functionalityFzk would also be deniable. For
example, the strong notion of security captured by theUniversal Composability(UC) framework of Canetti [10]
naturally appears to provideexactlythis sort of guarantee. (The remainder of our discussion assumes some basic
familiarity with the UC framework.) However, the UC framework lacks any mechanism for directly modeling
global setup, such as a CRS. Therefore, in the past, UC secure protocols which makeuse of a CRS have simply
modeled it as alocal setupinstead. This approach to modeling allows the UC simulator (i.e., the adversary attacking
the ideal functionality) to choose its own CRS. Clearly, this modeling does not capture the deniability concern,
since such protocols can only be simulated if the simulation procedure is allowedto control the CRS (which is
publicly visible in the real world, and therefore cannot be plausibly controlled by anyone other than the trusted
authority generating the CRS).

SOLVING DENIABILITY WITH GUC. Luckily, a recently proposed extension to the UC framework allows us
to directly modelglobal setup. TheGeneralized Universal Composability(GUC) framework of [11] introduces
the notion of ashared functionality. Such functionality can be shared by multiple protocols, and, as a result, the
environment effectively has direct access to the shared functionality – meaning that the simulator is not empowered
to control it. Thus, modeling global setup as a shared functionality allows us toproperly capture additional security
concerns, including deniability, with a UC-style security definition. We state it formally as follows.

Theorem 8. Consider a real-model protocolπ which utilizes some trusted setupmodeled as a shared functionality
in the GUC framework. Then, ifπ is a GUC-secure implementation ofFzk with respect to this setup, thenπ is
on-line deniable (according to Definition 6) with respect to this setup.

Proof. Assumeπ is GUC-secure. This means that there exists a simulatorS which can fool any environmentZ
thinking that it is interacting with the “dummy” attackerA when parties runπ. We define our misinformantM
(for the “dummy” informantI) to simply runS in its head, by pretending that the proverP activated the ideal
functionality with the message(ZK-prover, sid, P, V, x, w) (see Figure 2). Notice,S does not need to know
the witnessw to start working (since it does not learn it in the ideal model, unless the prover is corrupt at the start,
or the environment tells itw). However, ifP gets corrupt,S would expect to learn the witnessw of P , whichM
can provide toS according to our definition of the misinformant experiment. We stress, however, thatM can run
S in relation to the setup as well, because the setup is modeled as a shared functionality, as we explained earlier. As
S generates the simulated view ofA,M pretends that this is the view of the informantI. By the GUC-security of
π, it means that the simulated view ofA should be indistinguishable from the real view of (dummy)A interacting
with anyZ which actually initiatedP with the input(ZK-prover, sid, P, V, x, w) in the real model, such as the
judgeJ in its experiment with the actual informantI. Thus, if we defineZ to be mimicking the judgeJ except
it also initiates a ZK proof fromP to V , then the view ofJ in the informant/misinformant experiments is exactly
the same as the view ofZ in the real/ideal experiment experiment above (except without a possible output ofV
(ZK-proof,sid, P, V, x)). This completes the proof.2

C Ω-protocols
Let Π be anΩ-protocol, where algorithmParamGen generates a system parameterΛ, and algorithmRefGen

generates a reference parameterρ. Recall that a given system parameterΛ determinesX,L,W,R, as described in
§2.3.

C.1 Soundness.We sayΠ satisfies thespecial soundnesscondition, if there exists an efficient algorithmErw, called
a rewinding extractor, such that every efficient adversaryA wins the following game with negligible probability:

1. The challenger generates a system parameterΛ and a reference parameterρ, and sends(Λ, ρ) to A. Note
thatΛ definesX,L,W,R as above.
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2. A computesx ∈ X, along with two accepting conversations(a, c, z) and(a, c′, z′) for x, wherec 6= c′, and
gives these to the challenger.

3. The challenger then runsErw on input(Λ, ρ, x, a, c, z, c′, z′), obtainingw ∈W .
4. A wins if w is not a witness forx.

We say thatΠ satisfies thetrapdoor soundnesscondition if there exists an efficient algorithmEtd, called the
trapdoor extractor, such that every efficient adversaryA wins the following game with negligible probability:

1. The challenger generates a system parameterΛ and a reference parameter/trapdoor pair(ρ, τ), and sends
(Λ, ρ) toA. Note thatΛ definesX,L,W,R as above.

2. A computesx ∈ X, and sendsx to the challenger.
3. The challenger generates a random challengec, and sends this toA.
4. A generates a responsez, and sends this to the challenger.
5. The challenger runsEtd on input(Λ, τ, x, a, c, z), obtaining a valuew.
6. A wins if (a, c, z) is an accepting conversation forx, butw is not a witness forx.

We say thatΠ satisfies thespecial trapdoor soundnesscondition if there exists an efficient algorithmEtd, called
the trapdoor extractor, such that every efficient adversaryA wins the following game with negligible probability:

1. The challenger generates a system parameterΛ and a reference parameter/trapdoor pair(ρ, τ), and sends
(Λ, ρ) toA. Note thatΛ definesX,L,W,R as above.

2. A computesx ∈ X, along with two accepting conversations(a, c, z) and(a, c′, z′) for x, wherec 6= c′, and
gives these to the challenger.

3. The challenger runsEtd on input(Λ, τ, x, a, c, z), obtaining a valuew.
4. A wins if w is not a witness forx.

Using a standard rewinding argument ([5]), it is easy to show that special trapdoor soundness property implies
the trapdoor soundness property, assuming the size of the challenge space is large (i.e., super-polynomial).

We say thatΠ is partial trapdoor sound with respect to a functionf if the challenge space is large, and if there
exist efficient algorithmsErw andEtd, such that every efficient adversaryAwins the following game with negligible
probability:

1. The challenger generates a system parameterΛ and a reference parameter/trapdoor pair(ρ, τ), and sends
(Λ, ρ) toA. Note thatΛ definesX,L,W,R as above.

2. A computesx ∈ X, along with two accepting conversations(a, c, z) and(a, c′, z′) for x, wherec 6= c′, and
gives these to the challenger.

3. The challenger then runsErw on input(Λ, ρ, x, a, c, z, c′, z′), obtainingw ∈W .
The challenger also runsEtd on input(Λ, τ, x, a, c, z), obtaining a valuev.

4. A wins if w is not a witness forx, or if v 6= f(w).

These definitions of special soundness and special trapdoor soundness are essentially the same as in Garay, et
al [31], except for a the properties are stated in terms of attack games, rather than universal quantifiers; actually,
one cannot use Strong-RSA-style arguments otherwise.

C.2 Honest Verifier Zero Knowledge. We say thatΠ is honest verifier zero knowledge (HVZK)if there exists
an efficient algorithmZKSim, called asimulator, such that every efficient adversaryA has negligible advantage in
the following game:

1. The challenger generates a system parameterΛ and a reference parameterρ, and sends(Λ, ρ) to A. Note
thatΛ definesX,L,W,R as above.

2. A computes(x,w) ∈ R, along with a challengec, and sends(x,w, c) to the challenger.
3. The challenger choosesb ∈ {0, 1} at random, and computes messagesa andz in one of two ways, depending

on b:
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• if b = 0, thena andz are obtained by running the protocol, using the proverP with inputs(Λ, ρ, x, w),
and usingc as the challenge;
• if b = 1, thena andz are computed as the output of algorithmZKSim on input(Λ, ρ, x, c).

The challenger sends(a, z) toA.
4. A outputŝb ∈ {0, 1}.
5. A’s advantage is defined to be|Pr[b = b̂]− 1/2|.

C.3 Dense Reference Parameters.A given system parameterΛ determines a set̂Φ of possible reference pa-
rameters. LetΦ be some larger set, also determined byΛ. We call elements ofΦ extended reference parameters.
Further suppose that:

• we have an efficient algorithm that samples the uniform distribution onΦ — this algorithm takesΛ as input;
• we have an efficient algorithm that determines membership inΦ — this algorithm also takesΛ as input;
• we have an efficiently computable binary operation onΦ that makesΦ into anabelian group; the inverse

operation of the group should also be efficiently computable;
• it is computationally infeasible to distinguish a random element ofΦ from a random element of̂Φ.

If all of these conditions are met, we say thatΠ satisfies thedense reference parameter property.
The last condition may be stated more precisely as saying that every efficient adversaryA has negligible

advantage in the following game:

1. The challenger generates a system parameterΛ. This determines setŝΦ andΦ as above.
2. The challenger choosesb ∈ {0, 1} at random, and computes an extended reference parameterρ in one of

two ways, depending onb:

• if b = 0, thenρ← RefGen(Λ);

• if b = 1, thenρ
$
← Φ.

The challenger sendsρ toA.
3. A outputŝb ∈ {0, 1}.
4. A’s advantage is defined to be|Pr[b = b̂]− 1/2|.

C.4 Σ-protocols. A Σ-protocol is just special type ofΩ-protocol, in which there is no reference parameter. The
notions of special soundness and HVZK carry oververbatimto Σ-protocols, while the various notions of trapdoor
soundness, and the notion of dense reference parameters, do not apply to Σ-protocols.

D Identity-based trapdoor commitments
We define IBTCs similarly to [11], with the additional restriction of requiring theinput to the commitment algo-
rithm to serve as a decommitment (this removes the need to specify an opening algorithm with the scheme).

Definition 9 (Identity-Based Trapdoor Commitment). An IBTC schemeIC is given by a5-tuple of poly-time
algorithms,IC = (Setup,Extract,Com,ECom,Eqv), with the following basic properties:

• Setup: Generates a public keyPK and a master secret keyMSK . We may omit explicit mention ofPK

(which is always used as an input for the remaining algorithms) as a notational convenience.
• Extract: On input(PK , ID ,MSK ) outputs a trapdoorSK ID for identity ID . TheExtract algorithm may

also be randomized.
• Com: On input(PK , ID , d,m) outputs a commitmentκ for messagem under identityID using a decom-

mitment valued that belongs to some setD (determined byPK ). This is adeterministicalgorithm (although
d will be randomly generated). As a shorthand, we will writeComID(d,m) to denote such a commitment.
• ECom: On input(PK , ID ,SK ID) outputs a pair(κ, α), to be used withEqv.
• Eqv: On input(PK , ID ,SK ID , κ, α,m) produces a decommitmentd ∈ D such thatComID(d,m) = κ.

IBTC schemes must satisfy the following security requirements:
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• Binding - Every efficient adversaryA wins the following game with negligible probability:

1. The challenger generates(PK ,MSK ) using theSetup algorithm, and sendsPK toA.
2. A queries an oracle forExtract(PK , ·,MSK ) (many times).
3. A outputsID , d,m, d′,m′.
4. A wins if ID was not submitted to theExtract oracle in Step 2,m 6= m′, andComID(d,m) =

ComID(d′,m′).

• Equivocability - The advantage of every efficient adversaryA in the following game is negligible:

1. The challenger generates(PK ,MSK ) using theSetup algorithm, and sendsMSK toA.
2. A chooses an identityID and a messagem, and sends(ID ,m) to the challenger.
3. The challenger choosesb ∈ {0, 1} at random, and computesd ∈ D in one of two ways, depending on
b:

– if b = 0, thend
$
← D;

– if b = 1, then

SK ID ← Extract(PK , ID ,MSK ), (κ, α)← ECom(PK , ID ,SK ID), d← Eqv(PK , ID ,SK ID , κ, α,m).

The challenger then sendsd toA.
4. A outputŝb ∈ {0, 1}.
5. A’s advantage is defined to be|Pr[b̂ = b]− 1/2|.

E Details of GUC ZK analysis
First, we give the remaining details of the simulator, which are essentially standard fare in the UC literature.

Initialization. All parties are assumed to be initialized with a copy of the common reference string PK published
by Gacrs during its global initialization phase. If the parties have not already been soinitialized, S activates a
copy of theGacrs shared functionality, which then proceeds with the initialization. (Notice, an external copy of the
globally sharedGacrs functionality is actually being invoked byS, andS does not attempt to initialize any parties
directly.)

Simulating communication with Z. S simply forwards all communications between its internal copy ofA and
Z.

Simulating communication with Gacrs. S simply forwards all communications between its internal copy ofA
andGacrs.

Simulating a proof between two honest parties,P and V . Since we are in the secure channels model,S
simply notifiesA that communications (with messages of appropriate length for a proof protocol) have taken place
betweenP andV . If A blocks any communications,S blocksV from receiving the output ofFR

zk.
If either P or V is corrupted during the execution of the protocol, or subsequent to its completion, the pro-

tocol transcript preceding the corruption event is generated using the corresponding technique described below
(including provisions for the internal state of the corrupt party).

Next, we present here a more detailed proof of the claim that the simulated execution of the GUC ZK protocol
in §3 is indistinguishable from the real protocol. We structure our proof as a sequence of games, starting with the
unaltered real-world interaction and proceeding by steps towards the ideal world interaction.

I0 - Real-world interaction The original protocol runs with adversaryA.

I1 - Simulating interactions between two honest partiesThis interaction is the same asI0, only the compu-
tation of the actual protocol messages between two honest parties is delayed until one of them becomes
corrupted (at which point,A expects to learn the corrupted party’s history via examination of its internal
state).

21



Given that we are in the secure channels model (which implies that any messages sent between honest
parties remains entirely private until one of them is corrupted) this is only a conceptual change toI0, so the
distributions of these two games are trivially identical.

I2 - Modifying (κ′, d′) sent to corrupt verifier When the verifier is corrupt but the prover is honest, we have the
honest prover replace the commitmentκ′ to be sent in Step 5 of the protocol with an equivocable commitment
opened to the same value. That is, we provide the honest prover with the trapdoor informationSK V of the
corrupt verifier, and we modify Steps 5-7 of the protocol as follows:

5. P starts theΩ-protocolΠ for relationR, with common input(Λ, ρ, x). As usual,P plays the role of
the prover inΠ and computes the first messagea.
P computes(κ̂′, α)← ECom(V,SK V ).
P then sends the equivocable commitmentκ̂′ to the corrupt verifierV .

6. P receives a challengec from the corrupt verifierV .
7. P computes a responsez to V ’s challengec. P computesd′ ← Eqv(V,SK V , κ̂

′, α, a), and sends
d′, a, z to the corrupt verifierV .

I3 - Modifying (a, z) sent to a corrupt verifier Once again, this change affects only the scenario where the
prover is honest and the verifier is corrupt.

This interaction is the same asI2, only the values ofa, z sent by the prover are generated using the HVZK
Simulator forΠ, rather than usingΠ directly.

That is, modify Step 7 of the protocol as follows:

7. P runs the HVZK simulatorZKSim for protocolΠ on input(Λ, ρ, x, c), obtaining simulated messages
a andz (this values are used instead of those that would have been generated viaΠ).
P computesd′ ← Eqv(V,SK V , κ̂

′, α, a), and sendsd′, a, z to the corrupt verifierV .

I4 - Modifying the coin-toss commitment sent to corrupt provers This interaction is the same asI3 in case the
verifier is corrupt. However, in the event that the prover is corrupt, wemodify the coin-flipping stage of the
protocol to replace the commitment sent by the honest verifier with an equivocable commitment opened to
the same value.

That is, we provide the honest verifier with the trapdoor informationSKP of the corrupt prover, and we
modify Steps 1-3 of the protocol as follows:

1. V computesρ1
$
← Φ.

V computes(κ̂1, α)← ECom(P,SKP ), and sendŝκ1 to P .
2. P replies by sending some stringρ2 to V .
3. V computesd1 ← Eqv(P,SKP , κ̂1, α, ρ1).
V first verifies thatρ2 ∈ Φ. ThenV sends the opening(d1, ρ1) to P .

I5 - Rigging the coin-flipping for corrupt provers This interaction is the sameI4, only in the case where the
prover is corrupt we further modify the coin-flipping phase of the protocol by changing the honest verifier’s
opening in Step 3 in order to “rig” the outcome of the coin-flipping to a pre-specified choice of reference
parameterρ.

Specifically, we make the following change:

3. P generates a pair(ρ, τ)← RefGen(Λ), and setsρ1 = ρ · ρ−1
2 (rather than choosingρ1 at random).

V computesd1 ← Eqv(P,SKP , κ̂1, α, ρ1).
V first verifies thatρ2 ∈ Φ. ThenV sends the opening(d1, ρ1) to P .

I6 - The ideal world The most significant difference betweenI5 and the final, simulated interaction in the ideal
world is that the simulator uses the rigged coin-flipping technique to “trapdoorextract” a witness when the
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prover is corrupt – and then the honest verifier’s output is taken fromtheFR
zk functionality, rather than a

direct verification of the protocol messages. There is a minor differencewhen the verifier is corrupt – now it
is the simulator who generates the protocol messages of the honest prover, rather than the prover itself. There
are also corresponding changes in message delivery, none of which are ultimately visible to the environment
or the (now, internally simulated) adversary.

Provided that the trapdoor extraction procedure produces a valid witness whenever the corrupt prover suc-
ceeds in convincing an honest verifier,I5 andI6 are identically distributed.

Claim 10. I2 is indistinguishable fromI1.

Proof. The proof follows directly from the equivocability property of IBTCs. Namely, any environment that can
distinguishI2 from I3 can easily be made to distinguish equivocable commitments from honest commitments to
the same value by simply plugging in the challenge commitments appropriately (and using Gacrs to provide the
same public setup parameters as the challenger’s IBTC system).2

Claim 11. I3 is indistinguishable fromI2.

Proof. The proof follows by observing that ifI3 can be distinguished fromI2, then either (a) extended reference
parameters can be distinguished from reference parameters, or (b) real conversations forΠ can be distinguished
from simulated conversations. The reduction follows by an application of Theorem 15, which allows us to “rig”
the coin-tossing phase of the protocol (which is taking place in either interaction I3 or I2) to yield the sameρ
specified by the challenger in the HVZK attack game. (Observe that we require the dense reference parameter
property of theΩ-protocol, to satisfy the requirements of the Lemma.) Since we can now rest assured that the
challenge reference parameter is being used for theΩ protocol in our interaction, we simply send(x,w, c) to the
HVZK game challenger (wherew is taken from the input to the honest proverP in our interaction), and replace the
honest proverP ’s choice of(a, c) by the response from the challenger. DistinguishingI3 from I2 now corresponds
precisely to guessing the HVZK challenge bitb. 2

Claim 12. I4 is indistinguishable fromI3.

Proof. This is a straightforward reduction to equivocability of IBTCs, as before. 2

Claim 13. I5 is indistinguishable fromI4.

Proof. We begin by considering a modified interactionI4 whereV computesρ1 by first selectingρ uniformly at
random, and then computingρ1 ← ρ · ρ−1

2 . It is easy to see that the distribution ofρ1 is unaltered, and thus we
have made only a conceptual change toI4.

Given this new view ofI4, it is easy to see that if we modifyI4 as per gameI5, theonly differenceis that the
valueρ used byV is no longer random, but is instead chosen according toRefGen. From here, it is straightforward
to reduce the distinguishing game to the Dense Reference Parameter property of theΩ-protocol.2

Claim 14. I6 is indistinguishable fromI5.

Proof. This proof is by reduction to trapdoor extractability property of theΩ-protocol. Recall that the “rigging”
of the reference string is already taken care of by the technique ofI5 (so we may easily arrange for the sameρ
selected by the challenger in the extraction attack game of theΩ-protocol). The trapdoor soundness property for
Π guarantees that we get a witness with overwhelming probability.2

Combining the preceding claims yields the desired proof that the real interaction I0 is indistinguishable from
the ideal interactionI6.

F A coin-tossing lemma
First, we consider a generic indistinguishability taskT (this models encryptions, commitments, HVZK, etc.) The
taskT has a system parameterΛ and reference parameterρ, which are generated by some given algorithms.
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Further, we assume that reference parameters belong to some abelian group Φ, in which the group operation
(which we write multiplicatively) and the group inverse operation are efficiently computable. Membership inΦ
should also be efficiently decidable. We assume that the reference parameter generation algorithm generates the
uniform distribution onΦ. We also assume thatT specifies a probabilistic algorithmE that takes as input a system
parameterΛ, a reference parameterρ, a bit stringx, and single “selection” bitb.

The indistinguishability property is defined by the following attack game:

Attack Game 1. This is a game played between an adversaryA and a challenger.

1. The challenger generates a system parameterΛ and a reference parameterρ, and sends(Λ, ρ) toA.
2. A computes a valuex ∈ {0, 1}∗, and sendsx to the challenger.
3. The challenger choosesb ∈ {0, 1} at random, and computesy ← E(Λ, ρ, x, b), and sendsy toA.
4. A outputŝb ∈ {0, 1}.

The adversary’s advantage is defined to be|Pr[b = b̂]− 1/2|.

We say thatT is computationally indistinguishableif every efficient adversary has negligible advantage in
Attack Game 1.

Now suppose that instead of generating the reference parameterρ at random, we use a “coin tossing” protocol,
as described in the following attack game. Assume we have a computationally binding commitment schemeCom,
which may have system parametersΛCom.

Attack Game 2. This is a game played between an adversaryA and a challenger.

1. The challenger generates a system parameterΛ for T and a system parameterΛCom for Com, and sends
(Λ,ΛCom) toA.

2. A sends a commitmentκ1 to the challenger.
3. The challenger generates a random reference parameterρ2 ∈ Φ, and sendsρ2 toA.
4. A computes a valuex ∈ {0, 1}∗, and sendsx, along with an opening(d1, ρ1) of κ1 to the challenger.
5. The challenger verifies that(d1, ρ1) is a valid opening ofκ1, and thatρ1 ∈ Φ.

The challenger setsρ← ρ1 · ρ2.
The challenger choosesb ∈ {0, 1} at random, and computesy ← E(Λ, ρ, x, b), and sendsy toA.

6. A outputŝb ∈ {0, 1}.

The adversary’s advantage is defined to be|Pr[b = b̂]− 1/2|.

Theorem 15. If T is computationally indistinguishable andCom is computationally binding, then the advantage
of every efficient adversary in Attack Game 2 is negligible.

Proof. SupposeA is an efficient adversary playing in Attack Game 2 with advantageα, whereα ≥ 1/P for some
polynomialP (and for infinitely many values of the security parameter). We construct anefficient adversaryA′

that contradicts the assumed computational indistinguishability ofT , as in Attack Game 1.
AdversaryA′ runs as follows:

1. After receivingΛ andρ from its challenger in Step 1 of Attack Game 1,A′ generates a system parameter
ΛCom for the commitment scheme, and sends(Λ,ΛCom) toA, as in Step 1 of Attack Game 2.

2. After receiving the commitmentκ1 fromA as in Step 2 of Attack Game 2,A′ generatesρ∗2 ∈ Φ at random
and sends this value toA, as in Step 2 of Attack Game 2.

3. If A does not respond with a valid opening, as in Step 2 of Attack Game 2, thenA′ outputs 0 and halts.
Otherwise, ifA responds withx∗ and a valid opening(d1, ρ1),A′ proceeds as follows:
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t← P

ω
$
← {1, . . . , t}

for i← 1 to t do
if i = ω // “plug and pray”

then ρ2 ← ρ · ρ−1
1

else ρ2
$
← Φ

rewindA back to Step 2 of Attack Game 2 and sendρ2 toA
if A responds withx and a valid opening(d′1, ρ

′
1) of κ1 then

if i 6= ω then output 0 and halt// prayers unanswered:(
if ρ′1 6= ρ1 then output 0 and halt// commitment broken!
sendx to the challenger in Step 3 of Attack Game 1
forward challenger’s responsey toA
whenA outputŝb, then output̂b and halt

output 0 and halt// rewinding failed to produce second opening:(

Analysis.We claim thatA′ has advantage at least1/4P 2 in Attack Game 1, for infinitely many values of the
security parameter. To see this, first consider the following “unboundedrewinding version” of Attack Game 2. In
this game, ifA does not open his commitment in step 4, the game halts (and we assumeb̂ is set to 0). Otherwise,
if A opens his commitment, the challenger rewindsA to step 3, feeding him fresh, random values ofρ2, until A
opens his commitment for a second time. This goes on for as long as it takes. When the adversary does open for
the second time, the game continues, exactly as in Attack Game 2, but using the valuesρ2, x, d1, ρ1 obtained in the
second opening.

It is easy to argue that the advantage ofA in the unbounded rewinding game is equal toα. Moreover, the
expected number of attempts to obtain a second opening is easily calculated to be≤ 1. Therefore, by Markov’s
inequality, the probability that the number of attempts exceedst is at most1/t.

Now consider at-bounded rewinding version of Attack Game 2, wheret := P , in which the challenger aborts
the rewinding aftert attempts (settinĝb to 0 in this case). Sincet = P and the probability thatb = b̂ is 1/2 if
the challenger aborts, it follows that the advantage ofA in thet-bounded rewinding game is≥ α− (1/2)(1/t) ≥
1/P − 1/2P = 1/2P .

We make one more change to thet-bounded rewinding game: if the second opening does not agree with the
first, the game is also aborted. Suppose that the probability of abort isǫ. Under the assumption that the commitment
scheme is binding,ǫmust be negligible, and so for all sufficiently large values of the security parameter,ǫ ≤ 1/4P .
It follows that the advantage ofA in this game is at least1/2P − 1/4P = 1/4P for sufficiently large values of the
security parameter.

We obtainA′ from this last game using a standard “plug and pray” argument, which reduces the advantage by
a factor oft, from which we obtain the bound1/4P 2. 2

G Details of GUC commitment analysis
Most of the details for the analysis of the GUC commitment protocol are the same as the analysis of the GUC
protocol (see Appendix E). The main difference is that a slightly more specialized argument is needed to prove that
I6 is indistinguishable fromI5. In I6, the simulator uses the trapdoor extractorEtd during the commit phase, when
P is corrupted, to extract a valuem to pass to the ideal functionality. Later, during the reveal phase,P may open
the commitmentκ inconsistently as(d̂, m̂), wherem̂ 6= m; we want to argue that this happens with only negligible
probability, using the partial trapdoor soundness property forΠ, relative to the functionf(d,m) := m. Suppose to
the contrary that the adversary succeeds in making such an inconsistentopening with non-negligible probability,
even thoughV accepted the conversation(a, c, z) in theΩ-protocol. Then using the binding property of the IBTC
scheme (applied to the commitmentκ′), we can rewind the adversary to get a second accepting conversation
(a, c′, z′), wherec′ 6= c, also with non-negligible probability (e.g., the Reset Lemma of [5]). The partial trapdoor
soundness property will guarantee that the rewinding extractorErw, applied to these two conversations, will yield
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an opening ofκ of the form(d,m). Now we have two openings ofκ, (d̂, m̂) and(d,m), wherem̂ 6= m, which
breaks the binding property of the IBTC scheme — a contradiction.

H An efficient identity-based commitment scheme
We present an efficient identity-based commitment scheme for which an efficient Ω-protocol for proof of posses-
sion of an opening may be readily constructed.

H.1 Waters signature scheme.Our starting point is Waters signature scheme, which we review here. LetG and
H be a groups of prime orderq, let e : G→ H be an efficiently computable, non-degenerate bilinear map, and let
G∗ := G := {1}.

system parameters:a description ofG, H, ande, along with

• random group elementsg1,g2,u0,u1, . . . ,uk ∈ G,
• a description of a collision-resistant hash functionH : {0, 1}∗ → {0, 1}k.

key generation: a randomx ∈ Zq is chosen,h1 ∈ G is computed ash1 ← gx
1 , andh2 ∈ G is computed as

h2 ← gx
2 ; the public key ish1, the secret key ish2.

signing: to sign a messagem ∈ {0, 1}∗, the hashH(m) = b1 · · · bk is computed (where eachbi ∈ {0, 1}), a
randomr ∈ Zq is chosen, and the signature(s1, s2) ∈ G×G is computed as follows:

s1 ← gr
1, s2 ← h2ũ

r
m,

where
ũm := u0

∏

bi=1

ui.

verification: given a messagem ∈ {0, 1}∗ and a signature(s1, s2) ∈ G × G, the verification algorithm checks
that

e(s1, ũ
−1
m ) · e(s2,g1) = e(h1,g2),

whereũm is as above.

The Waters signature is secure under thecomputational Diffie-Hellman (CDH)assumption inG, together with
the assumption thatH is collision resistant.

H.2 Proof of knowledge of a Waters signature.To prove knowledge of a Waters signature(s1, s2) ∈ G×G on
a messagem ∈ {0, 1}∗, we may use the following protocol:

The prover choosesw1, w2 ∈ Z∗
q at random, and computes

s̄1 ← s
1/w1

1 and s̄2 ← s
1/w2

2 .

The prover then sends̄s1 ands̄2 to the verifier, and uses a standardΣ-protocol to prove knowledge of
exponentsw1, w2 ∈ Zq such that

γw1

1 γw2

2 = γ,

where
γ1 := e(s̄1, ũ

−1
m ), γ2 := e(s̄2,g1), and γ := e(h1,g2).

The details are as follows:

26



1. The prover choosesw1, w2 ∈ Z∗
q at random, and computes

s̄1 ← s
1/w1

1 and s̄2 ← s
1/w2

2 .

Let
γ1 := e(s̄1, ũ

−1
m ), γ2 := e(s̄2,g1), and γ := e(h1,g2). (1)

The prover then chooses̄w1, w̄2 ∈ Zq at random, and computes̄γ ← γw̄1

1 γw̄2

2 .
The prover sends the values

s̄1 ∈ G, s̄2 ∈ G, γ̄ ∈ H

to the verifier.
2. The verifier chooses a challengec ∈ Zq at random, and sendsc to the prover.
3. The prover computes

ŵ1 ← w̄1 − cw1 and ŵ2 ← w̄2 − cw2

and sends the values
ŵ1 ∈ Zq, ŵ2 ∈ Zq

to the verifier.
4. The verifier checks that

γŵ1

1 γŵ2

2 γc = γ̄,

whereγ1, γ2, γ are as defined in (1).

It is easily verified that thisΣ-protocol is HVZK, at least with respect to signatures of the form(s1, s2), where
s1 6= 1 ands2 6= 1. Indeed, for such a signature,s̄1 and s̄2 are independent and uniformly distributed overG∗,
and the rest of the protocol may be simulated using standard techniques. Since signatures output by the signing
algorithm are of this form with overwhelming probability, this is sufficient for our purposes.

Also, thisΣ-protocol satisfies the special soundness property. Indeed, giventwo accepting conversations with
the same first flow,(s̄1, s̄2, γ̄), one obtainsw1, w2 ∈ Zq such that

e(s̄1, ũ
−1
m )w1 · e(s̄2,g1)

w2 = e(h1,g2),

and since
e(s̄1, ũ

−1
m )w1 = e(s̄w1

1 , ũ−1
m ) and e(s̄2,g1)

w2 = e(s̄w2

2 ,g1),

it follows that(s̄w1

1 , s̄w2

2 ) is a valid Waters signature onm.

H.3 An identity-based commitment scheme.The identity-based commitment scheme derived from the above
Σ-protocol works as follows. LetID ∈ {0, 1}∗ be the identity to be associated with the commitment, and let
m ∈ Zq be the message to be committed. The commitment is computed as follows:

s̄1, s̄2
$
← G∗, d1, d2

$
← Zq

γ1 ← e(s̄1, ũ
−1
ID ), γ2 ← e(s̄2,g1), γ ← e(h1,g2)

γ̄ ← γd1

1 γd2

2 γm

output(s̄1, s̄2, γ̄)

A commitment(s̄1, s̄2, γ̄) ∈ G∗ ×G∗ ×H is opened by revealingd1, d2,m that satisfies the equation

γd1

1 γd2

2 γm = γ̄,

whereγ1, γ2, γ are computed as in the commitment algorithm, using the given valuess̄1, s̄2.
The trapdoor for such a commitment is a Waters signature on the identityID . Using such a signature, one

can just run theΣ-protocol, and open the commitment to any value. The commitment will look the same as
an ordinary commitment, unless either component of the signature is the identity element, which happens with
negligible probability.

As the opening of a commitment is essentially just a representation of a public group element with respect
to public bases, we can easily build aΣ-protocol for proving knowledge of an opening of a given commitment.
Indeed, we will show how to build an efficientΩ-protocol, where the messagem is trapdoor extractable.
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I An efficient Ω-protocol for proving knowledge of a representation
I.1 Number theory background. LetN be a positive integer.

• [N ] denotes the set{0, . . . , N − 1};
• for a ∈ Z, a mod N denotes the unique integerx ∈ [N ] such thata ≡ x (mod N);
• more generally, ifa, b ∈ Z with b 6= 0 andgcd(b,N) = 1, (a/b) mod N denotes the unique integerx ∈ [N ]

such thata ≡ xb (mod N);
• ZN denotes the ring of integers moduloN , andZ∗

N the multiplicative group of units;
• for a ∈ Z, [a]N ∈ ZN denotes the residue class moduloN containinga.

The schemes we shall present below use as a system parameter an RSA modulus of the formN = PQ, where
P andQ are large, distinct, “strong primes,” i.e., primes of the formP = 2P ′ +1 andQ = 2Q′ +1, whereP ′ and
Q′ are odd primes. DefineN ′ := P ′Q′.

Note that in all applications, no entity is required to know the factorization ofN — not even a simulator in a
security proof. We assumeN is generated by a trusted party who immediately disappears, taking the factorization
of N with it.

We shall make use of the two abelian groupsZ∗
N andZ∗

N2 . We recall some basic facts:

• Z∗
N is isomorphic toZN ′ × Z2 × Z2;

• if jN := {[a]N : (a | N) = 1}, where(· | ·) is the Jacobi symbol, then this definition ofjN is unambiguous,
andjN is a subgroup of index2 in Z∗

N ; observe that[−1]N ∈ jN ;
• the subgroup of squares(Z∗

N )2 has index2 in jN ; note that[−1]N /∈ (Z∗
N )2;

• Z∗
N2 is isomorphic toZN × ZN ′ × Z2 × Z2;

• the special elementw := [1 + N ]N2 ∈ Z∗
N2 has orderN , and moreover, for eachm ∈ Z, we have

wm = [1 +Nm]N2 ;
• if JN := {[a]N2 : (a | N) = 1}, then this definition ofJN is unambiguous, andJN is a subgroup of index

2 in Z∗
N2 ; observe that[−1]N2 ∈ JN ;

• the subgroup of squares(Z∗
N2)

2 has index2 in JN ; moreover, for alla ∈ Z, we have[a]N2 ∈ (Z∗
N2)

2 if and
only if [a]N ∈ (Z∗

N )2; in particular,[−1]N2 /∈ (Z∗
N2)

2;
• the subgroup ofN th powers(Z∗

N2)
N has indexN in Z∗

N2 .

Now we state the intractability assumptions we will need:

• TheStrong RSA assumptionsays that given a randomh ∈ Z∗
N , it is hard to findg ∈ Z∗

N and an integere > 1
such thatge = h.
• TheQuadratic Residuosity (QR) assumptionsays that it is hard to distinguish a random element ofjN from

a random element of(Z∗
N )2.

• TheDecision Composite Residuosity (DCR) assumptionsays that it is hard to distinguish a random element
of Z∗

N2 from a random element of(Z∗
N2)

N .

Another convenient fact is the uniform distribution on[N/4] is statistically indistinguishable from the uni-
form distribution on[N ′]. Similarly, the uniform distribution on[N2/4] is statistically indistinguishable from the
uniform distribution on[NN ′].

Some consequences:

Lemma 16. Under the QR assumption, it is hard to distinguish a random element ofJN from a random element of
(Z∗

N2)
2. Under the DCR assumption, it is hard to distinguish a random element of(Z∗

N2)
2 from a random element

of (Z∗
N2)

2N . Under the QR and DCR assumptions, it is hard to distinguish a random element ofJN from a random
element of(Z∗

N2)
2N .

Proof. Easy.2
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Lemma 17. Under the strong RSA assumption, given random elementsh1, . . . , hk ∈ (Z∗
N )2, it is hard to find

g ∈ Z∗
N , along with integersc, d1, . . . , dk, such that

gc = hd1

1 · · · h
dk

k and c ∤ di for somei = 1, . . . , k.

Proof. This is a simple generalization of a lemma in Camenisch and Shoup [21].2

I.2 Projective Paillier Encryption. Cramer and Shoup [20] proposed a variation of Paillier encryption [37].
Although their motivation was completely different than ours (constructing a CCA2-secure encryption scheme), it
turns out that some the ideas can be utilized here. The same ideas were also used to similar effect by Camenisch
and Shoup [21], although again, their motivation was somewhat differentthan ours.

In a nutshell, we present a variation of Paillier encryption that is semantically secure under the DCR as-
sumption, and preserves essentially the same homomorphic properties of Paillier encryption; however, unlike the
original Paillier scheme, the scheme we present here has a dense set of public-keys, in a sense corresponding to
that in§C.3. Following the terminology in Cramer and Shoup [20], let us call this schemetheProjective Paillier
encryption scheme.

system parameters: in addition to the RSA modulusN (of the form described in§I.1), the system parameters
also include a random element

g ∈ (Z∗
N2)

2N ;

note thatg has order dividingN ′, and this order is equal toN ′ with overwhelming probability;

recall thatw := [1 +N ]N2 ∈ Z∗
N2 is the special element of orderN ;

key generation: computet
$
← [N/4] andh← gt; the public key ish and the secret key ist;

encryption: to encrypt a messagem ∈ [N ] using a public keyh, the encryption algorithm runs as follows:

r
$
← [N/4], u← gr, v← hrwm;

the ciphertext is(u, v);

decryption: given a ciphertext(u, v) and a secret keyt, the decryption algorithm computes

w′ ← v/ut;

if w′ is of the form[1 +Nm]N2 for somem ∈ [N ], then the algorithm outputsm, and otherwise, it outputs
“reject.”

Lemma 18. Under the DCR assumption, the Projective Paillier encryption scheme is semantically secure.

Proof. This follows from results in Cramer and Shoup [20]; however, we sketchthe idea directly, as follows.
Suppose we encrypt a messagem as(u, v) := (gr, hrwm), wherer is chosen at random from[N/4]. Certainly, we
may instead chooser at random[N2/4] without affecting security. Under the DCR assumption (see Lemma 16), we
may instead chooseh of the formgtws, wheres is chosen at random from[N ], subject togcd(s,N) = 1, without
affecting security. Now suppose we instead chooser at random from[NN ′], which also does not affect security.
Writing r = r0 +N ′r1, we see thatr1 is uniformly distributed over[N ] and is independent ofu = gr = gr0 . But
now the ciphertext perfectly hidesm, sincev = gr0tw(r0+N ′r1)s+m. 2

I.3 An Ω-protocol. We now describe ourΩ-protocolΠ for proving knowledge of a representation. Our protocol
works for any abelian groupH of prime orderq. The protocol will prove knowledge of a representation relative
to k bases, allowing trapdoor extraction ofℓ ≤ k of the exponents. In our application to commitments based on
Waters signatures,k = 3 andℓ = 1.
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In addition to a description ofH, the system parameters forΠ consist of the RSA modulusN (as described
in §I.1), along with the system parameterg ∈ (Z∗

N2)
2N used for Projective Paillier encryption. Recall thatw :=

[1 + N ]N2 ∈ Z∗
N2 is the special group element of orderN . In addition, the system parameters include random

group elements
g0, g1, . . . , gℓ ∈ (Z∗

N )2.

We need two more parameters,Bc andBp. Here,Bc is a bound on the size of the challenge space, andBp is a
“padding bound.” The property required is that1/Bc and1/Bp are negligible. In addition, we require that

BcBpq ≤ N/2 and Bc ≤ min{q, P ′, Q′}. (2)

The reference parameter generation algorithm forΠ is the key generation algorithm for the Projective Paillier
encryption scheme. A reference parameter is a public keyh ∈ (Z∗

N2)
2N for the encryption scheme, and the

corresponding trapdoor is the secret keyt ∈ [N/4], wheregt = h.
Now letγ1, . . . , γk, γ ∈ H andw1, . . . , wk ∈ [q], where

γw1

1 · · · γ
wk

k = γ. (3)

The common inputs to the prover and verifier are the group elementsγ1, . . . , γk, γ. The prover also gets the tuple
(w1, . . . , wk) as a witness. Our protocol will prove knowledge of valuesw1, . . . , wk ∈ [q] satisfying (3), with
the valuesw1, . . . , wℓ being trapdoor extractable. More precisely, our protocol will satisfy thepartial trapdoor
soundness property relative to the functionf(w1, . . . , wℓ) := (w1, . . . , wk).

The protocolΠ runs as follows:

1. The prover computes

r1, . . . , rℓ, s
$
← [N/4]

for i← 1 to ℓ: ui ← gri , vi ← hriw
wi

i

h← gs
0g

w1

1 · · · g
wℓ

k

r̄1, . . . , r̄ℓ, s̄
$
← [BpBcN/4] \ [BcN/4]

w̄1, . . . , w̄k
$
← [BpBcq] \ [Bcq]

γ̄ ← γw̄1

1 · · · γ
w̄k

k

for i← 1 to ℓ: ūi ← gr̄i , v̄i ← hr̄iw
w̄i

i

h̄← gs̄
0g

w̄1

1 · · · g
w̄ℓ

k

and sends
{(ui, vi, ūi, v̄i)}

ℓ
i=1, γ̄, h, h̄

to the verifier.
2. The verifier chooses a random challengec ∈ [Bc].
3. The prover computes

for i← 1 to k: ŵi ← w̄i − cwi

for i← 1 to ℓ: r̂i ← r̄i − cri
ŝ← s̄− cs

and sends
{ŵi}

k
i=1, {r̂i}

ℓ
i=1, ŝ

to the verifier.
4. The verifier checks that

ŵi ∈ [N/2] for i = 1, . . . , ℓ,

and verifies the following relations:

γ̄ = γc ·
k∏

i=1

γŵi

i , h̄ = hc · gŝ
0

ℓ∏

i=1

gŵi

i ,

ūi = uc
i · g

r̂i (i = 1, . . . , ℓ), v̄i = vc
i · h

r̂iwŵi (i = 1, . . . , ℓ).
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I.3.1 Analysis

In the attack game for partial trapdoor soundness, we assume an adversary has produced two accepting conversa-
tions

{(ui, vi, ūi, v̄i)}
ℓ
i=1, γ̄, h, h̄, c, {ŵi}

k
i=1, {r̂i}

ℓ
i=1, ŝ,

{(ui, vi, ūi, v̄i)}
ℓ
i=1, γ̄, h, h̄, c′, {ŵ′

i}
k
i=1, {r̂

′
i}

ℓ
i=1, ŝ

′,

wherec 6= c′. Both conversations are fed into the rewinding extractor, while the first conversation, together with
the trapdoort, is fed into the trapdoor extractor. Let us define

∆c := c′ − c, ∆wi := ŵi − ŵ
′
i (i = 1, . . . , k),

∆ri := r̂i − r̂
′
i (i = 1, . . . , ℓ), ∆s := ŝ− ŝ′.

¿From the verification relations, we have

|∆wi| < N/2 (i = 1, . . . , ℓ) (4)

γ∆c =
k∏

i=1

γ∆wi

i , (5)

h∆c = g∆s
0

ℓ∏

i=1

g∆wi

i , (6)

u∆c
i = g∆ri (i = 1, . . . , ℓ), (7)

v∆c
i = h∆riw∆wi (i = 1, . . . , ℓ). (8)

We also know that|∆c| < Bc.

The rewinding extractor. Give two accepting conversations as above, since0 < |∆c| < q, the rewinding extractor
may compute

wi ← (∆wi/∆c) mod q (i = 1, . . . , k).

¿From (5), it is clear that(w1, . . . , wk) is indeed a valid witness, i.e.,γ =
∏k

i=1 γ
wi

i .

The trapdoor extractor. Given an accepting conversation as above, together with the trapdoort, the trapdoor
extractor runs as follows:

for i← 1 to ℓ do
w′

i ← (vi/u
t
i)

2

if w′
i = [1 +Nzi]N2 for somezi ∈ [N ] then
zi ← (zi/2) mod N
if zi ≥ N/2 thenzi ← zi −N // compute a “balanced” remainder
wi ← zi mod q

else
wi ← 0 // this is an error

Lemma 19. With the given rewinding and trapdoor extractors, under the Strong RSA assumption, protocolΠ
satisfies the trapdoorf -extractable property, wheref(w1, . . . , wk) := (w1, . . . , wℓ).

Proof. This follows the same line of reasoning as in Camenisch and Shoup [21]. Given two valid conversation as
above, as we already argued, the rewinding extractor always produces a valid witness(w1, . . . , wk), where

wi := (∆wi/∆c) mod q (i = 1, . . . , k).

We want to show that the trapdoor extractor outputs(w1, . . . , wℓ) with overwhelming probability. ¿From the
identity (6), with overwhelming probability, we have∆wi/∆c ∈ Z for eachi = 1, . . . , ℓ. This is where we use the
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Strong RSA assumption (see Lemma 17). Moreover, from (4), we have|∆wi/∆c| < N/2 for eachi = 1, . . . , ℓ.
¿From (7) and (8), and the relationh = gt, one obtains

( vi/u
t
i

w∆wi/∆c

)∆c
= 1 (i = 1, . . . , ℓ).

Now, the groupZ∗
N2 has exponent2NN ′, and since|∆c| < Bc ≤ min{P ′, Q′}, it follows thatgcd(∆c, 2NN ′) ∈

{1, 2}, which implies that
( vi/u

t
i

w∆wi/∆c

)2
= 1 (i = 1, . . . , ℓ).

This, together with the fact that|∆wi/∆c| < N/2, implies that the output of the trapdoor extractor agrees with the
output of the rewinding extractor.2

The zero knowledge simulator.Given a challengec, the simulator runs as follows:

r1, . . . , rℓ, s
$
← [N/4]

for i← 1 to ℓ: ui ← gri , vi ← hri

h← gs
0

r̂1, . . . , r̂ℓ, ŝ
$
← [BpBcN/4]

ŵ1, . . . , ŵk
$
← [BpBcq]

γ̄ ← γc ·
∏k

i=1 γ
ŵi

i

h̄← hc · gŝ
0

∏ℓ
i=1 gŵi

i

for i← 1 to ℓ do
ūi ← uc

i · g
r̂i , v̄i ← vc

i · h
r̂iwŵi

The first flow of the simulated conversation is

{(ui, vi, ūi, v̄i)}
ℓ
i=1, γ̄, h, h̄,

while the third flow is
{ŵi}

k
i=1, {r̂i}

ℓ
i=1, ŝ.

Lemma 20. With the given simulator, under the DCR assumption, protocolΠ satisfies the special HVZK property.

Proof. This follows from the semantic security of Projective Paillier, and standard statistical distance arguments.
2

Dense reference parameters.The set of reference parameters is suitably dense, in the sense of§C.3. Namely,
under the QR and DCR assumptions, a randomly generated public keyh is computationally indistinguishable from
a random element of the subgroupJN of Z∗

N2 ; this follows from Lemma 16. Moreover, the setJN is efficiently
recognizable (just evaluate a Jacobi symbol) and the uniform distribution on JN is efficiently samplable; indeed,
one may generate a random element ofJN as follows:

b
$
← {0, 1}, r

$
← Z∗

N2

output(−1)br2

J An Attack on “Deniable” Zero Knowledge in the Random Oracle Model
Consider the following simple scenario, involving a proverP , a verifierV , and a third partyZ (who wishes to
obtain evidence thatP has interacted withV ). The third partyZ constructs a verifier’s first messageα for the
protocol. Z then asks the verifierV to supply evidence of interaction withP by simply forwardingα to P and
relaying the response. In this case, its clear thatV cannot know the transcript of random oracle queries issued by
Z during the creation ofα, and thereforeV cannot run the zero knowledge simulator of [38]. Indeed, it is easy to
show thatV cannot efficiently construct an accepting reply toα withoutP ’s help. Therefore, ifV is later able to
obtain a valid response,Z is correctly convinced thatP has interacted withV . This implies that the interaction
betweenP andV is not truly “deniable zero knowledge”, since it enablesV to convinceZ of the interaction.
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K A Lower Bound on Round Complexity in the GUC Model
Here we will show that, for all practical intents and purposes, GUC-secure non-interactive commitment schemes
and NIZK proof systems with adaptive security (or even mereforward security!) are impossible to achieve. First,
we present a very general impossibility result for non-interactive commitment schemes with forward security in
the GUC framework.

Theorem 21. We say that an “oracle” (or Interactive Turing Machine) ismonotonically consistentif it always
returns the same response to partyP when queried repeatedly on the same input by partyP (even across separate
sessions), except that it may choose not to respond to some queries whenP is honest (otherwise, consistency holds
independently ofP ’s corruption status). LetO denote any PPT monotonically consistent oracle (whose outputs
may depend on thepid of the querying party, but not thesid).

There exists no non-interactive (single message), terminating protocolπ that GUC-realizesFcom with forward
security (even in the erasure model), using only the shared functionality forO. This holds even if the commu-
nication is ideally authentic. (In particular, we note thatO = Gacrs andO = Gkrk are efficient monotonically
consistent oracles,evenif they are also combined with a shared functionality for random oracles.)

Proof. Following the conventions established by [12], suppose there exists a non-interactive protocolπ GUC-
realizing Fcom in the O shared hybrid model. Then, in particular, there must be a simulatorS such that
EXECFcom,S,Z ≈ EXECπ,A,Z for a particular adversaryA andO-externally constrained environmentZ, which
are constructed as follows.

LetA be a “dummy adversary” that simply forwards protocol flows between corrupt parties and the environ-
ment (i.e., whenA receives a message fromZ, it will send the message on behalf of some specified corrupt party;
similarly, whenever a corrupt party receives a message,A simply forwards it toZ). LetZ operate by first corrupt-
ing partyP (the committer), then choosing a random bitb

$
← {0, 1} and running the commit phase ofπ on behalf

of P in order to obtain commitmentκ. Whereverπ makes oracle queries toO,Z issues the same queries on behalf
of P (relying on monotonic consistency to be sure that it will obtain at least the sameinformation as an honestP
would). Z sendsκ toA, and waits for partyV to output(receipt, . . .). Next,Z runs the reveal phase ofπ on
behalf ofP (again, issuing queries toO where necessary) and forwards the corresponding messages throughA.
Finally,Z waits forV to output(reveal, sid, b̂) and if b = b̂ thenZ outputs1; otherwise,Z outputs0.

Clearly, if the GUC experiments above must remain indistinguishable,S must causeV to outputb̂ = b with
overwhelming probability. SinceS is interacting withFcom, it must specify the value of̂b to Fcom prior to the
point whereV outputs(receipt, . . .), which always occurs beforeZ has initiated the reveal phase ofπ. That is,
whenA feedsS with an honestly generated commitmentκ for a bit b, S will immediately compute a bit̂b such
that b̂ = b with overwhelming probability. Therefore,S acts like an “extractor” for commitments. However, we
stress that while computinĝb, S expects to have access to the oracleO – and, in particular, we note that partyP
is corrupt so thatS may ask queries forP which would not be answered whenP is honest (we will see how this
matters shortly).

Intuitively, we have just shown thatS can be used to extract a commitment sent by honest parties, violating
the natural “hiding” property of the commitment, although this extractor requires access to the private oracle on
behalf of the committer. Indeed, this “extractor” requires access to the private oracle for acorrupt committer, and
therefore one might think this extractor is potentially “harmless” since it only violates the security of honest parties
after they become corrupt. However, security against adaptive corruptionsrequires thatpast transcriptssent by
honest parties who later become corrupt remain indistinguishable fromsimulated transcripts(which were created
while the party was still honest). Of course, the simulator does not know the inputs of honest parties, so simulated
commitments must beindependentof the actual bit being committed to – and herein lies the contradiction. If
there is an extractor that can open honest commitments to reveal the committed bit with overwhelming probability
(when the committing party has later become corrupt), then this extractor distinguishes honest commitments from
simulated commitments (where the extractor can only be correct/incorrect with probability1/2 for a commitment
to a random bit, assuming it even generates an output).

More formally, we will show that the existence of the simulatorS above contradicts the security ofπ against
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adaptive corruptions, by creating a particular environmentZ ′ which succeeds in distinguishingEXECFcom,S′,Z′

from EXECπ,A,Z′ after an adaptive corruption operation forany simulatorS ′ (as before,A is just a “dummy
adversary”). As a notational convenience, we will writeSO(P, κ) to denote the output bit̂b produced by the
simulation above, when running on (honestly generated) commitmentκ sent byP – recalling thatS can only be
run whenP is corrupt.

OurZ ′ proceeds by corruptingV at the outset, and then choosing random a bitb
$
← {0, 1}, which it gives as

input to the honest partyP . It then expects to obtainκ (the output of the commit phase) from the adversary. After
receivingκ, Z ′ instructs the honest party to revealb, completing the protocol. In accordance with the forward
security corruption model,Z ′ is now allowed to corruptP , which will enable toZ ′ to obtain complete access to
O for P . Once this access has been obtained,Z ′ is free to computêb ← SO(P, κ). In the real world experiment
(where protocolπ is being attacked by the dummy adversary), the distribution ofκ is exactly identical to its
distribution in the original setting above whereS outputŝb = b with overwhelming probability. On the other hand,
in the ideal world experiment (whereFcom is being attacked byS ′), we know thatS ′ must produceκ independently
of the bitb (sinceb is the hidden input of the honest party, sent only toFcom which hides it fromS information
theoretically). This means that in the ideal world, we must have thatb̂ = b with probability at most1/2, since the
entire computation of̂b is independent ofb! Therefore,Z ′ can distinguish between the real world and ideal world
experiments with probability at least1/2− negl(λ), contradicting our assumption thatπ is GUC-secure.2

Note that the class of shared functionalities modeled byO is very large indeed, making this impossibility
result quite strong. Not only doall the natural global setups mentioned thus far (ACRS, PKI, Random Oracle) fit
the modeling requirements ofO, they still fit the requirements ofO even if they are all are combined together.
Indeed,it seems likely that this impossibility result will hold for virtually any natural setup assumption. Again, this
impossibility result holds even in the authenticated links model.

Next, we will prove that the same impossibility also extends to NIZK proofs for many natural NP-relations.
More formally, we describe the ideal Zero-Knowledge functionality for relationR,FR

zk, is described in Figure 2.15

Our impossibility result shows that it is impossible to have forward secure non-interactive GUC-realizations ofFR
zk

for non-trivial relationsR (that are not already trivialized by the shared functionality for the globalsetup16).

Theorem 22. We say that an “oracle” (or Interactive Turing Machine) ismonotonically consistentif it always
returns the same response to partyP when queried repeatedly on the same input by partyP (even across separate
sessions), except that it may choose not to respond to some queries whenP is honest (otherwise, consistency holds
independently ofP ’s corruption status). LetO denote any PPT monotonically consistent oracle (whose outputs
may depend on thepid of the querying party, but not thesid).

Further, we say that an NP-relationR defining some languageL is non-trivial if we believe that no PPT
algorithm efficiently decides membership inL (i.e., L 6∈ BPP ). In particular, R is non-trivial with respect to
oracleO if there is no PPT algorithm for efficiently deciding membership inL even when given oracle access to
O (for arbitrary party identifiers, and even with all parties being marked as corrupt).

There exists no non-interactive (single message), terminating protocolπ that GUC-realizesFR
zk with forward

security (even in the erasure model), using only the shared functionality forO, for any NP-relationR that is non-
trivial with respect toO. This holds even if the communication is ideally authentic. (In particular, we note that
O = Gacrs andO = Gkrk are efficient monotonically consistent oracles, even if they are combined with the shared
functionality for a random oracle.)

15Technically, the relationR might be determined by system parameters, which form part of a CRS. Here, we
note that the same CRSmustbe used in both the “ideal” and “real” settings (e.g., using aglobalCRS modeling).

16Of course, it is easy to see how one might achieve non-interactive proofs for certain languages related to the
global setup. For example, if the global setup is a PKI that uses key registration with knowledge, parties can
trivially prove the statement that their public keys are “well-formed” (withouteven communicating at all!) since
the global setup already asserts the verity of this statement on their behalf. Therefore, our impossibility result does
not necessarilyextend to cases where the relationR to be proved is determined by system parameters, but we are
focusing on realizing zero-knowledge for natural relations that arenot trivialized by the presence of the system
parameters (where the impossibility result applies).
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Proof. The proof is entirely analogous to the proof of Theorem 21, and therefore we will only sketch it at a high
level and direct the reader to the previous proof for further details. Here will call the proverP and the verifierV .

Assuming there is a non-interactive and GUC-secure realization ofFR
zk, we first follow the approach of The-

orem 22 in order show that (using a similar shorthand notation) there exists an extracting simulatorSO(P, x, ψ).
For anyx ∈ L, this extracting simulator is capable of computing a witnessw such that(x,w) ∈ R if ψ is an
honestly generated non-interactive proof according to protocolπ. However,SO(P, x, ψ) expects to be runafter
the corruption ofP , and it we are guaranteed that it will succeed in extracting a valid witnessw (from any honestly
generated proofψ) with overwhelming probability in that scenario.

Then we construct an environmentZ ′ which, parameterized by any(x,w) ∈ R, first feeds(x,w) to an honest
proverP , and then obtains the resulting protocol flowψ. Note thatψ is the protocol flow that is either observed
by the dummy adversary running in the real world experiment, or is being “faked” by some simulator in the
ideal model. The environment then corrupts the honest prover (after completion of the proof protocol), and runs
SO(P, x, ψ) to obtainw. In particular, sincew must be valid with overwhelming probability in the real world, it
must also be valid with overwhelming probability in the ideal world running withsome(efficient) simulatorS ′ (or
else the environment can successfully distinguish the two experiments, contradicting the claimed GUC-security of
the protocol). However, the value ofw is information theoretically hidden fromS ′ byFR

zk, so its clear thatS ′ must
outputψ given onlyx and access to theO oracle (in particular, whileV is corrupt andP is honest).

To conclude the proof, we show how to obtain a witnessw for statementx using only aO oracle, contradicting
the non-triviality ofL with respect toO. Given any statementx, we first pick some partyP to act as the prover,
andV to act as the verifier. Then we runS ′O(x) to produce a “fake” proofψ. Finally, we runSO(P, x, ψ) to
obtainw such that(x,w) ∈ R. Since this entire procedure produces a valid witnessw for anyx ∈ L while using
only oracle access toO, we have successfully contradicted the non-triviality ofL with respect toO. 2
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