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Abstract

Canetti et al. [11] recently proposed a new framework — tefi@eneralized Universal Composability
(GUC) — for properly analyzing concurrent execution of dographic protocols in the presence of a global
setup. While arguing that none of the existing solutions etd the desired level of security in the GUC-
framework, the authors constructed the first known GUC4seituplementations of commitment (GUCC) and
zero-knowledge (GUC ZK), which suffice to implement any tparty or multi-party functionality under several
natural and relatively mild setup assumptions. Unfortelyathe feasibility results of [11] used rather inefficient
constructions: the commitment scheme was bit-by-bit, evttile zero-knowledge proof for a relatidgh was
implemented using the generic Cook-Levin reduction to anaral NP-complete problem.

In this paper, we dramatically improve the efficiency of (etilaely-secure) GUCC and GUC ZK assuming
data erasures are allowed. Namely, using the same minirtugd assumptions as those used by [11], we build
e a direct and efficient constant-round GUC ZK f&rfrom any “dense”(-protocol [31] for R. As a
corollary, we get a semi-efficient construction from atnprotocol for R (without doing the Cook-Levin

reduction), and a very efficient GUC ZK for proving the knowledge of dete log representation.

e the firstconstant-ratgand constant-round) GUCC scheme.

Additionally, we show how to properly model a random oradk®jf in the GUC framework without losing
deniability, which is one of the attractive features of the GUC framewadkk an application, by adding the
random oracle to the setup assumptions used by [11], we tiglfirst two-round (which we show is optimal),
deniable, straight-line extractable and simulatable Z&opfor any NP relation?.
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1 Introduction

UC FRAMEWORK. The Universal ComposabilitfUC) framework introduced by Canetti [10] is a growingly
popular framework for analyzing cryptographic protocols which amgeeted to be concurrently executed with
other, possibly malicious. The UC framework has many very attractiveeptiep, one of which is a very strong
composition theorem, enabling one to split the design of a complex protocol et@ftisimpler sub-protocols.
In particular, Canetti, Lindell, Ostrovsky and Sahai [17] showed thadeumvell established cryptographic as-
sumptions, UC-secure commitments and zero-knowledge (ZK) proofsiigent to implement any other func-
tionality, confirming our long-standing intuition that commitments and ZK proofsardamental cryptographic
primitives?!

Unfortunately, a series of sweeping impossibility results [10, 13, 16] sbaWwat most useful cryptographic
functionalities, including commitment and ZK, are impossible to realize in the “plaihfld@ework. This means
that some form of a “trusted setup”, such as a common reference striRg)(@ a public-key infrastructure
(PKI), is necessary to build UC-secure protocols (unless one is willingléx isome important consequences of
UC-security, such as polynomial-time simulation [39, 8]). To address thig,igka original UC framework was
augmented to allow trusted setup. However, until the recent work offldi]extension only allowed one to model
such setup aslacal setup This means that the setup cannot be seen by the environment or otteeospand, as
a consequence, it only exists meaningfully in the real model. In particutasjtfulator had complete control over
the setup in the ideal model. For example, in the CRS model the simulator hadlanfrée choose its own CRS
and embed some trapdoor information into it. As was argued in a series akgdapel19, 4, 11], this modeling
creates several serious problems not present in the “plain UC”. Two sigisficant such problems ateck of
deniabilityandrestrictive compositionFor example, an ideal ZK proof is “deniable”, since the verifier onlyrisar
that the statement is true, but cannot reliably prove it to a third party. timfately, it was argued in [11] that any
UC-secure realization of ZK in the CRS modehisver deniable The composition problem is a bit more subtle
to explain. In essence, one can only compose several instanspsaélly-designed protocolén particular, it is
not safe to use protocols which can depend on the setup information (e.€:R8), even if these protocols are
perfectly secure in the ideal model. We give a simple and convincing exarmiiiss ghenomenon (illustrated for
ZK proofs in the CRS model) in Appendix A, but refer the reader to [1], where the problems of local setup
are discussed in more detalil.

GUC FRRAMEWORK. Motivated by solving the problems caused by modeling the setup as a ldwalusne,
Canetti et al. [11] introduced a new extension of the UC framework — tei@etkeralized Universal Compos-
ability (GUC) — for properly analyzing concurrent execution of cryptogiagrotocols in the presence of a
global setup We stress that GUC is a genefedmeworkstrictly more powerful than UC. Namely, one can still
model local setup as before. However, the GUC framework also alloessoamodeblobal setupwhich is directly
accessible to the environment. More precisely, the GUC framework allogvoatesign protocols that share state
via shared functionalitiegsuch as aylobal CRSor global PKI). Since the same shared functionality will exist in
multiple sessions, the environment effectively has direct access to theofuality, meaning that the simulator
cannot “tamper” with the setup in the ideal model. In fact, the same setup egtbtinkthe realand in the ideal
models As the result, modeling the global setup in this manner regains the attractjyerpes of the “plain UC”,
including deniability and general composition. This was formally shown by fdrlthe case of composition, and
informally argued for deniability (since the simulator no longer has any furd@vantage over the real-model
attacker, so the real-model attacker can run the simulator “in its head” to makanscripts of conversation which
never happened in real life). To put this (convincing but) informal argat on firmer ground, in Appendix B we
give a very strong definition of deniable zero-knowledge (much strathge previous notions appearing in the lit-
erature), and show that GUC-security implies this notion, as long as theisetguleled as a shared functionality
(see Definition 6 and Theorem 8 for the precise definition and statement).

Of course, having introduced GUC, a natural question is whether anaataally build GUC-secure protocols
undernatural setup assumptions. On the positive side, one can always artificially modal etup” as “global

Although [17] presented their results in the common reference string)@mdel using the JUC theorem [19], one can extract a
general implication which is independent of the CRS and does not useSké(page 131 of Walfish’s thesis [41] for details.



setup”, by ensuring that a fresh instance of a setup is run for evetgqmi instance, and, more importantly, that
only the participants of a given protocol have reliable access to this sdtumation. For example, the CRS
setup of UC could be equivalently modeled in GUC sscretreference string” (SRS) functionality: the SRS will
pick a fresh reference string for each protocol instance, and will rifakestring available precisely to the parties
running this instance, but nobody else. However, on a technical l6@tCRS is equivalent to GUC+SRSo
the feasibility result of [17] would apply to the “global SRS” setup. Of @ayrsuch a “secret reference string”
model is very unrealistic and difficult to implement, and one may wondertifilg global CRS setup would
suffice as well. Unfortunately, [11] showed that the (global) CRS madelell as other global setup which only
providespublic information, such as the random oracle model [32]hd$ enough to sidestep the impossibility
results of [10, 13, 16]. (In particular, the protocols of [17, 32] areeture in the GUC framework with the
global CRS/random oracle.) This means that any setup sufficient for febkibility must provide some secret
information, as was the case with the SRS model (where the SRS was hiddethi environment and other
protocols).

ACRSMODEL. Luckily, Canetti et al. [11] introduced a new setup assumption, céllegimented CRACRS),
and demonstrated how to GUC-realize commitment and ZK (and, thus, anyfotietionality) in the ACRS
model, in the presence of adaptive adversai®he ACRS model is very close to the (global) CRS model, but is
(necessarily) augmented so as to circumvent the impossibility result for pgRfa &s in the CRS setup, all parties
have access to a short reference string that is taken from a preadetdrdistribution. In addition, the ACRS setup
allows corrupted parties to obtain “personalized” secret keys thaeared from the reference string, their public
identities, and some “global secret” that is related to the public string and remnakmown. It is stressed thaily
corrupted partiesnay obtain their secret keys. This may sound strange at first, but is acdUallye advantage of
the ACRS model over the more traditional “identity-based” setup, whene leerest partieaeedto obtain (and,
therefore, safeguard) their keys. Namely, the ACRS setup implies thatdtepl may not include instructions
that require knowledge of the secret keys, and, thus, honest pdotiest need their secret keys. In fact, they can
only losetheir ownsecurity by obtaining these keys and using them carelessly. This is consiitte any secret-
key cryptosystem, where a party will loose its security by publishing its s&ege Luckily, though, the ACRS
model permits the luxury of never worrying about losing one’s secngtdiace one should not get it in the first
place. In contrast, malicious parties provably cannot gain anything bynotmaheir keys (i.e., they cannot break
the security of honest parties). Hence, as a practical matter, onetexpatACRS model is very similar to the
CRS model, where parties cannot access any secret information. ElpWvemere abilityto get such information
is what gives us security, even though we expect that a “rational”,mtityer honest or malicioyswill not utilize
this ability: honest parties do not need it, and malicious parties do not gamitro

Of course, one may justifiably criticize the ACRS model because of the meedifusted party who is always
available, as opposed to the (global) CRS model, where no party is neféeletha CRS is generated. Indeed, it
is a non-trivial setup to realize (althouguchmore natural than the SRS model, and seemingly minimal in light
of the impossibility result mentioned above). However, as pointed out Byt ACRS model has the following
“win-win” guarantee. Assume that one proves some protocol secure IBtHC+ACRS model, but in reality the
trusted party will only generate the CRS, but will be unavailable afterwdrnadesn, from a syntactic point of view,
we are back in the (global) CRS modeh particular, the protocol is still secure in the “old UC+CRS” setting!
On an intuitive level, however, it seems to iwre secureghan a protocol proven secure in the “old UC+CRS”
setting. This is because the simulator does not need to know a global trgpdhdch is deadly for the security of
honestparties in thereal model), but only the secret keys of therruptedparties, which are guaranteed to never
hurt the security of honest parties in the real model. For example, the @RISecsafely reused by other protocols
and the “restricted composition” problem of UC (see Appendix A) is alsolved, so properties associated with
deniability/non-transferability appear to be the only security propertiebjo&lowngrading” ACRS into CRS.

EFFICIENCY IN THE GUC FRAMEWORK. Thus, from the security and functionality perspectives, the GUC+ACRS
model appears to be strictly superior to the UC+CRS model. The questiorylinvis what is the price in terms

2[11] also showed similar results in a variant of a PKI-like “key registratidgin knowledge (KRK)” setup from [4]. However, since
the ACRS model is more minimal and all our results easily extend to the KR#lemae only concentrate on the ACRS model.



of efficiency? Unfortunately, the GUC-feasibility results of [11] are quitefficient: the commitment scheme
committed to the message in a bit-by-bit manner, while the zero-knowledgefpr@afelationk was implemented
using the generic Cook-Levin reduction to a canonical NP-complete pnodlaus, now that the GUC-feasibility
of secure computation has been established, it is natural to ask if oneitdeflicienf GUC-secure commitment
and ZK proofs in the ACRS (resp. KRK; see Footnote 2) model. In thismpameprovide such efficient GUC-
secure commitment and ZK proofs which are secure against adaptigtons, therefore making the ARCS
model an attractive alternative to the CRS model on (nearly, see belowrati f

The only drawback of our solution is that we rely data erasureswhich is not the case for most efficient UC
protocols, such as that of Damgard and Nielsen [25] (or the inefficiel@ €asibility results of [11]). However,
unlike sacrificing adaptive security, which icatical concern (addressed in our work) given the highly dynamic
nature of protocols concurrently running on the Intefhefe believe that the assumption of data erasures is very
realistic. In particular, this assumption is widely used in practice (for exarfgri@nalyzing most key exchange
protocols, such as Diffie-Hellman), and was already used in severgbwn UC security as welk(g, [15, 31,
36, 14], although there it was hidden deep within the paper). Coupled veitlaththat erasures allow us to obtain
dramatically more efficient (in facpractical) protocols, we believe that this assumption is justified. Of course, we
hope that future research will remove/weaken this restriction, and cononehts more in the last paragraph of
the introduction, when we discuss the random oracle model.

OUR RESULTS ONGUC ZK. We present an efficient compiler giving a direct, efficient, tamsround and
GUC-secure ZK proof (GUC ZK) for any NP relatiai from any “dense-protocol” [31] for R. The notion
of Q-protocol’s was introduced by Garay, MacKenzie and Yang [31]. fBri€-protocol’s are usual-protocol’s
(i.e., they satisfy special soundness and ZK propertiéspfotocol’s), with an extra property that one can generate
the public parametes of the system together with a trapdoor informatigrsuch that the knowledge efallows
one to extract the witness from any valid conversation between the pamethe verifier (as opposed to the
usual special soundness, where one needs two different trasseith the same first flow). [31, 36] usee
protocol’s for a similar task of building UC-secure ZK proofs in the CRS mdaddlich was modeled in the
“unfair” way mentioned earlier and is not GUC-secure). As a resultcourpiler isconsiderablymore involved
than the compiler of [31, 36] (which also used erasures). For examplheiGUC setting the simulator is not
allowed to knowr, so we have to sample the publidn the ACRS model using a special coin-flipping protocol
introduced by [11]. As a result, our compiler requif@gprotocol’s whose reference parameters are “dense” (i.e.,
indistinguishable from random), and none of the previQysrotocol’s of [31, 36] is suitable for our purpose.
Thus, of independent interest, we show several ndesise2-protocol’s. First, we show how to build a
direct, but only semi-efficient denge-protocol for any NP relatior from any X-protocol for R. Although
this Q-protocol uses the cut-and-choose technique (somewhat similar to thegeetof Pass [38], but in a very
different setting), it is very general and gives a much more effidieprotocol than the technique of [17, 11]
requiring a generic Cook-Levin reduction. Second, we shorerg efficient number-theoretic based dere
protocol for proving the knowledge of discrete log representation.e@ugain, thig2-protocol had to use some
interesting additional tools on top on the “non-dense” pflgorotocol of [31], such as a special “projective Paillier
encryption” of Cramer and Shoup [20]. As a result, we get a semi-affi@&JC ZK for anyR having an efficient
Y-protocol, and a very efficient GUC ZK for proving the knowledge otdi$e log representation.

OUR RESULTS ONGUC CoMMITMENTS. Using the techniques developed for ZK, we proceed to build the first
constant-ratgand constant-round) GUC-secure commitments (GUCC) in the ACRS modsgirinour result is
similar to the result of Damgard and Nielsen [25], who constructed the fingtant-rate UC-secure commitments
in the “old” CRS framework. However, our techniques are very diffierand it seems hopeless to adapt the
protocol of [25] to the GUC framework. Instead, we essentially notice tthetrequired GUCC would easily
follow from our techniques for GUC ZK, provided we can build an effiti@aprotocol for a special relation
on R on identity-based trapdoor commitmer(tBTCs) — a notion introduced by [11] to implement the ACRS
setup. Intuitively, a prover needs to show that he knows the messagg dmimmitted by a value w.r.t. a

3We remark that adaptive security with erasures trivially implies static &gcand is usually much harder to achieve than the latter.



particular identity. In particular, if one can build an IBTC scheme where ¢leired relation? would involve

the proof of knowledge of some discrete log representation, our peGalC ZK protocol would complete the
job. Unfortunately, the IBTCs constructed by [11] had a much more contetidarm. Therefore, of independent
interest, we build a new IBTC scheme which is based on Water’s signat?fe Tée resulting IBTC not only
has the needed form for its relatidty but is also much simpler and more efficient than prior IBTCs built in the
standard model. Combining these results, we finally build the required GUCC.

RESULTS ON MODELINGRANDOM ORACLE IN GUC. Finally, we briefly comment on using the random oracle
(RO) model in conjunction with the GUC framework. The RO is simply modeled hared functionality available
both in the real and in the ideal model. As such, the simulator cannot “neprdghe RO. Even more counter-
intuitively, it cannot even “prematurely extract” the values used by themealel attacker! This is because we can
assume that all such queries are made by the environment (which the sincalatot control), and the inputs are
only given to the attacker on the “need-to-know” basis. Correspohgithge RO model is much more restricted in
the GUC framework (in particular, by itself it is provably insufficient to G&dize most functionalities [11, 12]).
However, we still show that onean meaningfully use it in the conjunction with the ACRS model, because we
are allowedto extract and reprogram the RO in the proof of security. In particulaggplying the Fiat-Shamir
heuristics to our GUC ZK protocols, we obtain an efficient, two-round (lwhie show is optimal; see Theorem 4),
straight-line extractable and simulatable (in fact, GUC-secure!) ZK praoéfy relationk having an efficient
densef)-protocol (see above for examples of suetprotocols). Moreover, in this protocol one only needs to
erase some short data duringpaal computatior(i.e., no sensitive data needs to be stored while waiting for some
network traffic)* This makes the need for data erasures really minimal. We briefly comparesthtng deniable

ZK protocol to previous related work on deniable ZK (e.g., [38, 34]) intBa 6.

2 Definitions and Tools

2.1 GUC Security. At a high level, the UC security framework formalizes the following emulatiomiregnent:

A protocolr that emulates protocab does not affect the security of anything else in the environment
differently thangy would have — even whenis composed with arbitrary other protocols that may run
concurrently withr.

Unfortunately, the UC security framework requires that parties runnirggsassion ofr do not share state with
any other protocol sessions at all, limiting the legitimate applicability of that framlewim particular,global
setupssuch as a Common Reference String (CRS) or Public Key Infrastruc®ti¢ &re not modeled. The GUC
security framework, introduced in [11], formalizes the same intuitive emulagiquirement as the UC framework.
However, the GUC framework does so even for protocolhat make use of shared state information that is
common to multiple sessions of as well as other protocols in the environment running concurrentlyawith

More formally, the security framework of [10] defines a notion called “Bi@ulation”. A protocolr is said to
UC-emulate another protocalif, for every adversary.4 attackinge, there exists aimulatorS attackingr such
that noenvironmentZ can distinguish betweend attackingy, andS attackingr. In the distinguishing experiment,
the environment isonstrainedo interact only with parties participating in a single session of a challengegmioto
(eitherr or ¢), along with its corresponding attacker (eitbéor S, respectively). This limited interaction prevents
the model from capturing protocols that may share state with other protoatlsnight be running within the
environment, since the environment in the distinguishing experiment canoessathe state of the parties it is
interacting with.

The Generalized Universal Composability (GUC) security framework bf gxtends the original UC security
framework of [10] to incorporate the modeling of protocols that share stata arbitrary fashion. In particular,
the GUC framework provides mechanisms to support direct modeling oflgeh#s such as a CRS or PKI. This
is done by first defining the notion shared functionalitiethat can maintain state and are accessible to any party,

4Of course, we can get a less effici@atound GUC ZK protocol with these properties, which daesrely on data erasures at all, by
applying the Fiat-Shamir heuristics to the inefficient protocol of [11]. Théans that we get a general feasibility of round-optimal GUC
ZK for NP in the ACRS+RO model, which does not rely on data erasures.
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Functionality Gc.s
Initialization Phase: At the first activation, run an algorithiSetup to generate a public key/master secret
key pair(PK, MSK).
Providing the public value: When activated by any party requesting the CRS, reftfinto the requesting
party and to the adversary.

Dormant Phase:Upon receipt of a messa@eetrieve, sid, ID) from acorrupt party P whose identity is
ID, return the valueéSK ;p < Extract(PK, ID, MSK) to P. (Receipt of this message from honest
parties is ignored.)

Figure 1: The Identity-Based Augmented CRS Functionality

in any protocol session. GUC then allows the environment to access argddinctionalities. GUC also removes
the constraint on the protocols invoked by the environment, allowing it to icttarigh any (polynomial) number
of parties running arbitrary protocols (including multiple sessions) in additidhe usual UC model interactions
with the challenge protocol and its attacker. That is, we allow the environtoatitectly invoke and observe
arbitrary protocols that run alongside the challenge protocol — and Hiteaay protocols may even share state
information with the challenge protocol and the environment via sharedifumadities. If a protocolr (that may
share state with other protocols) “UC-emulates” a protgoaith respect to sucbhinconstrained environmentse
say thatr GUC-emulateg). We say that a protocat is a GUC-secureealizationof a particular functionality”

if = GUC-emulates the ideal protocol f@f. Further details of the formal modeling for UC and GUC security can
be found in [10] and [11, 41]. In this work, we will focus on the constian of efficient GUC-secure realizations
of commitments and zero knowledge, with security even against adversapable of adaptive corruptions. As
is common throughout the UC literature, we will assume the availability of secaregfivate and authenticated)
channels. The realization of such secured channels over inseduerke (such as the Internet) is a non-trivial
problem studied in further detail in [41], but is beyond the scope of thiskwo

2.2 The ACRS model.Unfortunately, it is impossible to GUC-realize most useful two-party funetitias in the
plain model, or even in the CRS model (see [11]). To avoid this impossibility, vkemse of a speci@lugmented
Common Reference Strig§CRS) trusted setup (which we denote by the functionality;), as was first proposed

in [11]. Another possible alternative would be to use a PKI model supmptiiay Registration with Knowledge”

[4, 11] (which we denote by the functionaliy.,.) — indeed, our efficient protocols can easily be transformed to
use theGy,k setup — but the more minimal ACRS model suffices and is clearly less costly to imgl¢has a
PKI. Thus, we will focus on the ACRS setting. The shared function@lity, describing ACRS setup, which is
parameterized by the algorithristup andExtract, is given in Figure 1.

Intuitively, the ACRS setup provides a simple CRS to all parties, and alsestwesupply an identity-based
trapdoor for identityP to any “corrupt” partyP that asks for one. The provision that only corrupt parties can get
their trapdoors is used to model the restriction that protocols run by hpagss should not use the trapdoor —
i.e. honest parties should nevieaveto obtain their trapdoors in order to run protocols. In reality, a trusted party
will perform the ACRS initialization phase, and then supply the trapdooPféo any partyP that asks for its
trapdoor. Of course, in practice, most parties will never bother to stdlaeir trapdoors since the trapdoors are not
useful for running protocols. (Ultimately, these trapdoors will be used#dbke corrupt parties to simulate attacks
by usingS, a task that no honest party should need to perform.)

In the following sections, we show how to construct efficient GUC-secealizations of commitments and
zero knowledge using this instantiation of @ig,s shared functionality. (As explained in Section 4 of [12], this is
enough to GUC-realize any other well-formed functionality.) We then shawtb@ptimize the round complexity
of these protocols by using,..s in conjunction with the RO model.

2.3 Omega ProtocolsThe notion of ar2-protocol was introduced in [31]. We recall the basic idea here. While
our notion of arf2-protocol is the same in spirit as that in [31], we also introduce some negpefres, and there
are a few points where the technical details of our definition differ. DeteglgnaAppendix C.

Let ParamGen be an efficient probabilistic algorithm that takes as inpytwhere\ is a security parameter,
and outputs aystem parametek. The system parametdrdetermines finite set¥, L ¢ X, W, and a relation
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R C L x W, where for allz € L, we have(z,w) € R for somew € W. The setsX andW, and the relatior
should be efficiently recognizable (givey). An elementr € X is called aninstance and for(x,w) € R, w is
called awitnessfor .

There is also an efficient probabilistic algorithiRafGen that takes as input a system paramétemnd outputs
a pair(p, 7), wherep is called areference parameteandr is called atrapdoor.

An Q-protocollT is played between prover P and averifier V. Both P andV take as common input a system
parameter\, a reference parametgr and an instance € X. An honest prover” is only run forxz € L, and
always takes a witness for z as an additional, private input. Execution runs in three steps: in the fistRte
sends a messageto V'; in the second)” sends a random challengeo P; in the third, P sends a responseto
V. ThenV eitheracceptsor rejectsthe conversatior(a, c, z).

Of course, there is a bastompletenessequirement, which says that if both prover and verifier follow the
protocol, then the verifier always accepts.

We say thatll is trapdoor soundf there exists an efficientrapdoor extractor algorithm&y such that the
following holds: for every efficient cheating provér, it should be infeasible foP (given input(A, p)) to make
V' (given input (A, p, z)) accept a conversatiofu, ¢, z) for an instancer such that execution ofig on input
(A, 7,2,a,c,z) fails to produce witness for z. Here, (A, p) are generated by the algorithn®aramGen and
RefGen; cis generated by’; andx, a, andz are generated adversarially.

We shall also make use of the following variant of trapdoor soundnesy.rgughly, we say thdi is partial
trapdoor sound for a functiorf, if it is a proof of knowledge (in the traditional, rewinding sense) of a wisnes
of the instance, such that the value calculated by the trapdoor extragidon the same inputs as above) is equal
to f(w). As we will see, partial trapdoor soundness is sufficient for some apiolits, and can be realized using a
somewhat more efficient protocol.

We say thall is honest verifier zero-knowledge (HVZiK)here is asimulator algorithmZKSim that on input
(A, p, x, c) can produce a simulation of the conversatfanc, z) that would arise from an interaction between an
honest prover” with input (A, p, z, w), and a cheating verifie¥’, subject to the constraint th&t's challengec
must be generated before it seeHere,(A, p) are generated by the algorithmaramGen and RefGen; andz,

w, andc are generated by. The requirement is thaf should not be able to distinguish the output of the simulator
from the output of the real prover.

We note that the notion of afl-protocol extends that of B-protocol ([22, 25]). The distinguishing feature
is the reference parameter, and the trapdoor soundness propedgybdhat a withess may be extracted using a
trapdoor in the reference parameter, rather than by rewinding. Thenraitteapdoor soundness is closely related
to that ofverifiable encryptiorfl, 21]. Indeed, all known constructions Qfprotocols boil down to using a public
key for a semantically secure encryption scheme as reference parantetes the trapdoor is the secret key; the
prover encrypts a witness, and then proves that it did so usiwgtocol.

For our application to GUC ZK and GUC commitments, we introduce an additioopepty that we require of
an)-protocol. A given system paramet&rdetermines a sek of possible reference parameters. Suppose there is
some sef that containgp, with the following properties: (i) the uniform distribution dnis efficiently samplable;
(i) membership ind is efficiently determined; (iii}p is an abelian group (which we write multiplicatively), such
that the group and group inverse operations are efficiently computablé;i¢ hard to distinguish a random ele-
ment of® (generated uniformly), from a random elemen@oqas generated bigefGen). If all of these conditions
obtain, we sayl hasdense reference parameteand we calkb the set ofextended reference parameters

2.4 |dentity-based trapdoor commitments. The notion of an identity-based trapdoor commitment scheme
(IBTC) was introduced in [2] (as ID-based Chameleon Hash functiomgh some additional refinements ap-
pearing in [11]. We recall the basic idea here. Details in Appendix D.

An IBTC scheme has Setup algorithm that takes as input, where)\ is the security parameter, and outputs
apublic keyPK and amaster secret key/SK. The public keyPK determines a sdd of decommitment values
To generate a commitment to a messagea user computeg & Dandk «— Com;p(d, m). Here,Comjp is a
deterministic algorithm (which implicitly takeBK as a parameter, but we shall in general omit this). The value
is called acommitmento m, while the pair(d, m) is called aropeningof «.



Functionality 7}

F.x, parameterized by a binary relatidghand running with a proveP, a verifierV, and an adversarg,
proceeds as follows upon receipt of a mesqagi€- pr over , sid, P, V, 2, w) from the proverP:

If (z,w) € R, then send ZK- pr oof , sid, P,V,z) toV andS and halt. Otherwise halt.

Figure 2: The Zero-Knowledge Functionality for Relati&n

Like any commitment, a IBTC should bginding it should be hard to open a commitment under some
ID to two different messages; that is, it should be hard to fibdd, m,d,m’ such thatm # m’ and
Com;p(d,m) = Comyp(d',m’). In addition, there should be &fentity-based trapdoomhich allows foridentity-
based equivocationf commitments. More precisely, there are three algorithstsact, ECom, andEqv, which
work as follows. GivenPK, ID, MSK) as input,Extract computes a trapdod¥K ;p for the identity/D. Us-
ing this trapdoor, algorithnECom may be invoked with input PK’, ID, SK ;p) to produce a paifx, ), where
k is a “fake” commitment, and: is a trapdoor specifically tuned ta Finally, running algorithmEqv on input
(PK,ID, SK p, k,a, m) for any message: produces a decommitmedt such that(d, m) is an opening ok.
The security property for equivocation is that is should be hard to disgshguvalued produced in this way from
a random decommitment. Moreover, this equivocation property should teotare with the binding propertipr
identities whose trapdoors have not been extracted

3 GUC Zero-Knowledge in the ACRS Model

The ideal Zero-Knowledge functionality for relatid®y 7y, is described in Figure 2.

Here we give a general transformation from &hprotocolll for a relationR to a GUC-secure zero-knowledge
proof for the relationR in the augmented CRS/{..s) model. We need to assume that theprotocol satisfies
the correctness, trapdoor soundness, honest verifier zero kdgsv(@lVZK), and dense reference parameters
properties. We denote by the space of extended reference parameter$ifovWe also need an identity-based
trapdoor commitment (IBTC) scheme. Commitments in this scheme are wtisten, (d, m).

The augmented CRS is instantiated using the IBTC. In addition, any systeamgitrs\ for the Q-protocol
are placed in the public value of the augmented CRS. Note that there is nodras$ociated with the system pa-
rameter for the?-protocol, so this system parameter is essentially a “standard” CRS. A ldififesience between
our approach and that of Garay et al [31] is that the referenceredea for the2-protocol are not placed in the
CRS; rather, a fresh reference parametes generated with every run of the protocol, using a three-move “coin
toss” protocol, which makes use of the IBTC.

Here is how the GUC ZK protocol between a proyeand verifierl” works. The common input is an instance
z (in addition toPK and the identities of the players). Of courgealso has a withess for = as a private input.

1. V computes & @, forms a commitment; = Comp(dy, p1), and sends; to P.

2. P compute, < ® and sendgs to V.

3. V first verifies thaip, € ®, and then sends the openifg, p1) to P.

4. P verifies that(dy, p1) is a valid opening ok, and thatp; € ®.
Both P andV locally computep < p1 - po.

5. P initiates the2-protocolll, in the role of prover, using its withessfor z. P computes the first message
of that protocol, forms the commitmert = Comy (d’, a), and sends’ to V.

6. V sendsP a challenge: for protocolll.

7. P computes a responseo V's challenger, and sendéd’, a, z) to V.
P thenerasesthe random coins used Y.

8. V verifies that(d’, a) is a valid opening of’ and that(a, ¢, z) is an accepting conversation fAr

Theorem 1. The protocol described above GUC-emulates #Jg functionality in the secure-channels model,
with security against adaptive corruptions (with erasures).

STechnically, the relatior may be determined by system parameters, which form part of a CRS, #e note that the same CRS
must be used in both the “ideal” and “real” settings.



Proof (sketch)We first observe that the protocol above only makes use of a singledsharctionality,Gcs.
Therefore, we are free to make use of the equivalence theorem a@adrtedel of [11]. This allows us to prove the
GUC security of the protocol using the familiar techniques of the UC framlewath only a single (but crucial)
modification — we will allow the environment access to the shared functionality.

Let.4 be any PPT adversary attacking the above protocol. We describe daddessarysS attacking the ideal
protocol for}‘ZJf{ that is indistinguishable froml to any distinguishing environme, in the presence of a shared
setupGacs. In standard fashior§ will run a copy of A internally. We now formally describe ho$interacts with
its internal copy ofA. We focus here on the non-trivial aspects of the simulator.

Simulating a proof between an hones and corrupt V. The following simulation strategy is employed when-
ever P is honest and’ is corrupted at any point prior to, or during, the execution of the prdtoco

S, upon notification fron?%4 of a successful proof fron? of statement, proceeds as follows.

First, acting on behalf of the corrupt party, S obtains the trapdod$ Ky from G, ¢;s.

Next, S runs the coin-tossing phase of the protocol with the corrupt garflgeing controlled byS’s internal
copy of A) normally. Upon completion of the coin-tossing phase at Step 5, rather émaling a commitment to
the first message sent by (which would require the witness as an input) as per the protocol specificatiSn,
obeys the following procedure for the neéxsteps of the protocol:

5. S computeg<’, o) « ECom(V, SK ). S then sends the equivocable commitm&hto the corrupt verifier
V' (which is part ofS’s internal simulation of4).

6. S receives a challengefrom the corrupt verifieil/.

7. S runs the HVZK simulatoZKSim for protocolII on input(A, p, z, ¢), obtaining messagesandz. S then
equivocates:’, by computing?’ — Eqv(V, SK v, #', a, a), and sendd’, a, z to the corrupt verifiel/.

Observe that this simulation is done entirely in a straight-line fashion, andrescunly the trapdooSK
belonging to corrupt party’.

If P is also corrupted at some point during this simulatiSnmust generaté”’s internal state information
and provide it toA4. If P is corrupted prior to Step 5, the$i can easily provide the random coins used®y
in all previous steps of the protocol (since those are simply execute®iHmynestly). A corruption after Step 5
but before Step 7 is handled by creating an honest run of proibeding witnessw (which was revealed t&
immediately upon the corruption f), and computing the internal valdéviad' < Eqv(V, SKv,a). ', wherea
is now the honestly generated first messagH .oFinally, if corruption of P occurs after Step 7 of the simulation,
the internal state is easily generated to be consistent with observed pritdos) since they already contain all
relevant random coins, given the erasure that occurs at the endp? S

Intuitively, the faithfulness of this simulation follows from the equivocabilitgdrinding properties of com-
mitments, and the HVZK and dense reference parameters propertiestofitetocolIl. We stress that while the
proof of this requires a rewinding argument (specifically, see Appendix Fiithalation itself is straight-line.

Simulating a proof between a corrupt P and honestV. The following simulation strategy is employed whenever
V' is honest, and’ is corrupted at any point prior to or during the execution of the protocol.

First, acting on behalf of the corrupt pa}; S obtains the trapdod$K p from Gacys.

ThenS generates a paip, 7) using theRefGen algorithm forll, and “rigs” the coin-tossing phase of the pro-
tocol by playing the role of/ (communicating with the internal simulation of the corrupt pdfyand modifying
the initial steps of the protocol as follows:

1. S computegi, ) «— ECom(P, SK p), and sendg; to P.
2. P replies by sending some stripg to V.
3. S computeg; < p- p, ', andd; «— Eqv(P, SK p, i1, a, p1).
S first verifies thalp, € ®. ThenS sends the openin@l;, p;) to P.
The remainder of the protocol is simulated honestly.

Observe that the outcome of this coin-flipping phase will be the samenerated byS at the start of the
protocol (along with its corresponding trapdoor informatign If and when the verifier accepts, runs the



Functionality Feom
Functionality 7., proceeds as follows, with committér and recipienl/’. .

Commit Phase: Upon receiving a messadeomnit, sid, P, V, m) from party P, record the valuen and
send the messadeeceipt, sid, P, V') to V and the adversary. Ignore any futuenmit messages.

Reveal Phase:Upon receiving a messadeeveal, sid) from P: If a valuem was previously recorded,
then send the messageesveal, sid, m) to V and the adversary and halt. Otherwise, ignore.

Figure 3: The Commitment Functionaliy..., (see [13])

trapdoor extracto€y for IT on input(A, 7, x, a, ¢, z) to obtain a witness for x. S then sends the pajr, w) to
the ideal functionality=} on behalf of the corrupt prove?.

In the event thaV’ is also corrupted at any point prior to completion of the protaSaimply produces internal
state forl” consistent with the visible random coins in the transcript (none of the wé&rifemdom coins are hidden
by the honest protocoal).

Intuitively, the faithfulness of this simulation follows from the equivocabilitgdrinding properties of com-
mitments, and the trapdoor soundness and dense reference paramugtersgs of the2-protocolIl. Again, we
stress that while theroof of this requires a rewinding argument (e.g., the Reset Lemma of [5]), thdadiomu
itself is straight-line.

Now that we have fully described the behavior&fit remains to prove thaf interacting with]-“jf{ (the ideal
world interaction) is indistinguishable fromd interacting with the protocol (the real-world interaction), from the
standpoint of any environme with access t@...s. We stress that evefi cannot obtain trapdoor information
from G...s for any honest parties, sin€g..s will not respond to requests for such trapdoors. The proof of indis-
tinguishability follows from a relatively straightforward argument, using theusity properties of the IBTC and
Q-protocol. Details are in Appendix E.

4 GUC Commitments in the ACRS Model
The ideal functionality for a commitment scheme is shown in Figure 3. Messageay be restricted to some
particularmessage space

Our protocol makes use of dd-protocol for the IBTC opening relation; here, a witness for a commitment
with respect to an identityD is a valid openindd, m) (i.e., Comp(d,m) = k). Instead of trapdoor soundness,
we only require partial trapdoor soundness with respect to the fungtidnn) := m.

Our new GUC commitment protocol has two phases. The commit phase is the s#meeZK protocol in the
previous section, except that Step 5 now runs as follows:

5. P generates a commitmert= Comy (d,m), and then initiates th€-protocolTl, in the role of prover,
using its witnessd, m).
P computes the first messagef that protocol, forms the commitment = Comy (d’, a), and sends and
K'toV.

In the reveal phasd? simply sends the opening, m) to V', who verifies thatd, m) is a valid opening of.

Theorem 2. The protocol described above GUC-emulatesig, functionality in the secure-channels model,
with security against adaptive corruptions (with erasures).

The proof is analogous to that of our zero knowledge protocol, builestame minor changes that include the
partial trapdoor soundness requirementliorThe details are sketched in Appendix G.

5 Efficient implementations

5.1 Constructing 2 Protocols from ¥ Protocols. We now briefly sketch how to efficiently construct &a
protocolII for a relationR, given any efficien-protocol ¥ for relation R.

Intuitively, we must ensure that the dense reference parameter adddragxtractability properties af will
hold, in addition to carrying ovex-protocol¥’s existing properties.
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Let the reference parameter fidrbe the public keyk for a “dense” semantically secure encryptibriwhere
the dense property of the encryption scheme simply satisfies the requireshémsDense Reference Parameter
property of€2 protocols). Standard ElIGamal encryption will suffice for this purposeéuthe DDH assumption).
Lety = E,;(s, m) denote an encryption of messagewith random coins.

Let a, z¢ denote the first and last messages (respectively) of the prover ircptdtavhen operating on input
(z,w, r) and with challenge, where(z, w) € R andr denotes the random coins of the prover. The three messages
to be sent in protocdll will be denoted ag/’, ¢/, 2’.

Intuitively, we will use a cut-and-choose technique to provide extractakdlity then amplify the soundness
by parallel repetitiork times. The first messagé of II is constructed as follows:

1. Fori = 1,...,k, choose random coins and compute;, z?, andz;} using the prover inputz, w, ;).

2. Fori =1,...,k, compute ciphertexts? = E,(s?, z0) andy} = Epi (s}, 2}).
3. Seta’ := (Y0, 91, ..., 90, ¢1).

The challenge’ sent to the prover ifil is ak-bit stringc’ = ¢, ... ¢,. The last messagé of protocolll is

then constructed as follows.

1. Fori=1,...,k, setz] := (sc; 2.

2. Set/ :=(21,...,2,).

The verifier's algorithm fofl is simply constructed accordingly, verifying that all the ciphertexts wenecty
constructed, and that the corresponding conversations &oe valid.

Theorem 3. TII constructed as above is &irprotocol for relationR, provided that¥ is a >-protocol for relation
R and FE is a dense one-time semantically secure public key encryption scheme.

This is a standard argument, and we omit the proof for lack of space.

5.2 An efficient identity-based trapdoor commitment with Q2-protocol. While the protocol ir§5.1 is certainly
much more efficient than that in [11], at least for languages with efficieptotocols, we would like to get an
even more efficient protocol that avoids the cut-and-choose paraaiggether. In this section, we briefly show
how we can obtain such a protocol for GUC commitments. Unlike the GUC commitroeaire in [11], which
could commit bits, our GUC commitment scheme can be used to commit to values in a ngeclsé&t. Moreover,
because of the special algebraic structure of the scheme, our GUC cominitrotatol can be combined with
other, well-known protocols for proving properties on committed values, (g that product of two committed
integers is equal to a third committed integer).

To achieve this goal, we need an IBTC scheme that supports an effitipratocol, so that we can use this
scheme as iff4. As observed in [11], based on a variation of an idea in [27], to buil¢éBaiC scheme, one
can use a secure signature scheme, along wihpaotocol for proof of knowledge of a signature on a given
message. Here, the message to be signed is an idéhtitxssuming the:-protocol is HVZK, we can turn it into
a commitment scheme, as follows. For a conversdiion, z), the commitment i, the value committed to is
and the decommitment is To commit to a value, one runs the HVZK simulator. The trapdoor for a givénis
a signature oriD, and using this signature, one can generate equivocable commitments juaning the actual
>-protocol.

For our purposes, we suggest using the Waters’ signature scheine pt2G andH be a groups of prime
orderg, lete : G — H be an efficiently computable, non-degenerate bilinear map, ard*let= G \ {1}.

A public reference parameter consists of random group elenggngs, ugp, uy, ..., u; € G, a description of a
collision-resistant hash functiol : {0,1}* — {0,1}*, and a group elemet;. A signature on a messageis

a pair(sl,SQ) € G x G, such tha‘e(sl,ﬁ;ll) . e(Sg,gl) = e(hl,gg), whereq,,, := ug Hbl-:l u; andH(m) =

by --- by, € {0, 1}*. Waters signature is secure assuming the CDH for the gioufith overwhelming probability,
the signing algorithm will produce a signaturg, s2) where neithes; nors, arel, so we can effectively assume
this is always the case.

To prove knowledge of a Waters signatyrg,ss) € G x G on a message: € {0,1}*, we may use the

following protocol. The prover chooses;, w; € Z; at random, and computas — s;/*' ands, « sy/**.
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The prover then sends andss to the verifier, and uses a standaieprotocol to prove knowledge of exponents
w1, W2 € Zq such thaty}’“v;” = Whel’e*yl = €(§1, ﬁr_nl), Y2 = 6(52, 81), andy = e(hl,gg).
The identity-based commitment scheme derived from the aBewetocol works as follows. LetD € {0, 1}*

be the identity, and let» € Z, be the message to be committed. The commitment is computed as follows:

S1,S9 i G*, dl,dg i Zq, Y1 — 6(§1,1~1;l%), Yo — 6(§2,g1), Yo e(hl,gg), v — ’}/fl’ng’}/m. The commitment

is (S1, S2, ’7)

A commitment(sq,82,7) € G* x G* x H is opened by revealing,, d2, m that satisfies the equation
yfwgwm = 7, wherevyy, v9, v are computed as in the commitment algorithm, using the given vajyss.

The trapdoor for such a commitment is a Waters signature on the idéntityJsing such a signature, one
can just run thex-protocol, and open the commitment to any value. The commitment will look the same as
an ordinary commitment, unless either component of the signature is the identitgrgjevhich happens with
negligible probability.

As the opening of a commitment is essentially just a representation of a graoupreleslative to three bases,
there is a standarl-protocol for proving knowledge of an opening of a given commitment. édwer, using
techniques from Camenisch and Shoup [21], we can actually buifetprotocol for such a proof of knowledge,
which avoids the cut-and-choose paradigm.

Garay et al [31] give af2-protocol for a very similar task, which could easily be adapted for oupgaes,
except that the protocol in [31] does not satisfy the dense refemreeneters property, which is crucial for our
construction of a GUC commitment. To appreciate the technical difficulty, the&<Btazie et al. protocol is based
on Paillier encryption, using an RSA modull¥s The secret key for this encryption scheme is the factorization of
N, and this is used as “global” trapdoor to a CRS in their proof of security iWBKERS model. However, in the
GUC framework, we cannot have such a global trapdoor, which is wdynake use of Camenisch and Shoup’s
approaclf.

The Camenisch and Shoup approach is based on a variant of Pailligpgoicy introduced in Cramer and
Shoup [20], which we call herprojective Paillier encryption While the goal in [21] and [20] was to build a
chosen ciphertext secure encryption scheme, and we only requiretseisecurity, it turns out their schemes
do not require that the factorization of the RSA modulNisbe a part of the secret key. Indeed, the modulus
N can be generated by a trusted party, who then erases the factorizadigoes away, leavingv to be used
as a shared system parameter. We can easily “strip down” the schemd,isd2hat it only provides semantic
security. The resulting2-protocol will satisfy all the properties we need to build a GUC commitment, under
standard assumptions (the Quadratic Residuosity, Decision Composite G&&tyidand Strong RSA).

Due to lack of space, all these details are relegated to appendices: dbpperfor the IBTC scheme, and
Appendix | for theQ2-protocol for proof of knowledge of a representation.

6 Achieving Optimal Round Complexity with Random Oracles

While our constructions for GUC zero knowledge and commitments are effici®oth computational and com-
munication complexity, and the constant round complexitg nfessages is reasonable, it would be nice improve
the round complexity, and possibly weaken the data erasure assumptithis $ection we address the question
if such improvements are possible in the random oracle (RO) model [6].r8tedmark that even the RO model,
without any additional setup, does not suffice for realizing GUC commitmerzero knowledge (see [11, 12]).
However, we may still obtain some additional efficiency benefits by combinmd@RS and RO models. Ideally,
we would like to achieve non-interactive zero knowledge (NIZK), amndjlarly, a non-interactive commitment.
Unfortunately, this is not possible if we insist upon adaptive security) éwege combine the ACRS or PKI setup
models with a random oracle.

Theorem 4. There do not existdaptively securandnon-interactivegprotocols for GUC-realizingF.,.,, and fzfi
(for most natural and non-trivial NP relation®) in the ACRS or PKI setup models. This impossibility holds even
if we combine the setup with the random oracle model, and even if we alleuresa

81t should be noted that the “mixed commitments” of Damgard and Niels8hgBo have a very similar global extraction trapdoor,
which is why we also cannot use them to build GUC commitments.
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We give a more formal statement and proof of this result in Appendix Kitlngly, there are two conflicting
simulation requirements for GUC-secure commitments/ZK proofs that poseaultjffnere: a) given knowledge
of the sender/prover’s secret key, they must be “extractable” to thdationuyet b) given knowledge of the recip-
ient/verifier's secret key, they must be “simulatable” by the simulator. It is ssjte for a single fixed message
to simultaneously satisfigoth of these conflicting requirements, so an adversary who can later obthimbine
relevant secret keys via an adaptive corruption will be able to test thensee which of these requirements was
satisfied. This reveals a distinction between simulated interactions and reattites, so we must resort to an
interactive protocol if we wish to prevent the adversary from being tabdietect this distinction. Accordingly, we
will now show that it is possible to achiewptimal 2-round ZK and commitment protocols in the GUC setting
using both the ACRS and RO setups.

ROUND-OPTIMAL ZK USING RANDOM ORACLES. We achieve our goal by simply applying the Fiat-Shamir
heuristic [28] to our efficient zero knowledge and commitment protocofgaceng the first three and last three
messages of each protocol with a single message. We defer a more f@ooakibn and analysis of GUC security
in the combined ACRS and RO model with the Fiat-Shamir heuristic to full vefsibrhe paper, but briefly
comment on three important points. First, note that the only erasure redwid protocols now occurs entirely
during asingle local computationwithout delay — namely, during the computation of the second messages wher
an entire run of three-round protocol is computed and the local randssmused to generate that run is then
immediately erased. Thus, the need for data erasures is really is really minintta¢$e protocols.

Second, the proof of security for the modified protocols is virtually unaltérethe use of the Fiat-Shamir
heuristic. In particular, observe that the GUC simul&auses identical simulation strategies, atwks noneed
to have access to a transcript of oracle queries, nor does it requiabithe to “program” oracle responses. Thus,
only in theproof of securitynamely, that the environment cannot tell the real and the ideal worldsedgse the
usual “extractability” and “programmability” tricks conventionally used in th@ Rodel.

Third, we stress that since the GUC modeling of a random oracle (adg)iatews the oracle to be accessed
directly by all entities — including the environment — the aforementioned fetitat§ does not require a transcript
of all oracle queries, nor the ability to program oracle responsesycsal for deniability. It was already observed
by Pass [38] that deniable zero knowledge simulators must not progemie gueries. However, we observe that
even using a “non-programmable random oracle” for the simulator is stiuiitient to ensure truly deniable
zero knowledge. In particular, if the modeling allows the simulator to obsetggsictions with the random oracle
(even without altering any responses to oracle queries), this can leétéidksaon deniability. In fact, there is a
very practical attack stemming from precisely this issue that will break thiabidéity of the protocols proposed
by Pass [38] (see Appendix J). Our GUC security modeling precludgsossbility of any such attacks.

Of course, unlike the model of [38], we superimpose the ACRS model oRGhmodel, providing all parties
with implicit secret keys. This bears a strong resemblance to the model pfWBith employs the following
intuitive approach to provide deniability for the prover instead proving the stateme®,will prove “either the
statement is true, or | know the verifier’s secret key”. Indeed, oprageh is quite similar in spirit. However, we
achieve a much stronger notion of deniability than that of [34]. Our zeowlatge protocols are the first constant
round protocols to simultaneously achieve straight-line extractability (rejforeconcurrent composability) and
deniability against an adversary who can perform adaptive corrigptibmcontrast, the protocol of [34] is not
straight-line extractable, and is not deniable against adaptive corrgftiois is easy to see directly, but also
follows from Theorem 4, by applying the Fiat-Shamir heuristics to the 3dquintocol of [34]).

Finally, if one does not care about efficiency, applying our technitudise inefficient protocols of [11], we
get a general, round-optimal feasibility result for all of NP:

Theorem 5. Under standard cryptographic assumptions, there exists a (deniabtm)nd GUC ZK protocol for
any language in NP in the ACRS+RO model, which does not rely on dataresas

"Additional details can be found in [41] as well.
8Similarly, the modeling of [33] also rules out such attacks. However, fireitocols make use of special hardware based “signature
cards” and require more th&vrounds. They also do not consider the issue of adaptive corruptions.
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A Deniability and Composability Problems of UC with Local Setup

In this section we show two main problems of the original UC framework whed wsth a local modeling of
the setup. First, it does not preserve deniability, and, second, it testreckind of composition which is safe to
do. We illustrate both of these problems using a zero-knowledge functioaalityzed in the UC model with the
(local) CRS setup. As was shown by [23], appropriately-desigredinteractiveZK proofs of knowledge can be
shown to be UC-secure (against static corruptions) in the CRS modelsleatlitthis non-interactive protocal.

In particular, on input:, withessw and CRS, in produces a proaf = 7(x,w, ). This means that there exists an
efficiently verifiable relationl? = R, ; (which depends on the CRSout not on its trapdoor!) such that, without
knowing a witness fotw for z it is computationally hard to produce a non-interactive proshtisfyingR (o) = 1.

DENIABILITY. Although we give the formal definition of deniable ZK in Appendix B, the faglof UC in terms
on deniability is obvious. In the ideal ZK functionality, if a prover provemsdhard statement to a verifier, the
verifier has no way to convince a third party of this fact. Thus, the proaeidater deny proving the theorem to the
verifier. Needless to say, this property no longer holds with a non-iriteegaroof: the prootr can be transfered
to any third party who will be convinced that the statement is true, even if theepwants to deny it.

CoMPOSITION. As for the composition, using a local CRS leaves one with two options. Eitbheral new CRS
must be created for each fresh protocol run, which is obviously impedctic one can use the Joint-state UC
(JUC) theorem of Canetti and Rabin [19]. The JUC theorem allows oreuserthe same setup, but restricts one
to only usespecially-designed protocoldn particular, no guarantees are provided if even one of the composed
protocols can depend on the true reference string. As a consegeenggosability falls prey tehosen-protocol
attacks when a maliciously designed secure protocol (which depends on thedtug) can suddenly become
insecure when composed with another secure protocol.

For example, assume some paftys willing to prove in zero-knowledge some statemefthat only P knows
the witnessw of. Second, let us consider a functionalify parameterized by our relatiak above, which does
nothing except if a party can provide a satisfying preahaking R true. In this case, this party would leaftis
sensitive witness, but otherwise would learn nothing. We remark, in the ideal ma#lés secure forP: since
only P knowsw and nobody buf” can fake a valid proof of this fact, nobody should learn the value 0of
Moreover, this should hold even R is willing to run an ideal ZK functionality together witlk. However, the
moment we implement the ideal ZK functionality by our UC-secure protectie ideal security of is suddenly
broken: the verifier will obtain a valid non-interactive praeofvhich will passr, and then can extract the witness
w of x. Notice, in this example

e The description ofF depends on the CRS, but not on the trapdoor (which nobody knows).

e The users ofF (in particular, P) might not even realize that the CRS is used in the descriptigh. dfrom
their perspective, the environment just designed a protocol whichiseséar P in the ideal model.

e A maliciously designedecureprotocol became insecure, when composed with the UC-secure protocol
proven so using thical setup modeling.
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e The security ofF breaks even ifF is implemented using a trusted party, completely independent of the
real-model implementation. In particular, we do not need to implerfensing the CRS model to get the
break. In fact, we already mentioned that the usetg oked not even know about the CRS.

B GUC Security Implies Deniability

In this section we give a formal definition of a very strong type of deniabitityzero-knowledge proofs, which we
call on-line deniability Roughly, it implies that an attacker (called ihéormantin this context) cannot convince
the “judge” that a zero-knowledge proof is taking place, even if the attazkrupts either the prover or the verifier,
and even if the informant is constantly connected to an on-line judge. As f&e know, this is the strongest known
definition of deniable zero-knowleddeNevertheless, we show that this extremely demanding defitftaimost
trivially follows from GUC-security, for any trusted setup which is modeledhashared functionality (i.e., if the
setup isglobal). This implication solidifies the (convincing but) informal claim of [11] that the Gframework
is naturally equipped to provide deniability.

THE “PLAYERS”. We start by introducing the relevant parties. We will haywaver P who is presumably proving
atrue statementto averifierVV (for some languagg), ajudge .7 who will eventually rule whether or not the proof
was attempted, amformantZ who witnessed the proof and is trying to convince the judge, amisanformant
M who did not witness any proof whatsoever, but still wants to convince tigejthat it did. Jumping ahead, the
judge will not know whether it is talking to a true informahir a “smart enough” misinformantt (who simply
made up fake “evidence”), and’s task will be actually to determine which of the two it is talking to. In other
words, the judge does not trust the (mis)informant, but is willing to work withgéetber in order to “incriminate”
an honest prover or verifier.

THE “RULES". We assume that the prover and the verifier are part of some netweitoement, which might
include some trusted parties (i.e., trusted setup like PKI) and some means of nmation (i.e., a direct secure
channel or a pair of secure channels to some trusted party). Thedetait$ of this environment are not important
for now. What is important, however, is that we assume that the judge shawida direct, private and “always-
on” line to the (mis)informant (whichever it is talking to). Intuitively, this on-liceannel between the judge and
the (mis)informant, coupled with the fact th&t cannot be “rewound”, will guarantee us tbe-line deniability
property that we are aftét. Additionally, we assume that the judge does not have a direct access tayhesy{for
example, it does not learn the players’ outputs), except through thar{forshant and trusted setup (for example,
it can know the CRS available to all the parties, or their public keys if a PKIési{8 Both the informantZ
and the misinformant\1 will have the capability of adaptively corrupting either the proyeor the verifierV
(who start as honest) at any moment during the computation, and learniegttre state of the corrupted party
following the corruption. Additionally, once eithdt or V' is corrupt, the judge learns about the corruption, while
the (mis)informant can totally control the actions of this party going forwahke assume the (mis)informant
cannot corrupt the trusted setup: for example, in the case of a CRS, tindomigant cannot replace the CRS with
a fake one (say, for which it knows a trapdoor). Finally, dependinthemetwork structure, the (mis)informant

For example, much stronger than concurrent zero-knowledge inteatlby [26] (which required rewinding in the plain model) or
“deniable ZK” in the RO model of [38] (which required extractability of RO course, this means that in order to realize our notion much
stronger setup assumptions are needed as well. Neverthelesigfinition itselappears to be the strongest and most demanding known in
the context of deniability.

1ONote, since this is not a paper about deniability, we tried to make the simpkesibte definition which is already stronger than previous
definitions. It might be possible to give even stronger definitions, asimtérhthe sequel, but this was not the goal of this work.

e notice that even if the real-world judge is actually “off-line” during thetpcol run, the informant can still make use of some online
resourcee.g, some on-line bulletin board. Such bulletin board can record messag&dmnd provide unique identification numbers to
them. Since the board cannot be rewound, by using these randomersithat the board (unknowingly) provided to the informant, the
informant is effective creating a “judge” which cannot be rewounal.particular, prior technique for “off-line” deniability will not be
sufficient in this pretty realistic scenario.

2In some situations, we might want an even stronger guarantee allowipgitneto have some limited interaction with the players, but
we do not explore this possibility here. Thus, depending on the exangfimation of such partial interaction, our definition may or may
not satisfy such stronger requirements.
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might have partial control over the network. In our setting, where wésenmvsecure channels, this means that it
can only delay or block some messages (not knowing what they are)tHartsettings can be modeled as well.

THE “GAME”. Now, assume we have a protocoin our network which presumably implements a deniable zero-
knowledge proof fromP to V. In terms of correctness, we require that for any true statemgrtwhich (honest)

P has a valid witnesw, if the informantZ is passive, theV will always accept the proof. Additionally, the
probability that a dishonegt* can make an honest verifier accept a false statemenis negligible.

As for (on-line) deniability, we define it as follows:

Definition 6. We say that a protocat achieve®n-line deniabilityfor zero-knowledge if for any efficient informant
7 there exists an efficient misinformaft such that that no efficient judgé can distinguish the following two
experiments with non-negligible probability. In both experiments, after gedtngss to the setup (i.e., a CRS), the
judge J chooses an arbitrary paifz, w), such thatw is a valid witness for.

1. Informant Experiment. P gets an inpui{z,w), V andZ get inputz, and P and V' are instructed to run
the protocolr on their inputs against an informafit (who, in turn, interacts with the judgé on-line).

2. Misinformant Experiment. P gets an inpufz, w), V andZ get inputz, but P andV are notinstructed to
run the protocolr. Instead, they run an “empty” protocol against a misinformavtt(who, in turn, interacts
with the judge7 on-line).

We make a few comments about this definition. First, without loss of generalityréh¥ informantZ can
simply be a “dummy” attacké? who blindly follows the instructions of the judge and truthfully reports back
everything it sees. Second, the fact that the inpamd a withess are selected by the judge simultaneously serves
two purposes. On the one hand, it ensures that the informant canriatiimate an honest party even if the entire
instancez, w) is adversarially chosenOn the other hand, it ensures that the potential incrimination would happen
because” andV really ranw, and not becausein itselfhas some incriminating information impossible to obtain
otherwise (i.e.irrespective of whether or nat was actually ruf. Also, we gave the proveP the withesaw even
in the misinformant experiment, since we are not trying to deny th&hows the witness (maybe judge knows
that P does), but rather tha? proved the statement 16 (who may or may not know its truth). Finally, we remark
that although our definition is extremely strong (e.g., stronger than préyipusposed models of deniable ZK),
by itself it only protects the deniability of parties during the time that thegestly followed the protocal. In
particular, after a corruption, onjyastZK proofs of a given party are guaranteed to be “deniabte”.

DENIABILITY OF IDEAL ZK. Although this is not needed for our proof that GUC-security impliesalglfity, it is
instructive to consider aideal ZK functionalityF, (for some relatiork) described in Figure 2. Informally;,y is
“deniable” because, despite informing the adversary that the statenetrue , it does not provide the adversary
with any useful “evidence” of it. Using Definition 6, we can easily formalizs thtuitive claim. Indeed, assunie
andV have access to a trusted pdftymplementingF,,. (using private authenticated channels between the players
andT), and consider a canonical “ideal-model” protogplwhere P andV simply useT to implement message
authentication. It is almost immediately clear that this protocol satisfies DefinitigmeSpective if additional
setup is available), formalizing the fact tha}, is “deniable”.

Lemma 7. The canonical protocap achieves on-line deniability.

Proof. Given the simplicity ofp, the misinformaniM only has to report the state of a corrupted prover or verifier
back to the judge. For the prover, it learns the witnesster the corruption, so it can just pretend tiaactivated
F.x oninput(z, w). As for the verifier, it appends a fake receipt of the proof & (which does not depend on

3This is analogous to a result in [10], which shows that UC security hasjaivadent formulation with respect to such a “dummy”
adversary.

1t this stage, we do not even know how definethe deniability of acorrupt party after the corruption (which could be similar in
spirit to the notion of “receipt-freeness” in electronic voting [7]). Deglieg on such a future formalization, our notion may or may not be
applicable to this stronger setting.
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w) only if the verifier was corrupted after the receipt of this receipt ffénClearly, the view of7 is identical in
both experiments

DoEesUC IMPLY DENIABILITY ? Informally, since we just established the deniability of the ideal functionality
Fa in Lemma 7, one would imagine that if it werealizedwith a “secure protocol” analyzed via a sufficiently
strong security definition/framework, such a realization of the ideal funality 7, would also be deniable. For
example, the strong notion of security captured byuiméversal ComposabilityUC) framework of Canetti [10]
naturally appears to providexactlythis sort of guarantee. (The remainder of our discussion assumes ssine b
familiarity with the UC framework.) However, the UC framework lacks any madma for directly modeling
global setupsuch as a CRS. Therefore, in the past, UC secure protocols whichusal@d a CRS have simply
modeled it as #ocal setuginstead. This approach to modeling allows the UC simulater the adversary attacking
the ideal functionality) to choose its own CRS. Clearly, this modeling doesapitie the deniability concern,
since such protocols can only be simulated if the simulation procedure is altonemhtrol the CRS (which is
publicly visible in the real world, and therefore cannot be plausibly ctiattdy anyone other than the trusted
authority generating the CRS).

SOLVING DENIABILITY WITH GUC. Luckily, a recently proposed extension to the UC framework allows us
to directly modelglobal setup The Generalized Universal Composabili(UC) framework of [11] introduces

the notion of ashared functionality Such functionality can be shared by multiple protocols, and, as a result, the
environment effectively has direct access to the shared functionalitgringgthat the simulator is not empowered

to control it. Thus, modeling global setup as a shared functionality allowspreperly capture additional security
concerns, including deniability, with a UC-style security definition. We statariihélly as follows.

Theorem 8. Consider a real-model protocal which utilizes some trusted setoqmdeled as a shared functionality
in the GUC framework Then, ifr is a GUC-secure implementation &%, with respect to this setup, thenis
on-line deniable (according to Definition 6) with respect to this setup.

Proof. Assumer is GUC-secure. This means that there exists a simufatwhich can fool any environmerf
thinking that it is interacting with the “dummy” attacket when parties runr. We define our misinformant
(for the “"dummy” informantZ) to simply runsS in its head, by pretending that the proveractivated the ideal
functionality with the messageZK- pr over , sid, P, V,z,w) (see Figure 2). NoticeS does not need to know
the witnessw to start working (since it does not learn it in the ideal model, unless theepi®eorrupt at the start,
or the environment tells iy). However, if P gets corruptS would expect to learn the withessof P, which M
can provide taS according to our definition of the misinformant experiment. We stress, rewiaatM can run
S inrelation to the setup as well, because the setup is modeled as a sharechalitgtims we explained earlier. As
S generates the simulated view.df M pretends that this is the view of the informantBy the GUC-security of
m, it means that the simulated view dfshould be indistinguishable from the real view of (dummlyinteracting
with any Z which actually initiatedP with the input( ZK- pr over , sid, P, V,z,w) inthe real model, such as the
judge [ in its experiment with the actual informaiit Thus, if we defineZ to be mimicking the judgey except

it also initiates a ZK proof fronP to V, then the view of7 in the informant/misinformant experiments is exactly
the same as the view & in the real/ideal experiment experiment above (except without a possitpeatof 1/

( ZK- pr oof , sid, P, V,z) ). This completes the proof]

C (Q-protocols

Let IT be an{2-protocol, where algorithnParamGen generates a system parameterand algorithmRefGen
generates a reference parametelRecall that a given system parametedeterminesX, L, W, R, as described in
§2.3.

C.1 SoundnessWe saylI satisfies thepecial soundnegondition, if there exists an efficient algorithéy,, called
arewinding extractoysuch that every efficient adversatywins the following game with negligible probability:

1. The challenger generates a system paranieterd a reference parameierand sendsA, p) to A. Note
thatA definesX, L., W, R as above.
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2. A computes: € X, along with two accepting conversatiofis ¢, z) and(a, ¢, 2’) for z, wherec # ¢/, and
gives these to the challenger.

3. The challenger then ruds, on input(A, p, x, a,c, z, ¢, 2'), obtainingw € W.

4. A wins if w is not a witness for.

We say thatll satisfies thérapdoor soundnessondition if there exists an efficient algorithfy, called the
trapdoor extractor, such that every efficient adversényins the following game with negligible probability:

1. The challenger generates a system parametend a reference parameter/trapdoor gairr), and sends
(A, p) to A. Note thatA definesX, L, W, R as above.

A computest € X, and sends to the challenger.

The challenger generates a random challenged sends this tal.

A generates a responsgand sends this to the challenger.

The challenger run§g on input(A, 7, x, a, ¢, z), obtaining a valuev.

Awins if (a, ¢, z) is an accepting conversation foy butw is not a witness fot:.

I

We say thall satisfies thespecial trapdoor soundnessndition if there exists an efficient algorithfyy, called
the trapdoor extractor, such that every efficient advergawins the following game with negligible probability:

1. The challenger generates a system parametand a reference parameter/trapdoor gairr), and sends
(A, p) to A. Note thatA definesX, L, W, R as above.

2. A computes: € X, along with two accepting conversatiofis ¢, z) and(a, ¢, 2’) for z, wherec # ¢/, and
gives these to the challenger.

3. The challenger rungq on input(A, 7, z, a, ¢, z), obtaining a valuev.

4. A wins if w is not a witness for.

Using a standard rewinding argument ([5]), it is easy to show that dpegi@oor soundness property implies
the trapdoor soundness property, assuming the size of the challerngasfage (i.e., super-polynomial).

We say thall is partial trapdoor sound with respect to a functigrif the challenge space is large, and if there
exist efficient algorithms;,, and&q, such that every efficient adversafywins the following game with negligible
probability:

1. The challenger generates a system parametand a reference parameter/trapdoor gairr), and sends
(A, p) to A. Note thatA definesX, L, W, R as above.

2. A computes: € X, along with two accepting conversatiofis ¢, z) and(a, ¢, 2’) for z, wherec # ¢/, and
gives these to the challenger.

3. The challenger then ruds, on input(A, p, z, a, ¢, z, ¢, '), obtainingw € W.
The challenger also rur&q on input(A, 7, z, a, ¢, z), obtaining a value.

4. Awins if w is not a witness fog, or if v # f(w).

These definitions of special soundness and special trapdoor sssdre essentially the same as in Garay, et
al [31], except for a the properties are stated in terms of attack gantlest than universal quantifiers; actually,
one cannot use Strong-RSA-style arguments otherwise.

C.2 Honest Verifier Zero Knowledge. We say thatll is honest verifier zero knowledge (HVZK}here exists
an efficient algorithnZKSim, called asimulator, such that every efficient adversafyhas negligible advantage in
the following game:

1. The challenger generates a system paranieterd a reference parameterand sendsA, p) to A. Note
that A definesX, L, W, R as above.

2. A computeqz,w) € R, along with a challenge, and send$zx, w, c) to the challenger.

3. The challenger choosé% {0, 1} at random, and computes messagasad: in one of two ways, depending
onb:
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e if b =0, thena andz are obtained by running the protocol, using the pravevith inputs(A, p, z, w),
and using: as the challenge;
e if b =1, thena andz are computed as the output of algoritZ#{Sim on input(A, p, z, ¢).

The challenger sends, z) to A.
4. Aoutputsh € {0,1}. A
5. A’s advantage is defined to b&r[b = b] — 1/2|.

C.3 Dense Reference ParametersA given system parametéy determines a seb of possible reference pa-
rameters. Lef be some larger set, also determineddyWe call elements ob extended reference parameters
Further suppose that:

e we have an efficient algorithm that samples the uniform distributiof® en this algorithm takeg\ as input;

e we have an efficient algorithm that determines membership-r this algorithm also takes as input;

e we have an efficiently computable binary operationdothat makesb into anabelian group the inverse
operation of the group should also be efficiently computable;

e itis computationally infeasible to distinguish a random element &fom a random element .

If all of these conditions are met, we say thbhsatisfies thelense reference parameter property.
The last condition may be stated more precisely as saying that every efficieersary.4 has negligible
advantage in the following game:

1. The challenger generates a system paramet&his determines sets and® as above.
2. The challenger choosésc {0,1} at random, and computes an extended reference paramieteme of
two ways, depending o

e if b =0, thenp «— RefGen(A);
o if b=1,thenp & .

The challenger sengsto A.
3. Aoutputsh € {0,1}. )
4. A’s advantage is defined to b&r[b = b] — 1/2|.

C.4 X-protocols. A X-protocol is just special type d2-protocol, in which there is no reference parameter. The
notions of special soundness and HVZK carry ovetbatimto X-protocols, while the various notions of trapdoor
soundness, and the notion of dense reference parameters, delydaoap-protocols.

D Identity-based trapdoor commitments
We define IBTCs similarly to [11], with the additional restriction of requiring ittygut to the commitment algo-
rithm to serve as a decommitment (this removes the need to specify an opemnthaigvith the scheme).

Definition 9 (Identity-Based Trapdoor Commitment). An IBTC schemé(C' is given by &-tuple of poly-time
algorithms,/C' = (Setup, Extract, Com, ECom, Eqv), with the following basic properties:

e Setup: Generates a public ke K and a master secret k&Y SK. We may omit explicit mention oPK
(which is always used as an input for the remaining algorithms) as a notatmmaenience.

e Extract: On input(PK, ID, MSK) outputs a trapdoofK ;p for identity /D. The Extract algorithm may
also be randomized.

e Com: Oninput(PK, ID,d, m) outputs a commitment for messagen under identity/D using a decom-
mitment valuel that belongs to some sBt(determined byPK). This is adeterministicalgorithm (although
d will be randomly generated). As a shorthand, we will wfitem;p (d, m) to denote such a commitment.

e ECom: Oninput(PK, ID, SK p) outputs a paifx, «), to be used witteqv.

e Eqv: Oninput(PK, ID, SK 1p, k, a, m) produces a decommitmetitc D such thatCom;p(d, m) = k.

IBTC schemes must satisfy the following security requirements:
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e Binding - Every efficient adversaryl wins the following game with negligible probability:

1. The challenger generateBK , MSK') using theSetup algorithm, and sendBK to A.
2. A queries an oracle fdixtract(PK, -, MSK) (many times).
3. AoutputsID,d,m,d,m’.
4. A wins if ID was not submitted to thE&xtract oracle in Step 2m # m’, and Comp(d,m) =
Comyp(d',m').
e Equivocability - The advantage of every efficient adversaryn the following game is negligible:

1. The challenger generateBK , MSK) using theSetup algorithm, and send&/SK to A.
2. A chooses an identityD and a message, and send$ID, m) to the challenger.
3. The challenger choosés= {0, 1} at random, and computésc D in one of two ways, depending on
b:
— if =0, thend & D;
—if b=1, then

SK 1p < Extract(PK,ID, MSK), (k,«) < ECom(PK,ID,SKp), d <— Eqv(PK,ID,SK p,k,a,m).

The challenger then sendgo A.
4. Aoutputsh € {0,1}. A
5. A’s advantage is defined to b&r[b = b] — 1/2|.

E Details of GUC ZK analysis

First, we give the remaining details of the simulator, which are essentially sthfada in the UC literature.

Initialization. All parties are assumed to be initialized with a copy of the common referencg Stkinpublished
by G...s during its global initialization phase. If the parties have not already beénitslized, S activates a
copy of theG,..s shared functionality, which then proceeds with the initialization. (Notice, sareal copy of the
globally shared;,..s functionality is actually being invoked by, andS does not attempt to initialize any parties
directly.)

Simulating communication with Z. S simply forwards all communications between its internal copylaind
Z.

Simulating communication with G,..s. S simply forwards all communications between its internal copydof
andGacrs-

Simulating a proof between two honest parties,P and V. Since we are in the secure channels model,
simply notifiesA that communications (with messages of appropriate length for a proof ptptawve taken place
betweenP andV'. If A blocks any communications, blocksV from receiving the output of .

If either P or V' is corrupted during the execution of the protocol, or subsequent to itsletom the pro-
tocol transcript preceding the corruption event is generated usingothesponding technique described below
(including provisions for the internal state of the corrupt party).

Next, we present here a more detailed proof of the claim that the simulategtiexeof the GUC ZK protocol
in §3 is indistinguishable from the real protocol. We structure our proof &gjaence of games, starting with the
unaltered real-world interaction and proceeding by steps towards tHeniddd interaction.

Iy - Real-world interaction The original protocol runs with adversa#.
I, - Simulating interactions between two honest partiesThis interaction is the same dg, only the compu-
tation of the actual protocol messages between two honest parties isdelatyleone of them becomes

corrupted (at which pointd expects to learn the corrupted party’s history via examination of its internal
state).
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Given that we are in the secure channels model (which implies that any gesssant between honest
parties remains entirely private until one of them is corrupted) this is onlyeepiual change tf), so the
distributions of these two games are trivially identical.

I, - Modifying (', d") sent to corrupt verifier When the verifier is corrupt but the prover is honest, we have the
honest prover replace the commitmehto be sent in Step 5 of the protocol with an equivocable commitment
opened to the same value. That is, we provide the honest prover with pladearainformationSK 'y of the
corrupt verifier, and we modify Steps 5-7 of the protocol as follows:

5. P starts theQ-protocolll for relation R, with common input A, p, z). As usual,P plays the role of
the prover inll and computes the first message
P computeq#’, o) < ECom(V, SKvy).
P then sends the equivocable commitmghto the corrupt verifiel/.

6. P receives a challengefrom the corrupt verifiel/.

7. P computes a responseto Vs challengec. P computesd’ «— Eqv(V, SKy, k', a,a), and sends
d', a, z to the corrupt verifiel/.

I5 - Modifying (a, z) sent to a corrupt verifier Once again, this change affects only the scenario where the
prover is honest and the verifier is corrupt.

This interaction is the same dsg, only the values ofi, z sent by the prover are generated using the HVZK
Simulator forll, rather than usingl directly.

That is, modify Step 7 of the protocol as follows:

7. P runs the HVZK simulatoZ KSim for protocolIl on input(A, p, z, ¢), obtaining simulated messages
a andz (this values are used instead of those that would have been general&d via
P computes!’ — Eqv(V, SKy, /', a,a), and sendd’, a, z to the corrupt verifiel/.

14 - Modifying the coin-toss commitment sent to corrupt provers This interaction is the same &gin case the
verifier is corrupt. However, in the event that the prover is corruptmaedify the coin-flipping stage of the
protocol to replace the commitment sent by the honest verifier with an exglileocommitment opened to
the same value.

That is, we provide the honest verifier with the trapdoor informatiégfp of the corrupt prover, and we
modify Steps 1-3 of the protocol as follows:

1. V computeg; < ®.
V computegk, a) «— ECom(P, SK p), and sendg; to P.
2. Preplies by sending some stripg to V.
3. V computesl; « Eqv(P, SK p, k1, a, p1)-
V first verifies thaip, € ®. ThenV sends the openin@li, p;) to P.

I5 - Rigging the coin-flipping for corrupt provers This interaction is the samg, only in the case where the
prover is corrupt we further modify the coin-flipping phase of the prottby changing the honest verifier's
opening in Step 3 in order to “rig” the outcome of the coin-flipping to a presifipe choice of reference
parametep.

Specifically, we make the following change:

3. P generates a paip, 7) < RefGen(A), and setg; = p - pgl (rather than choosing, at random).
V computesi; «— Eqv(P, SK p, k1, o, p1).
V first verifies thaip, € ®. ThenV sends the openin@li, p;) to P.

Is - The ideal world The most significant difference betweénand the final, simulated interaction in the ideal
world is that the simulator uses the rigged coin-flipping technique to “trapextoact” a witness when the
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prover is corrupt — and then the honest verifier's output is taken trmﬂ-“jf( functionality, rather than a
direct verification of the protocol messages. There is a minor differehea the verifier is corrupt — now it
is the simulator who generates the protocol messages of the honest prthvearthan the prover itself. There
are also corresponding changes in message delivery, none of whidhimately visible to the environment
or the (now, internally simulated) adversary.

Provided that the trapdoor extraction procedure produces a valid witrtesnever the corrupt prover suc-
ceeds in convincing an honest verifiéy,and I are identically distributed.

Claim 10. I is indistinguishable fronij.

Proof. The proof follows directly from the equivocability property of IBTCs. iNaly, any environment that can
distinguishl, from I3 can easily be made to distinguish equivocable commitments from honest commitments to
the same value by simply plugging in the challenge commitments appropriately (&gddds to provide the

same public setup parameters as the challenger’s IBTC system).

Claim 11. I3 is indistinguishable fromnis.

Proof. The proof follows by observing that if; can be distinguished frorfy, then either (a) extended reference
parameters can be distinguished from reference parameters, oellspreersations fofl can be distinguished
from simulated conversations. The reduction follows by an application ebiidm 15, which allows us to “rig”
the coin-tossing phase of the protocol (which is taking place in either itit@nat; or I») to yield the same
specified by the challenger in the HVZK attack game. (Observe that wéredtpe dense reference parameter
property of theQ2-protocol, to satisfy the requirements of the Lemma.) Since we can now msesedsthat the
challenge reference parameter is being used foftpeotocol in our interaction, we simply serid, w, ¢) to the
HVZK game challenger (where is taken from the input to the honest provéim our interaction), and replace the
honest proveP’s choice of(a, ¢) by the response from the challenger. Distinguishiniffom 7, now corresponds
precisely to guessing the HVZK challenge hitD

Claim 12. I, is indistinguishable fronds.
Proof. This is a straightforward reduction to equivocability of IBTCs, as before
Claim 13. I5 is indistinguishable fromniy.

Proof. We begin by considering a modified interactibpwhereV computesp, by first selecting uniformly at
random, and then computing « p - p, '. Itis easy to see that the distribution @f is unaltered, and thus we
have made only a conceptual changéto

Given this new view ofly, it is easy to see that if we modiff; as per gamés, theonly differences that the
valuep used byV is no longer random, but is instead chosen accordimefo:en. From here, itis straightforward
to reduce the distinguishing game to the Dense Reference Parametetypodplee (2-protocol. O

Claim 14. I is indistinguishable fronis.

Proof. This proof is by reduction to trapdoor extractability property of €herotocol. Recall that the “rigging”
of the reference string is already taken care of by the techniqug (o we may easily arrange for the same
selected by the challenger in the extraction attack game dRtheotocol). The trapdoor soundness property for
II guarantees that we get a witness with overwhelming probability.

Combining the preceding claims yields the desired proof that the real interdgtis indistinguishable from
the ideal interactiord.

F A coin-tossing lemma
First, we consider a generic indistinguishability taskthis models encryptions, commitments, HVZK, etc.) The
taskT' has a system parametérand reference parametgr which are generated by some given algorithms.
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Further, we assume that reference parameters belong to some abelignbgrim which the group operation
(which we write multiplicatively) and the group inverse operation are effisiemomputable. Membership i
should also be efficiently decidable. We assume that the reference para@eeration algorithm generates the
uniform distribution on®. We also assume thatspecifies a probabilistic algorithi#i that takes as input a system
parameter\, a reference parametgra bit stringz, and single “selection” bik.

The indistinguishability property is defined by the following attack game:

Attack Game 1. This is a game played between an adversdrgnd a challenger.

1. The challenger generates a system paramétand a reference parametgr and sendsgA, p) to A.
2. Acomputes a value € {0, 1}*, and sends: to the challenger.

3. The challenger choosés: {0, 1} at random, and computes«— E(A, p, z,b), and sendg to A.
4. Aoutputsh € {0,1}.

The adversary’s advantage is defined td Be[b = b] — 1/2|.

We say thatl" is computationally indistinguishablé every efficient adversary has negligible advantage in
Attack Game 1.

Now suppose that instead of generating the reference paraprstesindom, we use a “coin tossing” protocol,
as described in the following attack game. Assume we have a computationaliygbammmitment schem&om,
which may have system parametéig,,.

Attack Game 2. This is a game played between an adversdrgnd a challenger.

1. The challenger generates a system paramétésr 7' and a system parametérc,,, for Com, and sends
(A, Acom) tO A.
A sends a commitmenry to the challenger.
The challenger generates a random reference parameter®, and sendg- to .A.
. A computes a value € {0, 1}*, and sends;, along with an openingd;, p;) of x; to the challenger.
. The challenger verifies thét,, p;) is a valid opening of, and thatp; € ®.
The challenger sets «— p1 - po.
The challenger choosésc {0, 1} at random, and computes— E(A, p, z, b), and sendg to A.
6. A outputsb € {0,1}.

aAwN

The adversary’s advantage is defined to Pe[b = b] — 1/2|.

Theorem 15. If T'is computationally indistinguishable arttbm is computationally binding, then the advantage
of every efficient adversary in Attack Game 2 is negligible.

Proof. SupposeA is an efficient adversary playing in Attack Game 2 with advantagehere«a > 1/P for some
polynomial P (and for infinitely many values of the security parameter). We construeffaent adversaryd’
that contradicts the assumed computational indistinguishabilify; ek in Attack Game 1.

AdversaryA’ runs as follows:

1. After receivingA andp from its challenger in Step 1 of Attack Game. 4, generates a system parameter
Acom for the commitment scheme, and sefidsAcom) t0 A, as in Step 1 of Attack Game 2.

2. After receiving the commitment; from A as in Step 2 of Attack Game 2|’ generatep’ € ® at random
and sends this value td, as in Step 2 of Attack Game 2.

3. If A does not respond with a valid opening, as in Step 2 of Attack Game 2 4heuatputs 0 and halts.
Otherwise, ifA responds with:* and a valid openingd;, p1), A’ proceeds as follows:
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t— P
w1, 1)
fori «— 1tot do
if i=w //“plug and pray”
then py < p-py"
else p, & @
rewind.A back to Step 2 of Attack Game 2 and sendo A
if A responds withr and a valid openingd, p}) of x; then
if ¢ # w then output 0 and halt// prayers unanswered(
if p} # p1 then output 0 and halt// commitment broken!
sendz to the challenger in Step 3 of Attack Game 1
forward challenger’s respongeo A
when.4 outputsb, then outpub and halt
output 0 and halt // rewinding failed to produce second opening

Analysis.We claim that4’ has advantage at leaist4 P? in Attack Game 1, for infinitely many values of the
security parameter. To see this, first consider the following “unbourelgthding version” of Attack Game 2. In
this game, if4 does not open his commitment in step 4, the game halts (and we asssiset to 0). Otherwise,
if A opens his commitment, the challenger rewiptlto step 3, feeding him fresh, random valuesgf until A
opens his commitment for a second time. This goes on for as long as it takes téadversary does open for
the second time, the game continues, exactly as in Attack Game 2, but usingugnspyar, d, p1 obtained in the
second opening.

It is easy to argue that the advantage4in the unbounded rewinding game is equahto Moreover, the
expected number of attempts to obtain a second opening is easily calculated to. bEherefore, by Markov's
inequality, the probability that the number of attempts exceésiat mostl /1.

Now consider &-bounded rewinding version of Attack Game 2, where- P, in which the challenger aborts
the rewinding aftet attempts (settin@ to 0 in this case). Since= P and the probability tha = bis 1/2 if
the challenger aborts, it follows that the advantagelaf the t-bounded rewinding game is o — (1/2)(1/t) >
1/P—1/2P =1/2P.

We make one more change to thbounded rewinding game: if the second opening does not agree with the
first, the game is also aborted. Suppose that the probability of akotisder the assumption that the commitment
scheme is binding,; must be negligible, and so for all sufficiently large values of the securigmpetere < 1/4P.

It follows that the advantage of in this game is atleadt/2P — 1/4P = 1/4P for sufficiently large values of the
security parameter.

We obtainA’ from this last game using a standard “plug and pray” argument, whicltesdbe advantage by
a factor oft, from which we obtain the boun]j/4P2. O

G Details of GUC commitment analysis

Most of the details for the analysis of the GUC commitment protocol are the saitte @nalysis of the GUC
protocol (see Appendix E). The main difference is that a slightly moreiaigesd argument is needed to prove that
I is indistinguishable fronds. In I, the simulator uses the trapdoor extradgrduring the commit phase, when
P is corrupted, to extract a value to pass to the ideal functionality. Later, during the reveal phBsmay open
the commitment inconsistently asd, /i), wherern # m; we want to argue that this happens with only negligible
probability, using the partial trapdoor soundness propertylfaelative to the functiorf(d, m) := m. Suppose to
the contrary that the adversary succeeds in making such an inconsigégrihg with non-negligible probability,
even thoughl” accepted the conversatiom, c, z) in the2-protocol. Then using the binding property of the IBTC
scheme (applied to the commitmext), we can rewind the adversary to get a second accepting conversation
(a,d,2"), whered # ¢, also with non-negligible probability (e.g., the Reset Lemma of [5]). The paréipdoor
soundness property will guarantee that the rewinding extrdgiomapplied to these two conversations, will yield
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an opening ofs of the form(d, m). Now we have two openings af, (d,7) and(d, m), wherern % m, which
breaks the binding property of the IBTC scheme — a contradiction.

H An efficient identity-based commitment scheme
We present an efficient identity-based commitment scheme for which aieeffit-protocol for proof of posses-
sion of an opening may be readily constructed.

H.1 Waters signature schemeOur starting point is Waters signature scheme, which we review herds hatl

H be a groups of prime order lete : G — H be an efficiently computable, non-degenerate bilinear map, and let
G* =G :={1}.

system parameters: a description ofz, H, ande, along with

e random group elemengs, g2, ug, uy, ..., u; € G,
e a description of a collision-resistant hash functién {0, 1}* — {0, 1}*.

key generation: a randomz € Z, is chosenh; € G is computed a%; «— g7, andhy € G is computed as
hy < g7; the public key ish;, the secret key ihs.

signing: to sign a message: € {0,1}*, the hashid (m) = b; - - - by is computed (where eadh € {0,1}), a
randomr € Z, is chosen, and the signatukg, s2) € G x G is computed as follows:

s ~T
s1 < g}, s2 « hou,,,

where

u,, := Up H u;.
bi=1

verification: given a message: € {0, 1}* and a signaturés;,s;) € G x G, the verification algorithm checks
that
e(s1,y,') - e(s2,81) = e(h1, g2),
whereu,, is as above.

The Waters signature is secure underdbmputational Diffie-Hellman (CDH)ssumption irfs, together with
the assumption thdt is collision resistant.

H.2 Proof of knowledge of a Waters signature To prove knowledge of a Waters signatuse, s2) € G x G on
a message: € {0,1}*, we may use the following protocol:

The prover chooses:, ws € Z; at random, and computes

1/w1 1/’11}2
1 .

S1 < S and sy <+ S,
The prover then sends ands; to the verifier, and uses a standat¢rotocol to prove knowledge of
exponentsv;, we € Z, such that

w1 w2 __

Y1 VT =

where

= e(81,1,"), 72 :=e(S2,81), and y:= e(hy, g2).

The details are as follows:
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1. The prover chooses;, ws € Z; at random, and computes

S — Si/wl and sy <+ Sé/wQ.
Let
v1 = e(81,1,,), 72 := e(52,81), andy:=e(hy,g2). (1)

The prover then chooses , o, € Z, at random, and computes«— ~;”' v52.
The prover sends the values

81 €G, 59 €@, yeH

to the verifier.
The verifier chooses a challenge Z, at random, and senddo the prover.
3. The prover computes

N

W1 < Wy — cwy and we «— wWe — cwsy
and sends the values
w1 € Zq, Wy € Zq
to the verifier.
4. The verifier checks that -
2 =7,
wherevyy, v9, v are as defined in (1).

It is easily verified that thi&-protocol is HVZK, at least with respect to signatures of the fésms,), where
s1 # 1 ands, # 1. Indeed, for such a signaturg, ands, are independent and uniformly distributed o@f,
and the rest of the protocol may be simulated using standard techniques. sRinatures output by the signing
algorithm are of this form with overwhelming probability, this is sufficient far purposes.

Also, thisX-protocol satisfies the special soundness property. Indeed, fyweaccepting conversations with
the same first flow(s, S, 7), one obtainsv;, we € Z, such that

e(s1,1, )" - e(82,81)"* = e(hy, g2),
and since
e(s1, 1, )" = e(s{", u,') and e(s2,81)"* = e(852, 1),
it follows that (s}, s5?) is a valid Waters signature on.

H.3 An identity-based commitment scheme.The identity-based commitment scheme derived from the above
Y-protocol works as follows. LefD € {0,1}* be the identity to be associated with the commitment, and let
m € Zq be the message to be committed. The commitment is computed as follows:

51,80 & G*, dy,dy & 7Z,
1 e(S1,T7), 72 — €(82,81), 7 < e(hy, 82)
¥ — yygem
output(sy, S2,7)
A commitment(s, S2,7) € G* x G* x H is opened by revealingy, d2, m that satisfies the equation
YRAgA™ = 7,
where~yy, v,y are computed as in the commitment algorithm, using the given valuges.

The trapdoor for such a commitment is a Waters signature on the idétityJsing such a signature, one
can just run theX-protocol, and open the commitment to any value. The commitment will look the same as
an ordinary commitment, unless either component of the signature is the identitgrejevhich happens with
negligible probability.

As the opening of a commitment is essentially just a representation of a publip glement with respect
to public bases, we can easily buil®aprotocol for proving knowledge of an opening of a given commitment.
Indeed, we will show how to build an efficiefd-protocol, where the messageis trapdoor extractable.
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| An efficient Q2-protocol for proving knowledge of a representation

[.1 Number theory background. Let N be a positive integer.

[N] denotes the s€0, ..., N — 1};

for a € Z, a mod N denotes the unique integerc [N] such thatz = x (mod N);

more generally, iti, b € Z with b # 0 andged (b, N) = 1, (a/b) mod N denotes the unique integerc [N ]
such thatt = zb (mod N);

Zy denotes the ring of integers modulg, andZ3; the multiplicative group of units;

fora € Z, [a]n € Zy denotes the residue class moddlacontaininga.

The schemes we shall present below use as a system parameter an R8ésmbthe formN = PQ, where
P andQ are large, distinct, “strong primes,” i.e., primes of the fafa= 2P’ + 1 and@Q = 2Q’ + 1, whereP’ and
Q' are odd primes. Defind”’ := P'Q’.

Note that in all applications, no entity is required to know the factorizatioN ef- not even a simulator in a
security proof. We assum¥ is generated by a trusted party who immediately disappears, taking the fatitoriz
of N with it.

We shall make use of the two abelian grotjs andZ,,. We recall some basic facts:

o 73 isisomorphic tdZy: x Zg X Zso;

o if jny:={[a]n:(a| N) =1}, where(- | -) is the Jacobi symbol, then this definitionaf is unambiguous,
andjy is a subgroup of indeR in Z%;; observe that—1]y € jn;

e the subgroup of squaréZ,)? has index2 in jy; note thaf—1]y ¢ (Z%)%

° Z?VQ is isomorphic {ZyN X Zinr X Lo X Lo,

e the special element := [1 + N|y2 € Ly has orderN, and moreover, for eacln € Z, we have
™ = [1+ Nm]ye;

o if Jy :={[a]ny2 : (a | N) = 1}, then this definition of/ is unambiguous, andy is a subgroup of index

2in Z3,,; observe that—1] y2 € Jn;

e the subgroup of squar¢g&?;,)* has index in Jy; moreover, for all € Z, we havela] y2 € (Z},)? if and
only if [a] v € (Z%)? in particular,[—1] y2 ¢ (Z3}.)?;

e the subgroup ofVth powers(Z";VQ)N has indexV in Z7,.

Now we state the intractability assumptions we will need:

e TheStrong RSA assumptisays that given a randome ZY;, itis hard to findg € Z3, and an integet > 1
such thag® = h.

e TheQuadratic Residuosity (QR) assumptsays that it is hard to distinguish a random elementofrom
a random element afZ%;)?.

e TheDecision Composite Residuosity (DCR) assumpdiys that it is hard to distinguish a random element
of Z3,, from a random element ¢fZ%.)" .

Another convenient fact is the uniform distribution pN/4] is statistically indistinguishable from the uni-
form distribution on[N’]. Similarly, the uniform distribution ofiN2 /4] is statistically indistinguishable from the
uniform distribution on N N'].

Some consequences:

Lemma 16. Under the QR assumption, itis hard to distinguish a random elemeht éfom a random element of
(Z%2)?. Under the DCR assumption, it is hard to distinguish a random elemeftiof)? from a random element
of (Z%2)?". Under the QR and DCR assumptions, it is hard to distinguish a random etehéy from a random
element of Z}, ).

Proof. Easy.O
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Lemma 17. Under the strong RSA assumption, given random elemtgnts. , h, € (Z%)?, it is hard to find
g € 7%, along with integers, d1, . . ., di, such that

g¢=h...h% and ctd; forsomei = 1,..., k.
Proof. This is a simple generalization of a lemma in Camenisch and Shoupr21].

I.2 Projective Paillier Encryption. Cramer and Shoup [20] proposed a variation of Paillier encryption [37].
Although their motivation was completely different than ours (constructin@AZzsecure encryption scheme), it
turns out that some the ideas can be utilized here. The same ideas werseglgo similar effect by Camenisch
and Shoup [21], although again, their motivation was somewhat différantours.

In a nutshell, we present a variation of Paillier encryption that is semanticatlyre under the DCR as-
sumption, and preserves essentially the same homomorphic properties of Badligption; however, unlike the
original Paillier scheme, the scheme we present here has a dense sbtiokpys, in a sense corresponding to
that in§C.3. Following the terminology in Cramer and Shoup [20], let us call this sclieeterojective Paillier
encryption scheme

system parameters:in addition to the RSA modulud/ (of the form described if§l.1), the system parameters

also include a random element

g € (Zy2)™;

note thatg has order dividingV’, and this order is equal v’ with overwhelming probability;
recall that := [1 + N|y2 € Z}, is the special element of ordé¥;

key generation: computet < [N/4] andh « g; the public key ish and the secret key is

encryption: to encrypt a message € [N] using a public key, the encryption algorithm runs as follows:
r & [N/, uwe gl 0= pT
the ciphertext igu, v);

decryption: given a ciphertextu, v) and a secret keg; the decryption algorithm computes
o’ «— v/u’;

if w’ is of the form[1 + N'm| 2 for somem € [N], then the algorithm outputs, and otherwise, it outputs
“reject.”

Lemma 18. Under the DCR assumption, the Projective Paillier encryption scheme isdieilly secure.

Proof. This follows from results in Cramer and Shoup [20]; however, we skitelidea directly, as follows.
Suppose we encrypt a messagas(u, v) := (g", h "), wherer is chosen at random frofiv/4]. Certainly, we

may instead chooseat randon{ N2 /4] without affecting security. Under the DCR assumption (see Lemma 16), we
may instead choosgof the formg’r®, wheres is chosen at random frofV], subject tazed (s, N) = 1, without
affecting security. Now suppose we instead chaoaerandom from{ N N’], which also does not affect security.
Writing » = ro + N'r1, we see that; is uniformly distributed ovefN] and is independent af = g" = g'°. But

now the ciphertext perfectly hides, sincev = g ot (rotN'r1)s+m o

1.3 An Q-protocol. We now describe ou-protocolll for proving knowledge of a representation. Our protocol

works for any abelian grouHl of prime orderg. The protocol will prove knowledge of a representation relative
to £ bases, allowing trapdoor extraction 0k k of the exponents. In our application to commitments based on
Waters signatures, = 3 and/ = 1.
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In addition to a description dfi, the system parameters fir consist of the RSA modulud’ (as described
in §1.1), along with the system parametee (Z%,)*" used for Projective Paillier encryption. Recall that=
[1 + N]n2 € Z3, is the special group element of ord&r. In addition, the system parameters include random
group elements
80,81- .-, 80 € (Zy)*.
We need two more parameterfs; and By. Here,B. is a bound on the size of the challenge space,/and a
“padding bound.” The property required is tHatB. and1/B, are negligible. In addition, we require that

Bchq < N/2 and B; < min{q, Plv Q/} (2)

The reference parameter generation algorithnifdas the key generation algorithm for the Projective Paillier
encryption scheme. A reference parameter is a publictkey (Z}‘VQ)QN for the encryption scheme, and the
corresponding trapdoor is the secret key [N /4], whereg! = §.

Now let~y, ..., vk, v € Handwy,...,wy € [¢], where
Nk = 3)
The common inputs to the prover and verifier are the group elements. , v, y. The prover also gets the tuple
(wi,...,w) as a witness. Our protocol will prove knowledge of values. .., w; € [q¢] satisfying (3), with
the valueswy, ..., w, being trapdoor extractable. More precisely, our protocol will satisfypteial trapdoor
soundness property relative to the functifws, . .., wy) := (wy,...,wg).

The protocoll runs as follows:

1. The prover computes

1o T, 8 [N/4]

fori — 1tol:u; — g", v; — b’

h e gigl - g

..., 70,8 & [BpBeN/4] \ [BeN /4]

W1, .. 'lwk i,[Bchq] \ [BCC_[]

5 — 7;“1 .. "Y;:k i

fori —1tol:u; — g™, 0; — hTir;”

h — gggfl ...gge
and sends

{(uiv i, Uj, Ei)}lev Vs hv h

to the verifier.
The verifier chooses a random challenge [B|.
3. The prover computes

N

fori <« 1tok: w; «— w; — cw;

fori— 1tol: v, — r; —cr;

§+5—cs
and sends

{wi}f:h {’fjl f:l’ 5
to the verifier.
4. The verifier checks that
w; € [N/2] fori=1,...,¢,

and verifies the following relations:

k VA
y=7-T]" h=h-g5 e,

=1 =1
=ul-g" (i=1,...10), b = 0§ - hTi™ (i=1,...,0)
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[.3.1 Analysis

In the attack game for partial trapdoor soundness, we assume anaghieas produced two accepting conversa-
tions _

{(uiv 04, Uj, ﬁi)}le,’f/, h,h, ¢, {wi};{:lv {721 ze:l’ s,

{(uia vy, ﬁia 6i)}1€:1’ Vs h? Ev Cl’ {ﬁ}; f:l? {f; f:l? ‘§/’
wherec # /. Both conversations are fed into the rewinding extractor, while the firstersation, together with
the trapdoot, is fed into the trapdoor extractor. Let us define

Ac:=c — ¢, Aw; = w; — b (i =1,...,k),

Ari::fi—fg(izl,...,ﬁ), As: —§/.

Il
VAR

¢, From the verification relations, we have

Aw;| < N/2 (i=1,...,0) (4)
k
yae =TI (5)
=1
l
hee = g6 e (6)
=1
ube =gt (j=1,...,0), (7)
bR = hATIRAY ((=1,...,0). (8)

We also know thatAc| < Bc.

The rewinding extractor. Give two accepting conversations as above, sinee|Ac| < ¢, the rewinding extractor

may compute
w; «— (Aw;/Ac)mod q (i =1,...,k).

¢From (5), itis clear thatws, . . ., wy) is indeed a valid witness, i.ey,= Hle Qi

The trapdoor extractor. Given an accepting conversation as above, together with the trapdtie trapdoor
extractor runs as follows:

fori < 1to/do

] — (0;/uf)’

if w) = [1 4+ Nz;]y= for somez; € [N] then
zi < (2i/2) mod N
if z; > N/2thenz; — z; — N // compute a “balanced” remainder
w; +— z; mod ¢q

else
w; < 0 // thisis an error

Lemma 19. With the given rewinding and trapdoor extractors, under the Strong RS@ngstion, protocoll
satisfies the trapdoof-extractable property, wheré(ws, ..., wy) := (w1, ..., wy).

Proof. This follows the same line of reasoning as in Camenisch and Shoup [2Hn &wo valid conversation as
above, as we already argued, the rewinding extractor always meduealid witneséws, . . ., wy ), where

w; = (Aw;/Ac)mod q (i=1,...,k).

We want to show that the trapdoor extractor outputs, . .., w,) with overwhelming probability. ¢From the
identity (6), with overwhelming probability, we havew; /Ac € Z for eachi = 1, ..., ¢. This is where we use the
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Strong RSA assumption (see Lemma 17). Moreover, from (4), we [iswve/Ac| < N/2 foreachi = 1,... (.
¢From (7) and (8), and the relatign= g’, one obtains

(W)AC:1 (i=1,....0).

Now, the groufZ;,, has exponer2 N N’, and sincgAc| < Be < min{F’,Q'}, it follows thatgcd(Ac,2NN') €
{1, 2}, which implies that
Jut N2
(%) —1(i=1,...0).

plw;/Ac
This, together with the fact thaf\w; /Ac| < N/2, implies that the output of the trapdoor extractor agrees with the
output of the rewinding extractor

The zero knowledge simulator.Given a challenge, the simulator runs as follows:

1y 1,8 < [N/4]
fori— 1tol: u; «— g™, 0, «— p"
h — g§
P1,..., 708 & [BpBeN/4]
W1, ...,y < [BpBeg]
Rty | R
h — hc'gf}HlegE”i
fori «— 1to/do
U —uf- g, 0; « - hligds

The first flow of the simulated conversation is
{(ui, 05,03, 8:) i1, 7, h,h,
while the third flow is
{@itl, (Yo, 8
Lemma 20. With the given simulator, under the DCR assumption, protbicedtisfies the special HVZK property.

Proof. This follows from the semantic security of Projective Paillier, and standattcal distance arguments.
O

Dense reference parametersThe set of reference parameters is suitably dense, in the sef€e30f Namely,
under the QR and DCR assumptions, a randomly generated publicikepmputationally indistinguishable from
a random element of the subgroug of Z7,; this follows from Lemma 16. Moreover, the sgt; is efficiently
recognizable (just evaluate a Jacobi symbol) and the uniform distributiohyds efficiently samplable; indeed,
one may generate a random elemenf gfas follows:

b {0,1}, v & ZK,
output(—1)r?

J An Attack on “Deniable” Zero Knowledge in the Random Oracle Model

Consider the following simple scenario, involving a provera verifierl, and a third partyZ (who wishes to
obtain evidence thaP has interacted wit’). The third partyZ constructs a verifier's first messagefor the
protocol. Z then asks the verifie¥” to supply evidence of interaction witR by simply forwardinga to P and
relaying the response. In this case, its clear thaiannot know the transcript of random oracle queries issued by
Z during the creation ofy, and thereforé” cannot run the zero knowledge simulator of [38]. Indeed, it is easy to
show thatV” cannot efficiently construct an accepting repltavithout P’s help. Therefore, il is later able to
obtain a valid responsé; is correctly convinced thalP has interacted with’. This implies that the interaction
betweenP andV is not truly “deniable zero knowledge”, since it enabléso convinceZ of the interaction.
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K A Lower Bound on Round Complexity in the GUC Model

Here we will show that, for all practical intents and purposes, GUCseamon-interactive commitment schemes
and NIZK proof systems with adaptive security (or even nfer@ard security) are impossible to achieve. First,
we present a very general impossibility result for non-interactive commitse@remes with forward security in
the GUC framework.

Theorem 21. We say that an “oracle” (or Interactive Turing Machine) imonotonically consisterit it always
returns the same response to paftywhen queried repeatedly on the same input by p&r{gven across separate
sessions), except that it may choose not to respond to some quker# s honest (otherwise, consistency holds
independently of’s corruption status). Le© denote any PPT monotonically consistent oracle (whose outputs
may depend on thgd of the querying party, but not thd).

There exists no non-interactive (single message), terminating pratabelt GUC-realizesF.., with forward
security (even in the erasure model), using only the shared functionalitp foFhis holds even if the commu-
nication is ideally authentic. (In particular, we note th& = G...s and O = G, are efficient monotonically
consistent oraclesgvenif they are also combined with a shared functionality for random oracles.)

Proof. Following the conventions established by [12], suppose there exists-mtapactive protocolr GUC-
realizing F.or, in the O shared hybrid model. Then, in particular, there must be a simul@tsuch that
EXECx,,...s,z = EXEC; 4,z for a particular adversar and O-externally constrained environmegt which
are constructed as follows.

Let A be a “dummy adversary” that simply forwards protocol flows betweerupbiparties and the environ-
ment {.e., when.4 receives a message fraf it will send the message on behalf of some specified corrupt party;
similarly, whenever a corrupt party receives a messdgamply forwards it toZ). Let Z operate by first corrupt-
ing party P (the committer), then choosing a randombit- {0, 1} and running the commit phase ofon behalf
of P in order to obtain commitment Whereverr makes oracle queries @, Z issues the same queries on behalf
of P (relying on monotonic consistency to be sure that it will obtain at least the sdarenation as an honegt
would). Z sendsk to A, and waits for party/ to output(receipt,...). Next, Z runs the reveal phase afon
behalf of P (again, issuing queries @ where necessary) and forwards the corresponding messageghou
Finally, Z waits forV to output(reveal, sid, b) and ifb = b then Z outputsl; otherwise,Z outputs0.

Clearly, if the GUC experiments above must remain indistinguisha@btapst causé’ to outputh = b with
overwhelming probability. Sincé is interacting withFe..,, it must specify the value df to F,o, prior to the
point whereV” outputs(receipt, . ..), which always occurs befot& has initiated the reveal phaseznf That is,
when A feedsS with an honestly generated commitmentor a bitb, S will immediately compute a bib such
thatb = b with overwhelming probability. Therefore acts like an “extractor” for commitments. However, we
stress that while computirfg S expects to have access to the oraBle and, in particular, we note that par®
is corrupt so thatS may ask queries foP which would not be answered whéhis honest (we will see how this
matters shortly).

Intuitively, we have just shown tha can be used to extract a commitment sent by honest parties, violating
the natural “hiding” property of the commitment, although this extractor regu@ceess to the private oracle on
behalf of the committer. Indeed, this “extractor” requires access to thatproracle for @orrupt committer, and
therefore one might think this extractor is potentially “harmless” since it onliatés the security of honest parties
after they become corrupt. However, security against adaptive corruptiopsres thapast transcriptssent by
honest parties who later become corrupt remain indistinguishablediooiated transcriptgwhich were created
while the party was still honest). Of course, the simulator does not know piogsiof honest parties, so simulated
commitments must bandependenbf the actual bit being committed to — and herein lies the contradiction. If
there is an extractor that can open honest commitments to reveal the committét bievwhelming probability
(when the committing party has later become corrupt), then this extractor distiegthonest commitments from
simulated commitments (where the extractor can only be correct/incorrect withlgiity 1/2 for a commitment
to a random bit, assuming it even generates an output).

More formally, we will show that the existence of the simulafoabove contradicts the security ofagainst
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adaptive corruptions, by creating a particular environm&nhthich succeeds in distinguishiftXECx, s z/
from EXEC, 4 z/ after an adaptive corruption operation famny simulatorS’ (as before,A is just a “dummy
adversary”). As a notational convenience, we will wi€ (P, ) to denote the output bt produced by the
simulation above, when running on (honestly generated) commitmeent byP — recalling thatS can only be
run whenpP is corrupt.

Our Z’ proceeds by corrupting at the outset, and then choosing random @ b {0,1}, which it gives as
input to the honest partf. It then expects to obtair (the output of the commit phase) from the adversary. After
receivingrs, Z’ instructs the honest party to revéalcompleting the protocol. In accordance with the forward
security corruption modelZ’ is now allowed to corrupf, which will enable toZ’ to obtain complete access to
O for P. Once this access has been obtain#s free to computé «— S°(P, k). In the real world experiment
(where protocolr is being attacked by the dummy adversary), the distributior ¢&f exactly identical to its
distribution in the original setting above wheSeputputsh = b with overwhelming probability. On the other hand,
in the ideal world experiment (whef€.,,,, is being attacked b§’), we know thatS’ must produce: independently
of the bitb (sinceb is the hidden input of the honest party, sent onlyAg,, which hides it fromsS information
theoretically). This means that in the ideal world, we must havebthab with probability at mostl /2, since the
entire computation of is independent of! Therefore,Z’ can distinguish between the real world and ideal world
experiments with probability at leasf2 — negl(\), contradicting our assumption thais GUC-securel

Note that the class of shared functionalities modeled’bis very large indeed, making this impossibility
result quite strong. Not only dall the natural global setups mentioned thus far (ACRS, PKI, Random Qfdcle
the modeling requirements @, they still fit the requirements aP even if they are all are combined together.
Indeed,it seems likely that this impossibility result will hold for virtually any nateedup assumption. Again, this
impossibility result holds even in the authenticated links model.

Next, we will prove that the same impossibility also extends to NIZK proofs fanymeatural NP-relations.
More formally, we describe the ideal Zero-Knowledge functionality ftatien R, 7%, is described in Figure £

Our impossibility result shows that it is impossible to have forward securémnteractive GUC-realizations cﬁ‘sz{
for non-trivial relationsR (that are not already trivialized by the shared functionality for the glebalg®).

Theorem 22. We say that an “oracle” (or Interactive Turing Machine) isonotonically consisterit it always
returns the same response to paiywhen queried repeatedly on the same input by p&r{gven across separate
sessions), except that it may choose not to respond to some quieer$\s honest (otherwise, consistency holds
independently of”’s corruption status). Le© denote any PPT monotonically consistent oracle (whose outputs
may depend on thgd of the querying party, but not thd).

Further, we say that an NP-relatio® defining some languagé is non-trivial if we believe that no PPT
algorithm efficiently decides membership/in(i.e.,, L ¢ BPP). In particular, R is non-trivial with respect to
oracleQ if there is no PPT algorithm for efficiently deciding membershig.iaven when given oracle access to
O (for arbitrary party identifiers, and even with all parties being marked aswpt).

There exists no non-interactive (single message), terminating protottat GUC-realizesF % with forward
security (even in the erasure model), using only the shared functionality,ftor any NP-relationR that is non-
trivial with respect toO. This holds even if the communication is ideally authentic. (In particular, @te that
O = G.as and O = Gy, are efficient monotonically consistent oracles, even if they are cochliib the shared
functionality for a random oracle.)

*Technically, the relatior? might be determined by system parameters, which form part of a CRS, Were
note that the same CR8ustbe used in both the “ideal” and “real” settingsd, using aglobal CRS modeling).

150f course, it is easy to see how one might achieve non-interactivegpfmotertain languages related to the
global setup. For example, if the global setup is a PKI that uses key mgstiwith knowledge, parties can
trivially prove the statement that their public keys are “well-formed” (withexgn communicating at all') since
the global setup already asserts the verity of this statement on their belhatéfdre, our impossibility result does
not necessarilyextend to cases where the relatiBrio be proved is determined by system parameters, but we are
focusing on realizing zero-knowledge for natural relations thatatérivialized by the presence of the system
parameters (where the impossibility result applies).
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Proof. The proof is entirely analogous to the proof of Theorem 21, and thergfe will only sketch it at a high
level and direct the reader to the previous proof for further detailse Wl call the proverP and the verifie/.

Assuming there is a non-interactive and GUC-secure realizatid?ﬁpfwe first follow the approach of The-
orem 22 in order show that (using a similar shorthand notation) there erigtgtiacting simulatoS© (P, x, ).
For anyx € L, this extracting simulator is capable of computing a witnessuch that(z,w) € R if ¢ is an
honestly generated non-interactive proof according to protecdfowever,S© (P, z, 1)) expects to be ruafter
the corruption ofP, and it we are guaranteed that it will succeed in extracting a valid with¢g®m any honestly
generated proaf) with overwhelming probability in that scenario.

Then we construct an environmesit which, parameterized by arfy,, w) € R, first feeds(z, w) to an honest
prover P, and then obtains the resulting protocol flow Note thaty is the protocol flow that is either observed
by the dummy adversary running in the real world experiment, or is beidgdfaby some simulator in the
ideal model. The environment then corrupts the honest prover (aftepletion of the proof protocol), and runs
SO(P, z,) to obtainw. In particular, sincev must be valid with overwhelming probability in the real world, it
must also be valid with overwhelming probability in the ideal world running widhme(efficient) simulatotS’ (or
else the environment can successfully distinguish the two experimentsadictitrg the claimed GUC-security of
the protocol). However, the value ofis information theoretically hidden frod’ by fZR, so its clear thaf’ must
outputy) given onlyz and access to th@ oracle (in particular, whilé” is corrupt andP is honest).

To conclude the proof, we show how to obtain a witnedsr statement: using only a0 oracle, contradicting
the non-triviality of L with respect taD. Given any statement, we first pick some party’ to act as the prover,
andV to act as the verifier. Then we n&i°(z) to produce a “fake” proof). Finally, we runS® (P, z,) to
obtainw such that(z, w) € R. Since this entire procedure produces a valid witne$sr anyx € L while using
only oracle access 0, we have successfully contradicted the non-triviality.oiith respect ta0. O
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