A Proposal for an ISO Standard for Public Key
Encryption (version 1.1)

Victor Shoup
IBM Zurich Research Lab, Saumerstr. 4, 8803 Ruschlikon, Switzerland

sho@zurich.ibm.com

May 29, 2001

Abstract

This document should be viewed less as a first draft of a standard for public-key
encryption, and more as a proposal for what such a draft standard should contain. It
is hoped that this proposal will serve as a basis for discussion, from which a consensus
for a standard may be formed.

The original version of this document (version 1.0) is dated February 13, 2001.

Version 1.1 contains one substantive change: The decryption algorithm for ACE-Encrypt’ has been
slightly modified (see §5.3). Additionally, some minor errors — not affecting the descriptions of
any algorithms — have been fixed.

Contents

1

Introduction

1.1 Background e
1.2 Goals of this document oL
1.3 Preliminary remarks on securityo
1.4 A summary of submissions and proposed schemes
Preliminaries

2.1 Public-key encryption and chosen ciphertext attack
2.2 Key encapsulation
2.3 Byte string/integer conversions L.
2.4 Pseudo-random byte generator oL oL
2.5 Symmetric key encryptiono Lo
2.6 One-time MAC e
2.7 Hybrid encryptiono
2.8 Hash functions L
2.9 Mask generation functionso L oo oL
2.10 Abstract groupso
2.11 Intractability assumptions related to groups
A variant of ECIES

3.1 Key Generation Lo
3.2 Encryption e
3.3 Decryption. L e
3.4 Security considerations
3.5 Comparison to ECIES
A variant of PSEC-2

4.1 Key Generationo Lo
4.2 Encryption Lo e
4.3 Decryption oL e e
4.4 Changes from PSEC-2 oo oo
4.5 Security considerations L
4.6 Further remarkso

A variant of ACE-Encrypt

5.1 Key Generation Lo
5.2 Encryption L e
5.3 Decryption. L e
5.4 Security considerations L
5.5 Furtherremarkso

B N

12
13
14
14
14
15
16
17
19
21

22
23
23
24
24
24

27
27
28
28
29
30
35

6 RSA-OAEP
6.1 Message encoding functions

7

6.2
6.3
6.4

EME-OAEP
RSA-OAEP
Defects of RSA-OAEP

RSA-OAEP+
Extended message encoding functions L.

7.1
7.2
7.3
7.4

XEME-OAEP+
RSA-OAEP+
Security considerations

Simple RSA

8.1
8.2
8.3
8.4

Key Generation
Encryption
Decryption
Security considerations

i

1 Introduction

1.1 Background

At its meeting on April 3-7 2000 in London, the ISO/IEC JTC 1/SC 27 committee decided
to put out a call for contributions for a proposed new project (NP 18033) on encryption
algorithms. This call for contributions (document SC 27 N 2563) proposed four parts:

1. General

2. Asymmetric Ciphers
3. Block Ciphers

4. Stream Ciphers

The author of this document is currently the acting editor for the Asymmetric Ciphers
part of the standard. This document deals exclusively with asymmetric ciphers, a.k.a.,
public-key encryption schemes.

A number of submissions in response to the call for contributions were received, and are
available as ISO document SC 27 N 2656. The author of the present document has carefully
reviewed all of the submitted proposals for public-key encryption schemes.

There were a number of different types of schemes submitted:

e Some are based on the hardness of factoring integers or related problems.

e Some are Diffie-Hellman-based schemes — of these, some are based on elliptic curves,
and some are based on subgroups of Z;.

e Some allow encryption of arbitrary length messages, and others only allow encryption
of short messages.

e Some allow for additional data to be “non-malleably bound” to the ciphertext, while
others do not.

e Some allow for cleartexts and ciphertexts to be efficiently processed as “streams,” while
others do not, requiring more than one pass over this data.

e Some have claims of “provable” security against adaptive chosen ciphertext attack —
some relying on the “random oracle” heuristic — some not. For several schemes, these
claims of security have proven to be invalid upon closer scrutiny.

Clearly, these submissions are quite incompatible in a number of respects.

1.2 Goals of this document

The goals of this document are as follows:

e To propose a standard functionality that a public-key encryption scheme should im-
plement. This is essentially an informal API. Specifying a detailed API is not in the
scope of this standard; however, we wish to specify the general structure of such an
API — the basic form of the inputs and outputs — and to require that such an API
can be efficiently implemented.

e To propose a “unified framework” for Diffie-Hellman-based encryption schemes. This
framework unifies both the use of the group and the method of constructing a “hybrid”
encryption scheme. In particular:

We propose an “abstract group interface” for a group so that any Diffie-Hellman-
based encryption scheme can be specified with respect to an abstract group, but
yet the group can be implemented in one of several ways, including as a sub-
group of an elliptic curve group, and as a subgroup of Z;. The interface is rich
enough so as to support all of the subtleties and nuances found in many proposed
cryptosystems, especially those using elliptic curves.

In order for a Diffie-Hellman-based cryptosystem to be practical, it must be able to
process cleartexts that are arbitrary byte strings. There are traditional, and fairly
well known “hybrid” schemes to do this: one first uses Diffie-Hellman to derive a
shared key, and then encrypts or decrypts the actual payload using symmetric-key
techniques. We propose a secure, standard way to do this.

e To propose a set of encryption schemes such that each scheme

is “provably” secure against adaptive chosen ciphertext attack in some reasonable
sense,

conforms to the proposed informal API,

conforms to the proposed unified framework for Diffie-Hellman-based encryption
(this applies only to Diffie-Hellman-based encryption schemes, of course), and

provides a fairly unique efficiency /security tradeoff not provided by other proposed
schemes.

In order to achieve the last goal of proposing a set of schemes meeting the stated require-
ments, we have taken several of the submitted schemes, and proposed modified schemes
that meet the stated requirements. Some of these changes are quite minor, while others are
more drastic. Some schemes were omitted altogether — given the limited amount of time
and other resources available to construct this proposal for a standard, resources had to be
concentrated on those schemes which appeared most likely to meet the stated objectives,
either with or without minor modification.

Although this document is meant as a proposal for a standard, rather than as a true draft
standard, all of the schemes proposed here are specified in great detail, so that going from
this proposal to a standard should not necessarily require a great amount of work. Indeed,
most of the changes necessary would amount to segregating the normative specifications
from the goals and justifications for these specifications, and to harmonizing the notation and
terminology with general ISO conventions and with the other parts of the general encryption
standard.

1.3 Preliminary remarks on security

Typically, practical symmetric ciphers are designed “from scratch,” based partly on estab-
lished design principles. The security of such a scheme is usually simply taken on faith —
there is no justification other than to demonstrate that reasonable design principles were
employed in the design of the scheme, and to give (perhaps heuristic) arguments that the
scheme resists known types of attacks.

For public-key encryption schemes, the situation is somewhat different. Such a scheme
is typically composed of a number of components: besides some kind of “trapdoor” cryp-
tographic transform, there may also be various other components, such as hash functions,
symmetric ciphers, etc. Because of this, it is customary nowadays to formally analyze the
security of such a scheme relative to the security of its constituent components; that is,
to prove the security of the scheme under the assumption that these components satisfy
particular, explicit security requirements.

Since proving the security of practical schemes in this way is often infeasible, a heuris-
tic called the random oracle model is sometimes used in the proof. In this approach, a
cryptographic hash function is modeled — for the purposes of analysis — as a “black box”
containing a random function to which the adversary and the algorithms implementing the
cryptosystem have “oracle access.” This approach has been used implicitly and informally for
some time; however, it was formalized by Bellare and Rogaway [BR93], and has subsequently
been used quite a bit in the cryptographic research community.

We should stress, however, that the random oracle model is not just “another assump-
tion,” like assuming that a hash function is collision resistant, or that a function is pseudo-
random. It is a heuristic “leap of faith” — invoking this heuristic is qualitatively a much
bigger step than making any particular cryptographic assumption. Indeed, in [CGH98|, it
is shown that there are cryptosystems that are secure in the random oracle model, but are
insecure no matter what hash function is used to implement the random oracle.

Despite these problems, the random oracle model is still a useful heuristic and design
principle. A proof of security in the random oracle model is still much better than no proof
at all, and certainly such a proof does rule out a large family of attacks.

In judging the security of a “provably secure” scheme, there are several independent
“dimensions”:

e the use or non-use of the random oracle heuristic,

e the “strength” of the underlying assumptions, and

e the efficiency of the security reduction.

Because of these several dimensions, the security of two “provably secure” schemes might be
essentially incomparable. For example, one scheme might rely on the random oracle heuristic
and a weak assumption, and the other might not use the random oracle heuristic but rely
on a stronger assumption, or perhaps the assumptions are simply incomparable.

The efficiency of a security reduction is an issue that is all too often ignored. However,
it should be taken into account. For example, a scheme might be secure if RSA inversion
is hard, but the security reduction may be so inefficient that for typical sizes of keys —
say 1024-bit RSA modulus — the implied algorithm for solving the RSA inversion problem
might be slower than the fastest currently known algorithm for factoring numbers.

Even if the security reduction is very inefficient, it can still be argued that such a proof
of security nevertheless provides a “qualitative” guarantee of security. Moreover, such a
reduction does rule out attacks that would efficiently “scale” to larger sizes of keys.

For public-key encryption schemes, it is widely agreed that the “right” notion of security
for a scheme intended for general-purpose use is that of security against adaptive chosen
ciphertext attack. This notion was introduced in [RS91], and implies other useful proper-
ties, like non-malleability. See [DDN91, DDN98, BDPRO98| for further discussion. In this
document, this will be the relevant notion of security used for judging the security of an
encryption scheme.

1.4 A summary of submissions and proposed schemes

In this section, we summarize the submissions that were made, give a very brief assessment of
of the submissions, and briefly describe the schemes that we actually propose to be included
in the standard. It should be stressed that any opinions expressed here, or elsewhere in this
document, are solely those of the author of this document.

1.4.1 RSA-OAEP, RSA-OAEP+, and Simple RSA

RSA-OAEP is the fairly well-established RSA encryption scheme, using the padding scheme
called OAEP invented by Bellare and Rogaway [BR94], with enhancements and refinements
due to Johnson and Matyas [JM96].

The submission coincides with the standards PKCS #1 v2.0 and IEEE P1363.

One of the main supposed virtues of this scheme was an alleged proof in the random
oracle model of security against adaptive chosen ciphertext attack, assuming RSA inversion
is hard. This “proof” was published in [BR94|, and despite years of public scrutiny, it was
only recently observed in [Sho0Oa] that not only is the proof invalid, but that there can be
no standard proof via “black box” reduction for the OAEP construction in general, given an
arbitrary one-way trapdoor permutation.

This negative result does not necessarily imply that the specific instance RSA-OAEP is
insecure. Indeed, as it turns out — essentially by accident, rather than design — RSA-OAEP
is indeed secure in the random oracle model. This was proven for encryption exponent 3 in
[Sho00a], and for arbitrary encryption exponent in [FOPS00]. The security reduction is the
latter paper is highly inefficient, however.

Another problem with RSA-OAEP is that it only encrypts messages of short length.
Indeed, the present author discovered the problem with OAEP while trying to prove the
correctness of a modification of OAEP that would allow arbitrary-length messages.

To overcome these problems, we propose in this document a new scheme, called RSA-
OAEP+. 1t is just as efficient as RSA-OAEP, but the general OAEP+ construction is
provably secure in the random oracle model (as shown in [Sho00a]). Moreover, even with
RSA, the security reduction for OAEP+ is much more efficient than that in [FOPS00] for
OAEP, making the scheme more attractive from a concrete security point of view. Also,
RSA-OAEP+ is enhanced to deal with arbitrary-length messages.

Even with the security improvements provided by OAEP+, the security reduction is still
so inefficient that the security guarantees provided are still not very meaningful in a strict,
quantitative sense. For this reason, we also recommend an alternative RSA scheme which is
both simpler and more secure, which we call Simple RSA. The scheme also fits more nicely
into our framework for hybrid encryption.

1.4.2 ECIES

ECIES is the “Elliptic Curve Integrated Encryption Scheme.” It is a Diffie-Hellman-based
scheme. It is a so-called “hybrid” encryption scheme based on the hardness of the Computa-
tional Diffie-Hellman (CDH) problem for elliptic curves. It is closely related to the DHAES
construction in [ABR9S].

As we shall point out, this scheme is not secure against adaptive chosen ciphertext attack,
but can easily be made so with a few small changes. Therefore, we have proposed a variant
ECIES', which besides providing a higher level of security, also has been generalized to con-
form to our proposed unified framework for Diffie-Hellman-based encryption. The changes
between ECIES and ECIES' are the minimal changes required to ensure security.

The ECIES' scheme can be proven secure against adaptive chosen ciphertext attack, either
by using the rather non-standard assumption in [ABR98|, or by using the random oracle
heuristic, combined with the (also not very standard) assumption that the CDH problem is
hard, even when given access to an oracle for the Decisional Diffie-Hellman (DDH) problem.
This latter assumption is called the gap-CDH assumption, and is studied in detail in [OP01].

As for efficiency, encryption takes two group exponentiations, and decryption takes one
or two (depending on the group, but usually one for elliptic curves).

1.4.3 PSEC

PSEC is a family of Diffie-Hellman-based encryption schemes.
It is claimed that these schemes are all provably secure in the random oracle model, under
different assumptions. There are three schemes: PSEC-1, PSEC-2, and PSEC-3.

e For PSEC-1, the DDH problem is assumed to be hard.
e For PSEC-2, the CDH problem is assumed to be hard.

e PSEC-3 is based on the gap-CDH assumption.

We shall argue that actually, these security claims for PSEC-1 and PSEC-2 are unjustified
(see §4.4).

We shall propose a scheme PSEC-2' that is a variant of PSEC-2, and we provide a
complete and detailed proof of security in the random oracle model based on the CDH.
Besides correcting the security problems of PSEC-2, other changes were made so that the
resulting scheme conforms to our proposed API requirements and to our proposed unified
framework for Diffie-Hellman-based encryption.

As for efficiency, both PSEC-2' encryption and decryption require two group exponenti-
ations.

PSEC-1 is based on stronger assumptions, is not significantly more efficient than the other
schemes, and has some significant security problems. For these reasons, we have chosen not
to include it (or a variant thereof) in this proposal.

PSEC-3 is very similar to ECIES, offering an almost identical efficiency/security trade-
off; since ECIES appears to be the more well-established scheme, we have chosen not to
include PSEC-3 (or a variant thereof) in this proposal.

1.4.4 ACE-Encrypt

ACE-Encrypt is a Diffie-Hellman-based encryption scheme that can be proven secure against
adaptive chosen ciphertext attack assuming the DDH problem is hard. It is the only sub-
mission that can truly be proven secure — it does not rely on the random oracle heuristic.
It is slightly less efficient than PSEC-2.

The submission is based on the DDH problem for a subgroup of Z;. We have proposed a
variant, ACE-Encrypt’. Several changes were made to the original ACE-Encrypt scheme so
that the resulting scheme conforms to our proposed API requirements and to our proposed
unified framework for Diffie-Hellman-based encryption. However, the resulting scheme is
still provably secure — without the random oracle heuristic — based on the DDH, as well
as a couple of other reasonable symmetric-key cryptographic assumptions.

As for efficiency, ACE-Encrypt’ encryption requires five group exponentiations, and de-
cryption requires either three or four (depending on the group, but usually three for elliptic
curves). Several optimizations are available to reduce the effective costs of these exponenti-
ations, however.

We point out that, like PSEC-2', ACE-Encrypt’ can be proven secure in the random
oracle model under the weaker CDH assumption, although the security reduction for ACE-
Encrypt’ is much less efficient than that for PSEC-2'. Additionally, it can be shown that
ACE-Encrypt’ is no less secure than ECIES’, in the sense that there is a very tight reduction
from an attack on ECIES' to an attack ACE-Encrypt’. That is, any attack on ACE-Encrypt’
can be converted into an attack on ECIES’, where the running time and success probability
of the latter attack are essentially the same as for the former attack. This is discussed in
detail in §5.5.2. Thus, any fears that the DDH assumption is “too strong” (see [JNO1]) can
be safely put to rest.

1.4.5 EPOC

EPOC is a family of encryption schemes based on factoring integers of the form n = p%q.

Security of these schemes is claimed in the random oracle model under one of several
assumptions (including the assumption that factoring is hard).

It was the judgment of this author that these schemes should not be included in the
standard, for the following reasons:

e the theory on which these schemes are based has not been very widely scrutinized, nor
have many of the implementation details;

e they do not seem to offer a particularly attractive efficiency /security tradeoff in relation
to the other schemes.

1.4.6 HIME

HIME is a family of encryption schemes based on factoring integers.

Security of these schemes is claimed in the random oracle model under one of several
assumptions (including the assumption that factoring is hard).

It was the judgment of this author that these schemes should not be included in the
standard. The main reason for this is that the design of the schemes and the claims of
security do not appear to stand on very firm ground. Indeed, many details are missing, and
it is not at all clear that these gaps can be filled in.

One of these schemes is basically an RSA-OAEP scheme with encryption exponent 2.
Given the security problems with OAEP in general (pointed out above), any claims about
security of such a scheme must be viewed skeptically.

Indeed, it is possible to design an RSA-OAEP scheme with encryption exponent 2. Not
only would such a scheme be very efficient, but its security would be very efficiently reducible
to the hardness of factoring integers — a potentially harder problem than the RSA inversion
problem.

After the publication of [Sho00Oa], it has come to light other researchers are currently
working on a detailed design of an exponent-2 RSA-OAEP-like scheme. Such a scheme —
when its design is complete and publicly scrutinized — would be a good addition to the ISO
standard, as it would provide an attractive efficiency /security tradeoff.

1.4.7 Further references on the submissions

The schemes RSA-OAEP, ECIES, PSEC, EPOC, and ACE-Encrypt have also been submit-
ted to the Cryto-Nessie evaluation project, and were presented at the first Crypto-Nessie
workshop, held in Leuven on November 13-14, 2000.

Besides the ISO document SC 27 N 2656, detailed descriptions of these algorithms are
publicly available at www.cryptonessie.org/workshop.

1.4.8 Summary of proposed schemes
So our proposed schemes are as follows:

e Factoring-based schemes:

— RSA-OAEP+

Scheme exponentiations | exponentiations | random oracle main
per encryption | per decryption heuristic assumption
ECIES 2 1 (or 2) yes gap CDH
PSEC-2’ 2 2 yes CDH
ACE-Encrypt/ 5 3 (or 4) no DDH

Table 1: Comparison of Diffie-Hellman-based schemes

— Simple RSA
e Diffie-Hellman-based schemes:

— ECIES
— PSEC-2
— ACE-Encrypt/

The reason for submitting two different RSA-based schemes is that they both offer a
unique efficiency/security trade-off. While they are both based on the RSA problem, the
security reduction for Simple RSA is much more efficient than that for RSA-OAEP+. Ad-
ditionally, Simple RSA is very simple, and fits more nicely into our general framework for
hybrid encryption.

The reason for including three different Diffie-Hellman-based schemes is that they seem
to each offer a unique efficiency/security trade-off, as summarized in Table 1.

2 Preliminaries

2.1 Public-key encryption and chosen ciphertext attack

We first define the basic structure of a public-key encryption scheme.
A public-key encryption scheme PKFE consists of three algorithms.

e A key generation algorithm PKE.KeyGen(), which outputs a public key/secret key
pair (PK, SK). The structure of PK and SK depend on the particular scheme.

e An encryption algorithm PKE.Encrypt(PK, format, L, M) that takes as input a public
key PK, a format, a label L, a cleartext M, and outputs a ciphertext C. Note that
L, M, and C are byte strings. The format is optional, and its structure and meaning
depends on the particular encryption scheme. See Remark 4 below for more on formats
and Remark 3 below for more on labels.

e A decryption algorithm PKE.Decrypt(SK, L,C) that takes as input a secret key SK,
a label L, and a ciphertext C', and outputs a cleartext M.

Remark 1 It is important to note cleartexts may be of arbitrary and variable length, al-
though a particular scheme may choose to impose a (very large) upper bound on this length.

Thus, our proposed notion of a public-key encryption scheme is essentially a “digital enve-
lope.”

Some currently available public-key encryption schemes, like RSA-OAEP, only allow for
very short ciphertexts, and leave it to application engineers to design their own “hybrid”
scheme to encrypt long cleartexts (i.e., by encrypting a session key and then using symmetric-
key cryptography to encrypt the payload).

However, it seems unrealistic to expect application engineers to correctly design such
a secure hybrid scheme. Even PKCS#7 — the standard “digital envelope” mechanism —
is not appropriate. The simplest version of this simply encrypts a session key using RSA-
OAEP, and then encrypts the message using a standard symmetric cipher — no additional
integrity checks are made. Because of this, straightforward application of PKCS#7 yields a
trivially malleable encryption scheme. <

Remark 2 Given that cleartexts may be arbitrarily long, a highly desirable property of any
public-key encryption scheme should be that both the encryption and decryption algorithms
can be efficiently implemented as filters. That is, the cleartext may be presented to the
encryption algorithm as an input stream, and the ciphertext should be written to an output
stream. The algorithm should never have to rewind these streams, and should be able to
process these streams using a small, bounded amount of internal storage, independent of the
length of these streams. Similarly, the decryption algorithm should be given access to an
input stream representing the ciphertext, and the cleartext should be written to an output
stream.

Note that in making this requirement, we are not attempting to propose a standard for
an encryption API. That would not be in the scope of the proposed standard. Rather, we
are simply requiring that the cryptosystems in this standard can efficiently implement such
an interface, without specifying any further details of such an interface. <

Remark 3 A label is a byte string that is effectively bound to the ciphertext in a non-
malleable way. It may contain data that is implicit from context and need not be encrypted,
but that should nevertheless be bound to the ciphertext. We view a label to be a byte string
that is meaningful to the application using the encryption scheme, and that is independent
of the implementation of the encryption scheme.

For example, there are key exchange protocols in which one party, say A, encrypts a
session key K under the public key of the other party, say B. In order for the protocol to be
secure, party A’s identity (or public key or certificate) must be non-malleably bound to the
ciphertext. One way to do this is simply to append this identity to the cleartext. However,
this creates an unnecessarily large ciphertext, since A’s identity is typically already known
to B in the context of such a protocol. A good implementation of the labeling mechanism
achieves the same effect, without increasing the size of the ciphertext.

Labels may also be of arbitrary and variable length, but we do not impose the restriction
that the encryption and decryption algorithms should be able to process labels as streams.

Both the ECIES and RSA-OAEP submissions include the notion of a label (where it is
called an encoding parameter), although absolutely no indication was given as to the role
or function of a label. Nevertheless, it seems to be a potentially useful feature, and so we
include it here. <

Remark 4 Different format values may be used for different encryptions. The choice of
format specifies a particular way to format a ciphertext. Note that this value is chosen by
the sender of the encrypted message. We shall assume that for a given cryptosystem, there
are only a small, constant number of formatting choices, and that for a given public key,
there is always a default format value.

For the cryptosystems proposed here, the only use of this parameter is in elliptic-curve
cryptosystems, where the encryptor may choose whether or not to use a “compact” point
representation, or perhaps a “hybrid” representation.

Making such an implementation-dependent parameter visible to the API is not such an
elegant design choice; however, some applications might require such fine-grained control.
In particular, the ECIES submission allowed for this, and so we have incorporated this here.
<

Remark 5 Throughout this document, algorithms will always compute a function on their
inputs, except that instead of returning a value, they may fail. By convention, if an al-
gorithm fails, then unless otherwise specified, an algorithm that invokes that algorithm as
a sub-routine also fails. Thus, failing is analogous to “throwing an exception” in many
programming languages. <

We next recall the definition of security against adaptive chosen ciphertext attack,
adapted to deal with labels L and format values.

We begin by describing the attack scenario.

First, the key generation algorithm is run, generating the public key and private key for
the cryptosystem. The adversary, of course, obtains the public key, but not the private key.

Second, the adversary makes a series of arbitrary queries to a decryption oracle. Each
query is a label /ciphertext pair (L, C') that is decrypted by the decryption oracle, making use
of the private key of the cryptosystem. The resulting decryption is given to the adversary;
moreover, if the decryption algorithm fails, then this information is given to the adversary,
and the attack continues. The adversary is free to construct these label/ciphertext pairs in an
arbitrary way—it is certainly not required to compute them using the encryption algorithm.

Third, the adversary prepares a label L*, a format value, and two “target” cleartexts
My, My, of equal length and gives these to an encryption oracle. The encryption oracle
chooses b € {0,1} at random, encrypts M, with label L* using the given format value, and
gives the resulting “target” ciphertext C* to the adversary.

Fourth, the adversary continues to submit label/ciphertext pairs (L, C) to the decryption
oracle, subject only to the restriction that (L,C) # (L*,C*).

Just before the adversary terminates, it outputs b € {0, 1}.

That completes the description of the attack scenario.

For a given adversary A, we define the adversary’s guessing advantage
Advantage pgp(A) = ‘Pr[?} =b] — 1/2‘ :

Security means that Advantage pyy(A) is “acceptably” small for all adversaries A that run
in a “reasonable” amount of time.

10

Note that in proving an encryption scheme secure, the definition we have given is usually
the most convenient. However, in analyzing an encryption scheme in a larger context, a
slightly different definition is usually more convenient. In this definition, the attack scenario
proceeds just as before. However, instead of measuring the adversary’s guessing advantage,
we measure its distinguishing advantage

Advantage’pp(A) = ‘Pr [IA) =1b= 1] —Pr [Z; =1b= O] ‘ .
It follows directly from the definitions by a trivial calculation that for any adversary A,
Advantage'pyp(A) = 2 - Advantage pgp(A).

Intuitively, one can think of Advantage'syz(A) as measuring how differently an adversary
behaves in two different attack games: in one game, M, is always encrypted, and in the
other, M; is always encrypted.

In proving analyzing an encryption scheme in a larger context, one usually substitutes
an encryption of a secret message by an encryption of a garbage message (all zeros, or
random) of the same length, and then analyzes how the adversary behaves. Many secret
messages may be replaced by garbage strings, and the distinguishing advantage simply sums
(although for some schemes, one can exhibit an even tighter security reduction). A small
distinguishing advantage implies that the adversary will not behave significantly differently
when this substitution is made. See [BBMO00] for more details.

This definition, in slightly different form, was first proposed by Rackoff and Simon [RS91].
It is generally agreed in the cryptographic research community that this is the “right” security
property for a general-purpose public-key encryption scheme. This notion of security implies
other useful properties, like non-malleability. See [DDN91, DDN98, BDPR9S8] for more on
notions of security for public-key encryption schemes.

Remark 6 Note that in the attack game, the adversary is required to submit two target
cleartexts of equal length. This restriction on the adversary reflects the fact that we cannot
expect to hide the length of an encrypted message from the adversary—for many cryptosys-
tems, this will be evident from the length of the ciphertext. It is in general up to the
application using the cryptosystem to ensure that the length of a cleartext does not reveal
sensitive information. <

Remark 7 There is a subtle interaction between failing, as discussed in Remark 5 and the
notion of a stream, discussed Remark 2. An application reading the output stream of the
decryption algorithm should take care not to leak any information about the cleartext it has
read from that stream, until the decryption process has finished without failing. If it does
not do this, the application could potentially forfeit the security guarantees of the scheme.
<

Remark 8 Note that none of these definitions make explicit mention of a security param-
eter. Our point of view is concrete—not asymptotic. We assume that a scheme specifies
a particular security parameter (or set of parameters). If one wants to translate these def-
initions into ones compatible with the “asymptotic complexity” point of view, then one

11

can consider families of algorithms indexed by a parameter A\ = 1,2,3,... that run in time
bounded by a polynomial in A. Both the scheme and the adversary are viewed as families of
algorithms. One can consider either uniform or non-uniform families of algorithms. Security
means that the adversary’s advantage is “negligible” in A, meaning that it goes to zero faster
than the inverse of any polynomial in A. <

2.2 Key encapsulation

In designing an efficient public-key encryption scheme, a useful approach is to design a
“hybrid” scheme, where one uses public key cryptography to encrypt a key that can then be
used to encrypt the actual payload using symmetric key cryptography.

To build a hybrid scheme, we need several building blocks. The first is a method for
using public key cryptography to “encapsulate” a symmetric key. We call such a scheme a
key encapsulation mechanism.

Briefly, a key encapsulation mechanism works just like a public-key encryption scheme,
except that the encryption algorithm takes no input other than the recipient’s public key.
Instead, the encryption algorithm generates a pair (K, Cy), where K is a bit string of some
specified length, and Cj is an encryption of K, that is, the decryption algorithm applied to
Cp yields K.

One can always use a public-key encryption scheme for this purpose, generating a random
bit string, and then encrypting it under the recipient’s public key. However, as we shall see,
one can construct a key encapsulation scheme in other, more efficient, ways as well.

Now the details.

A key encapsulation mechanism KEM consists of three algorithms.

e A key generation algorithm KEM.KeyGen(), which outputs a public key/secret key
pair (PK, SK). The structure of PK and SK depend on the particular scheme.

e An encryption algorithm KEM .Encrypt(PK, format) that takes as input a public key
PK and a format value, and outputs a key/ciphertext pair (K, Cp).

e A decryption algorithm KEM .Decrypt(SK,Cy) that takes as input a secret key SK
and a ciphertext Cy, and outputs a key K.

A key encapsulation mechanism also specifies a positive integer KEM . OQutputKeyLen —
the length of the key output by KEM.Encrypt and KEM .Decrypt.

Additionally, we need the following properties. The set of all possible outputs of the
encryption algorithm should be a subset of some an easy-to-recognize, prefix-free language.!
The prefix-freeness property is needed so that we can parse byte strings from left to right,
and efficiently “strip off” a ciphertext. Note that if all ciphertexts have the same length,
then the prefix-freeness property is trivially satisfied.

We next define security against adaptive chosen ciphertext attack for a key encapsulation
mechanism.

We begin by describing the attack scenario.

LA language L is prefiz free if for any two x,y € L, is not a proper prefix of y.

12

First, the key generation algorithm is run, generating the public key and private key for
the cryptosystem. The adversary, of course, obtains the public key, but not the private key.

Second, the adversary makes a series of arbitrary queries to a decryption oracle. Each
query is a ciphertext Cy that is decrypted by the decryption oracle, making use of the private
key of the cryptosystem. The resulting decryption is given to the adversary; moreover, if the
decryption algorithm fails, then this information is given to the adversary, and the attack
continues.

Third, the adversary chooses a format value, and invokes an encryption oracle. The
encryption oracle does the following:

1. Run the encryption algorithm using the given format value, obtaining a pair (K*, C}).
2. Generate a random string K of length KEM . QutputKeyLen.

3. Choose b € {0,1} at random.

4. If b= 0, output (K*,Cy); otherwise output (K, Cp).

Fourth, the adversary continues to submit ciphertexts Cy to the decryption oracle, subject
only to the restriction that Cy # Cj.

Just before the adversary terminates, it outputs b € {0,1}.

That completes the description of the attack scenario.

For an adversary A, the quantities Advantage xz,(A) and Advantage s, (A) are defined
in exactly the same way (in terms of b and b) as Advantage pyz(A) and Advantage'sy(A)
for a public-key encryption scheme. Security means that Advantage xp), (A) is “acceptably”
small for all adversaries A that run in a “reasonable” amount of time.

Remark 9 Although one could do so, we have chosen not to incorporate the notion of a label
in the definition of a key encapsulation mechanism. The reason is that the only application
we have of a key encapsulation mechanism in this paper is in the construction of a hybrid
encryption scheme, and it is easier to implement labels in the hybrid construction than in
the key encapsulation mechanism itself. <

2.3 Byte string/integer conversions

We simply adopt the functions OS2IP and I20SP from the IEEE P1363 standard for con-
versions between byte (a.k.a., octet) strings and integers.

The function OS2IP(x) takes as input a byte string, and outputs an integer. If x =
i1 ||zi2]|| -+ - || xo, where each z; is a byte, then

-1
OS2IP(z) = x; - 256"
=0

In this formula, each byte x; is interpreted as a base-256 digit. Note that the left-most byte
represents the most-significant digit.

13

The function I20SP is essentially the inverse of OS2IP. The function I205P(m,) takes
as input two non-negative integers m and [, and outputs the unique byte string = of length
[such that OS2IP(z) = m, if such an z exists. Otherwise, the function fails. Note that the
function fails if and only if m > 256.

2.4 Pseudo-random byte generator

A pseudo-random byte generator PRBG is a scheme with the following interface. It defines
fixed seed length PRBG.SeedLen and a function PRBG .eval(s, 1) that takes as input a byte
string s of length PRBG.SeedLen and an integer [> 0, and produces as output a byte string
of length [.

The assumption we make is that for a random seed s, the output is computationally
indistinguishable from a random byte string of the same length.

One recommended way to implement a PRBG is to simply use a block cipher in counter
mode.

An alternative is to use a block cipher in counter mode, but to output the XOR of
consecutive pairs of block cipher outputs. This approach yields a higher level of security
when [is very large (see [Luc00]).

2.5 Symmetric key encryption

A symmetric key encryption scheme SKFE specifies a key length SKE.KeyLen, along with
encryption and decryption algorithms:

e The encryption algorithm SKE.Encrypt(k, M) takes as input a key k of length
SKE.KeyLen and a cleartext M. It outputs a ciphertext C;.

e The decryption algorithm SKE.Decrypt(k,C;) takes as input a key k of length
SKE.KeyLen and a ciphertext C'i. It outputs a cleartext M.

We shall need the following security property.

Consider the following attack scenario. The adversary generates two messages (byte
strings) My, M; of equal length. A key k is generated. A bit b is chosen, and M, is encrypted
under key k. The resulting ciphertext C' is given to the adversary. The adversary makes a
guess b at b. The adversary’s advantage is defined as |Pr[b = b] — 1/2|.

For an adversary A that chooses My, M; of length bounded by I, we denote this advantage
by Advantage gxp(A,l).

Security means that the advantage is acceptably small.

Note that one can build a secure symmetric key encryption scheme by using a pseudo-
random byte generator (see §2.4) to generate a “one time pad,” which is then XORed with
the plaintext.

2.6 One-time MAC

A one-time message authentication code MAC is a scheme that defines two quantities
MAC.KeyLen and MAC.TagLen, along with a function MAC.eval(k',T) that takes a key

14

k' of length MAC.KeyLen and an arbitrary byte string 7" as input, and computes as output
a byte string tag of length MAC.TagLen. We shall need the following security property.

Consider the following attack scenario. A byte string 7™ is chosen by the adversary. A
key k' is chosen at random. The MAC is evaluated at T* with key &', and the output tag* is
given to the adversary. The adversary outputs a pair (7, tag), where T is a byte string with
T # T* (and not necessarily of the same length as 7%), and tag is a byte string of length
MAC .TagLen. The adversary’s advantage is defined to be the probability that the MAC on
input 7" with key &' is equal to tag.

For an adversary A that chooses 7™ of length bounded by /; and T of length bounded by
la, we denote this advantage by Advantage 40(A, 1, l2).

Security means that this advantage should be acceptably small.

There are a number of acceptable one-time MAC schemes.

Any of the schemes specified by the ISO MAC standard should be acceptable. However,
none of these methods are very good from the standpoint of provable security.

2.7 Hybrid encryption

Given a key encapsulation mechanism KEM (see §2.2), a symmetric encryption scheme SKE
(see §2.5), and a one-time message authentication code MAC' (see §2.6), here is how one can
build a hybrid encryption scheme that is secure against chosen ciphertext attack. We require
that KEM .OutputKeyLen = SKE.KeyLen + MAC .KeyLen.

The key generation algorithm, as well as the public key and private key, are the same as
for the key encapsulation scheme.

To encrypt a cleartext M with label L, the key encapsulation algorithm is run, yielding
a key K of length SKE.KeyLen + MAC.KeyLen, and a ciphertext Cy. We parse K as
K = k|| k', where |k| = SKE.KeyLen and |k'| = MAC.KeyLen. We encrypt M using SKE
under key k, obtaining its encryption C;. Then we apply MAC to the byte string string
T =Cy||L|| I20SP(|L|,8) using k', obtaining tag. The entire ciphertext is C' = Cy || C || tag-

To decrypt a a ciphertext C' with respect to a given label L, we first parse C' as
Co || C1 || tag, where |tag| = MAC.TagLen. This parsing is facilitated by the fact that the
set of ciphertexts Cj are a subset of an easy-to-recognize, prefix-free language. This step
may fail, of course, if C' is not correctly formatted. We next decrypt Cy using the decryption
algorithm of the key encapsulation scheme, obtaining a key K. This fails if KEM.Decrypt
fails. We then parse as K = k|| k', where |k| = SKE.KeyLen and |k'| = MAC.KeyLen.
Then we apply the MAC with key &' to the byte string string T = C | L || I20SP(|L|, 8),
and test whether the resulting tag equals the given tag. If not, we report failure. Otherwise,
decrypt C under k, obtaining M. It is possible that SKE.Decrypt fails. Finally, we output
M.

Note that for security reasons, if any step in the decryption process fails, the decryption
process itself should fail, but the precise cause of the failure should not be indicated.

It is straightforward to show that if the underlying components are secure, then the
resulting hybrid encryption scheme Hybrid PKFE is secure against adaptive chosen ciphertext
attack. Moreover, the reduction is quite “tight” quantitatively.

15

Specifically, we have the following:

Advantage g piapie(A) < 2 - Advantage gy, (A1) +
Advantage g (Agy 1) +
qp - Advantage ;40 (As, la, l3).

Here,

e A, Ay, Az are adversaries that run in about the same time as A,

e [, is a bound on the length of the target cleartext,

e [y is a bound on the length of the string 7™ corresponding to the target ciphertext,

e /3 is a bound on the length of the strings 7" corresponding to ciphertexts submitted to
the decryption oracle,

e ¢p is a bound on the number of decryption oracle queries,
o Advantage iy, is as defined in §2.2,

o Advantagegyy, is as defined in §2.5, and

o Advantage o is as defined in §2.6.

The proof of this is an easy exercise.

Remark 10 We continue here the discussion started in Remark 7. In our hybrid construc-
tion, there is a single tag that is checked at the end of the ciphertext stream. This is the
simplest approach, and one that is already seen in practice (as in ECIES). In the ACE
Encrypt submission, there was actually a tag value inserted every kilobyte or so in the ci-
phertext stream. The reason for this was so that the decryption algorithm would fail as
soon as it detected a “bad” ciphertext stream. This would greatly enhance the ability of an
application to process the output stream of the decryption algorithm in a stream-like fashion
— it would not have to wait until the end of the output stream to detect a “bad” stream. It
would not be too difficult to specify such a scheme. This point should perhaps be discussed
by the ISO committee. <

2.8 Hash functions

We shall assume the availability of a cryptographic hash function. Let Hash denote
the scheme. Then Hash.QutputLen denotes the length of the hash function output, and
Hash.eval denotes the hash function itself, which maps arbitrary length byte strings to byte
strings of length Hash.QutputLen.

The invocation of Hash.Fval may fail if the input length exceeds some (very large)
implementation-defined bound.

In the security analysis, we shall make the following types of assumptions about Hash:

16

o It is collision resistant, i.e., it is hard to find two inputs z,y with x # y such that
Hash.eval(x) = Hash.eval(y).

o It is second-preimage collision resistant, i.e., for a given set S of byte strings together
with a prescribed probability distribution on S, if x € S is chosen at random, then it
is hard to find y € S with x # y such that Hash.eval(x) = Hash.eval(y). The set S
and the probability distribution depend on the application.

e It is a good entropy-smoothing hash function, i.e., for a given set S of byte strings
together with a prescribed probability distribution on S, then if x € S is chosen at
random, the output Hash.eval(z) is computationally indistinguishable from a random
byte string of length Hash.QutputLen. Of course, for this assumption to be reasonable,
it must be the case that the entropy of S is sufficiently high.

e We might also choose to view it as a random oracle.

Recommended choices for Hash are SHA-1 and RIPEMD-160.

2.9 Mask generation functions

It is convenient to have a mask generating function MGF (z,l) that takes as input a byte
string x and an integer [> 0, and outputs a byte string of length [. The string x is of
arbitrary length.

The invocation of MGF may fail if the input or output lengths exceed some (very large)
implementation-defined bound.

In the security analysis, we will often model MGF' as a random oracle.

A specific security property that is sometimes desirable for a mask generation function is
that it be a good entropy smoothing function. That is, the input x is chosen at random from
a distribution of byte strings with high entropy, then the output should be computationally
indistinguishable from a random byte string of the same length.

Sometimes the notion of a mask generating function is called a key derivation function
(KDF).

2.9.1 MGF1

A standard choice for MGF is the function MGF1 defined in the IEEE P1363 standard.
This function is parameterized by a hash function Hash (see 2.8), and is defined as follows.
On input (z,1), the output is the first [bytes of

Hash.eval(z || I20SP(0,4)) || - - - || Hash.eval(x || I20SP(k — 1,4)),

where k = [l/Hash.OutputLen].

17

2.9.2 MGF2

Another standard choice is ANSI X9.63 KDF function (as described in the ECIES submis-
sion). This function is the same as MGF1, except that the counter runs from 1 to k, rather
than from 0 to £ — 1. It also provides for an optional “shared data” argument, which we
shall have no use for here. In this document, we shall refer to this function as MGF2.

2.9.3 Security critique of MGF1 and MGF2

Of course, if one chooses to model MGF1 (or MGF2) as a random oracle in a security
analysis, one is free to do so. There is really not much of a rational basis to argue either for
or against such a choice.

However, we do not recommend the use of these functions in applications where one
requires the entropy smoothing property discussed above. The only point in this document
where this is significant is in the analysis of the variant of the ACE Encrypt scheme discussed
in §5, whose security analysis is not based on the random oracle heuristic.

Our reasoning is as follows.

If we were to believe that these were good entropy smoothing functions, this would
suggest that the function Fy(y) defined by

F,(y) = Hash.eval(x || y)

should be a “good” pseudo-random function with key = and input y. However, standard
hash functions, like SHA-1, are built using a particular block cipher P,(b) — with key a and
input block b — chained in a standard way. Indeed, suppose that Hash is SHA-1 with initial
chaining value IV and that x is 512-bits long. So in this case, P,(b) is a block cipher with a
512-bit key size, and a 160-bit block size. Then

Fy(y) = Py(2) ® z, where, z=P,(IV) @ IV.

Assuming that P,(b) is a good block cipher, and that z is suitably random, then the value
z above should be pseudo-random. Therefore, the security of F(y) as a pseudo-random
function is equivalent to the security of the function G,(y) defined by

G.(y) = Py(2) @ 2

as a pseudo-random function with key z and input y. Is G,(y) a good pseudo-random
function? This is not clear. But certainly, this is a quite unorthodox construction that does
not appear to be based on any well-worn or otherwise sound principles.

Because of this perceived potential weakness, we propose two further mask generating
functions, MGF3 and MGF/. Either of these can be used in a situation where a random
oracle is required. However, these functions seem more reasonable in applications where the
entropy smoothing property is required.

18

2.9.4 MGF3

This function is parameterized by a hash function Hash and a padding amount pamt > 4,
and is defined as follows. On input (z,1), the output is the first [bytes of

Hash.eval(I20SP(0, pamt) || z) || - - - || Hash.eval(I20SP(k — 1, pamt) || x),

where k = [l/Hash.OutputLen].

Recommended choices for the hash function are SHA-1 or RIPEMD-160. Recommended
choices for pamt are either 4, or the block size of the underlying hash (64 in the case of
SHA-1 or RIPEMD-160).

Based upon the way standard hash functions like SHA-1 or RIPEMD-160 are constructed,
it seems like a reasonable assumption is that they are good pseudo-random functions, where
we view the text input as the key of the function, and we view the initial vector IV as the
input to the function. Typical implementations of these hash functions often do not provide
an interface that allows the programmer to choose the I'V. However, we get the equivalent
effect by setting pamt to the block size of the underlying hash.

By setting pamt to the block size of the underlying hash function, we are able to give a
reasonable justification for the security of MGF3. If we set pamt to another value, such as
4, this justification is no longer valid. Nevertheless, setting pamt = 4 does not seem like a
completely unreasonable choice, and certainly the arguments we made above against MGF1
and MGF2 no longer apply.

2.9.5 MGF4

This function is parameterized by a hash function Hash and a pseudo-random byte generator
PRBG (see §2.4). It is required that Hash.OQutputLen = PRBG.SeedLen.
On input (z,1), this function outputs

PRBG .eval(Hash.eval(x),1).

For the hash function, one can use a standard function like SHA-1 or RIPEMD-160. If
PRBG .SeedLen is less than 20, then one can simply truncate the output of the hash function.

This function will be a good entropy smoothing function, provided Hash is a good entropy
smoothing function, and provided PRBG is secure as a pseudo-random byte generator.

2.10 Abstract groups

We describe a group as an abstract data type.
A fully specified group Group is a tuple (H,G, p,v,E,D,E', D), where:

e H is a finite abelian group in which all group computations are actually performed.
Note that this group need not be cyclic.

e G is a cyclic subgroup of H. This is where the real “action” will normally take place
in a cryptographic scheme.

19

w is the order (size) of G, and v is the index of G in H, i.e., v = |H|/pu.

We shall always require that G contains all elements in 4 whose order divides u. For
some cryptographic schemes, we make the stronger requirement that ged(p,v) = 1.
Note the latter requirement implies the former.

We will not in general require that y is prime, although we may impose this restriction
in certain cases.

e &(a, format) is an “encoding” function that maps a group element a € H to a byte
string, using the formatting rule specified by format.

We require that the set of all outputs of £ is a subset of some easy-to-recognize, prefix-
free language.

e D(x) is a function that fails if z is not a proper encoding; otherwise, it returns a group
element a € H and a format such that £(a, format) = z. Of course, it should be the
case that the decoding operation inverts the encoding operation.

e £'(a) is a “partial encoding” function that maps a group element a € H to a byte
string.

We require that the set of all outputs of £ is a subset of some easy-to-recognize,
prefix-free language.

e D'(z) is a function that either fails if z is not a proper partial encoding; otherwise,
it returns the set containing all group elements a € #H such that £'(a) = z. We will
assume that the size of this set is bounded by a small constant.

All of the above algorithms should have efficient implementations. The function D’ will
never be used by any of the schemes, but the existence of this function is necessary to analyze
their security.

We of course assume that arithmetic in H can be carried out efficiently, and that random
group elements can be efficiently generated. As a matter of convention, we shall always use
additive notation for the group. Also, group elements will be typeset in boldface, and 0
denotes the identity element of the group.

This abstraction is meant to be flexible enough to model two important classes of groups:
subgroups of Z;, and subgroups of elliptic curves.

2.10.1 Subgroups of Z;

Let p be a prime, and consider the multiplicative group of units modulo p, denoted Z;. Let H
denote this group. Let G denote any subgroup of Z;. Set u = |G| and v = (p—1)/u. Because
H is itself cyclic, it follows that G contains all elements of H whose order divides u, even if
ged(u, v) # 1. The encoding map £ can be implemented using the function I20SP, where
all group elements are encoded as byte strings of length [log,-s p]. There is no need to pass
any additional formatting information to the function £. The map D can be implemented
using OS2IP. The function &£’ is the same as &£, and D' is the same as D.

20

2.10.2 Subgroups of Elliptic Curves

Let E be an elliptic curve defined over a finite field F,,. Let H denote this group. Note that
‘H is not in general cyclic. Let G denote a cyclic subgroup, and let y be its order, and v
be its index in H. The encoding/decoding maps £ and D can be implemented using the
techniques described in IEEE P1363. Note that these encoding techniques allow for a variety
of formats: uncompressed, compressed, and hybrid. Thus, a group element need not have a
unique encoding. The partial encoding map &’ outputs a fixed length byte string encoding
of the xz-coordinate of the point. For completeness, we define the partial encoding of the zero
point on the curve to be a the all-zero byte string. The partial decoding map D’ converts
the given by string back into an element of F;, and then solves a polynomial equation to
find the set of possible y-coordinates (there are at most two).

2.11 Intractability assumptions related to groups

Let
Group = (H,G, p,v,E,D,E', D)

as in §2.10.

2.11.1 The Computational Diffie-Hellman Problem

The Computational Diffie-Hellman (CDH) problem for this group is as follows. On input
(g, z8,yg), where g is a generator for G, and z,y € {0,...,u—1}, compute zy-g. We assume
the inputs are random, i.e., g is a randomly chosen generator, and x and y are randomly
chosen from the set {0,...,u —1}.

The CDH assumption is the assumption that this problem is intractable.

Note that in general, it is not feasible to even identify a correct solution to the CDH
problem (this is the Decisional Diffie-Hellman problem — see below). In analyzing cryp-
tographic systems, the types of algorithms for solving the CDH that most naturally arise
are algorithms that produce a list of candidate solutions to a given instance of the CDH
problem. For any algorithm A for the CDH problem that produces a list of length at most
I, we let Advantage opy (A,1) denote the probability that this list contains a correct solution
to the input problem instance.

Note that in [Sho97], it is shown how to take an algorithm A with e = Advantage opy (A, 1),
and transform this into an algorithm A’ that produces a single output that for all inputs is
correct with probability 1 — 6. The running time of A’ is roughly equal to O(e 'log(1/4))
times that of A, plus the time to perform

O(e '1log(1/6) log u + (log p1)*)

additional group operations.

It is well known that the CDH problem is “random self reducible.” There are also other
reductions that show that when p is prime, then an algorithm for solving the CDH problem
for any specific base can be converted into an algorithm for any other base. This implies that
in a cryptosystem that relies on the CDH, the base g may be chosen to optimize efficiency
without substantially diminishing the security.

21

2.11.2 The Decisional Diffie-Hellman Problem

The Decisional Diffie-Hellman (DDH) problem is as follows.

We define two distributions.

Distribution R consists of 4-tuples (g, g, yg, 2g), where g is a random generator for G,
and z,y, z are chosen at random from {0,...,u — 1}. Let Xg denote a random variable
sampled from this distribution.

Distribution D consists of 4-tuples (g, g, yg, 2g), where g is a random generator for G,
x,y are chosen at random from {0, ..., — 1}, and z = zy mod u. Let Xp denote a random
variable sampled from this distribution.

The problem is to distinguish these two distributions.

For an algorithm A that outputs either 0 or 1, we define

Advantage ppy (A) = |PrlA(Xgr) = 1] — Pr[A(Xp) = 1]|.

The DDH assumption is that this advantage is negligible for all efficient algorithms.

Note that the DDH assumption is only reasonable when p has only large prime factors.
We shall only make the DDH assumption when g is prime. Also, when p is prime, the
problem is “random self-reducible” (see [Sta96] and [NR97]).

Unlike the CDH problem, there is no general reduction for the DDH problem from an
arbitrary base to a specific base. However, there is a reduction from any specific base to a
random base. Therefore, it is recommended that the base g is chosen at random to maximize
security.

See [Bon98] and [NR97]| for further discussion of the DDH.

2.11.3 The Gap-CDH Problem

The submitters of the PSEC scheme have proposed a new computational assumption, called
the gap-CDH assumption. This is the assumption that it is hard to solve the CDH problem,
even in the presence of an oracle for solving the DDH problem.

This assumption is not entirely unreasonable, as it it is easily seen that there is no “black
box” reduction from the CDH problem to the DDH problem. This can easily be proven in
the “black box group” or “generic group” model of [Sho97].

For any algorithm A that makes at most ¢ queries to a DDH oracle, we define
Advantage g,,cpn (A, ¢) to the the probability that A solves a random instance of the CDH
problem.

See [OP01] for more details about this assumption.

3 A variant of ECIES

We present here an encryption scheme that is a slight variant of ECIES, and also bears many
similarities to PSEC-3. What we describe is actually just a key encapsulation mechanism.
For reference, let us call this key encapsulation scheme ECIES'.

We have to describe the key generation, encryption, and decryption algorithms.

22

3.1 Key Generation

A fully specified group
Group = (H,G, p, v, E,D,E', D)
is chosen, together with a generator g of the group G.

Two additional parameters need to be chosen, which we call CofactorMode and
CheckMode. Each of these parameters take 0/1 values. These modes are used to deal with
security problems that can arise when v > 1. Here are the rules which should be obeyed in
setting these modes.

e If v =1, then both of these modes should be 0.

e If v > 1, both modes can be set to 0, provided ged(u,v) =1 and v is very small. Note
that security in this case degrades by a factor of v.

e If v > 1, CofactorMode may be set to 1 provided ged(p,v) = 1.
e At most one of CofactorMode and CheckMode should be set to 1.

In addition to Group, a mask generation function MGF needs to be selected.

Next, a number x € {0,...,u — 1} is chosen at random, and the group element h = zg
is computed.

The public key consists of encodings of Group, g, and h, along with the value
CofactorMode and an indication of the choice of MGF'. The precise format of this encoding
is not specified here. [Editor’s note: should it be?]

The private key consists of the public key, together with the number z and the value
CheckMode.

3.2 Encryption

Recall that for a key encapsulation mechanism KEM, the goal is to produce a cipher-
text Cp that is an encryption of a key K, where K is a byte string of length KeyLen =
ECIES'. OutputKeyLen.

In addition to the recipient’s public key, which specifies Group, g, h, CofactorMode, and
MGF, the encryption algorithm takes an optional format argument. If the encoding function
& supports multiple formats (as in the elliptic curve case), this formatting argument will be
passed to the encoding function.

The encryption scheme works as follows.

1. Choose r € {0,...,u— 1}.
2. If CofactorMode = 1, set r' = r - v mod u; otherwise, set ' = r.
3. Compute g§ = rg and h = 7'h.

4. Output the ciphertext
Co = £(g, format),

and the key .
K = MGF(C, || €' (h), KeyLen).

23

3.3 Decryption

The decryption scheme takes as input a byte string Cj, along with a private key, which
specifies Group, g, h, CofactorMode, CheckMode, and z. It runs as follows.

1. Parse Cjy, obtaining a group element g. This step fails is Cj is not a proper encoding
of a group element.

2. If CheckMode = 1, test if ug = 0; if not, then fail.
3. If CofactorMode = 1, set g = vg; otherwise, set g = g.
4. Compute h = zg.

5. Output the key .
K = MGF(C, || €' (h), KeyLen).

3.4 Security considerations

This scheme can be proved secure against adaptive chosen ciphertext attack in the random
oracle model under the gap-CDH assumption (see §2.11.3). Here, we model MGF as a
random oracle.

Indeed, it is straightforward to show that

Advantage perps (A) < Advantage gopcpn (A’ au),

where

e A’is an algorithm with access to a DDH oracle whose running time is about the same
as that of A,

® ¢y is a bound on the number of random oracle queries, and
o Advantage g,,cpp is as defined in §2.11.3.

It can also be proved secure under an appropriate “oracle hashing” assumption, as put
forward in the DHAES paper [ABR9S|.

3.5 Comparison to ECIES

If we combine the above key encapsulation scheme with the hybrid construction in §2.7, and
then instantiate the group with an elliptic curve, we obtain a scheme very similar to the
ECIES scheme. However, there are some differences. All of these differences are justified
by two goals: to achieve security against adaptive chosen ciphertext attack, and to provide
a scheme that implements the interface for a public-key encryption scheme that we have
proposed. See §2.1 for a discussion of both the interface and security issues.

We describe here in detail all of the differences between our proposed scheme and ECIES,
together with the justification for these changes.

24

3.5.1 Hashing C)

In ECIES, the byte string Cy, i.e., the encoding of g, was not included in the input to the
mask generating function, while we have included it here. Our reason for including it is that
without it, the scheme does not achieve security against adaptive chosen ciphertext attack.

There are a number of simple examples that illustrate why ECIES does not achieve this
level of security. In particular, it is malleable. If the group is an elliptic curve, and the partial
encoding function &£’ encodes only the z-coordinate of a point, then the derived key K is the
same if one takes a given ciphertext Cj encoding a point g and replaces it with an encoding
of —g. Of course, this does not represent a catastrophic failure of the system; it simply
illustrates that the definition of adaptive chosen ciphertext security is not met in a strict
sense. The very same problem arises if one encodes g under an alternative format, which is
also possible with elliptic curves. A similar problem arises if v > 1 and CofactorMode =1 —
in this case, one could add to g a non-zero element whose order divides v, and one obtains
yet again a different ciphertext that decrypts to the same thing. A similar problem arises yet
again if p is composite — the ECIES proposal does not allow this, but our proposal does.

We believe that the definition of security should be taken literally, unless there is a very
strong reason to the contrary. There appears to be very little additional overhead in hashing
C().

Note that the original DHAES proposal [ABR98|, on which ECIES is based, does hash
Cp. The main reason for this is that DHAES would be malleable without it if groups with
composite order were allowed. Since the ECIES proposal allows only groups with prime
order, it would at first appear that this reason goes away. However, ECIES re-introduces the
same problem by allowing multiple formats for encoding group elements, by using partial
encodings of group elements, and by using the cofactor method of ensuring that things lie
in an appropriate subgroup.

Besides solving these problems, by hashing Cj, we get a quantitatively more efficient
reduction from the gap-CDH problem. If gp is the number of decryption requests, and qg
is the number of random oracle requests, then without the hash of Cy, the number of DDH
oracle calls that must be made is qy - ¢p, whereas with the hash of Cy, this drops to qg.
Hashing Cy also leads to a much more efficient security reduction in the multi-user/multi-
message setting (see [BBMO00]).

3.5.2 Variable length cleartexts and labels

It is not clear from the submission if ECIES supports variable length cleartexts or not. It is
never mentioned explicitly. It does say that the symmetric key encryption key length is fixed
at system set-up time, and only recommends the use of “XOR encryption.” That would
seem to imply that messages are of fixed length, but that is subject to interpretation. It
may be the case that the output length of the mask generation function is set dynamically,
according to the length of the message.

If variable length messages were allowed, however, the scheme would not be secure against
adaptive chosen ciphertext attacks. The reason is that the MAC is evaluated on the string
Ci| L.

This is our notation: in the notation of the ECIES submission, C; corresponds to EM,

25

and L corresponds to SharedInfo,. The precise role and meaning of SharedInfo, is never really
described in the ECIES submission, but we assume its meaning is application dependent,
and that its role should be the same as that described in Remark 3 in §2.1 of this document.

Suppose that C is a simple XOR encryption of a message M with label L. Suppose c is
the last byte of C; and M’ consists of the first [M|—1 bytes of M. Then the same ciphertext
decrypts to M’ under label ¢ || L. Thus, the scheme is malleable according to our definition.

In our proposed scheme, we apply the MAC to the string C || L || I20SP(|L|,8). This
solves the above problem.

Another point concerning labels where our proposal and the ECIES proposal differ that
in addition to the label SharedInfo,, there is also a label SharedInfo,, which is input to the
mask generation function. We could not discern a reason why there are two such labels that
are used in two different ways. Since our goal was to propose several encryption schemes
implementing a common interface, and we could not see why two labels should be required,
we have dropped one of them. Perhaps the submitters could clarify the role of these two
labels.

Perhaps one label should be seen as being meaningful to the application using the en-
cryption scheme, and that a second label, perhaps better called a parameter selection, could
be used to allow an application to pass scheme-specific information. This would actually be
very similar to our notion of a format value. Perhaps there are other choices that can be
made “on the fly,” such as the choice of symmetric encryption scheme and MAC' functions.
Should these choices be “hard wired” in the public key, or should the sender of an encrypted
message be able to choose these “on the fly,” possibly involving a negotiation with the re-
cipient? The view put forward in this proposal is that for simplicity (and by implication,
security), these should be “hardwired” into the public key. That also appears to be the view
of the ECIES proposal as well, although this may not be a correct interpretation.

3.5.3 Scheme setup and key deployment

The ECIES submission describes a public-key encryption scheme as consisting in general of
four components:

1. Scheme setup

2. Key deployment

3. Encryption operation
4. Decryption operation

The notions of scheme setup and key deployment together seem to correspond to our
notion of key generation (see §2.1). However, this is not entirely clear, and the submitters
of ECIES may wish to clarify this.

In the scheme setup phase

e the decryptor selects the static parameters of the cryptosystem (MGF, MAC, SKE,
Group, and group generator g), and

26

e the encryptor obtains these selections in some (unspecified) authentic manner, performs
some standard validations on these selections, and chooses the format for encoding
group elements.

In the key deployment phase

e the decryptor selects the remaining components of the private and public keys (z and
h = zg), and

e the encryptor obtains the remaining components of the public key in some (unspecified)
authentic manner, and performs some standard validations on this data.

After scheme setup and key deployment are complete, encryption and decryption run as
usual.

It is unclear why key generation is split into two separate phases, or if our proposal for
ECIES' fails to offer some subtle feature that is available in such a two-phase process. The
ECIES submitters are encouraged to comment on this.

4 A variant of PSEC-2

We present here a variant of PSEC-2. This is a key encapsulation scheme that can be
combined with the general hybrid method in §2.7 to get a full public-key encryption scheme.
While the scheme we present here differs in numerous details from the original PSEC-2, we
believe it is similar in spirit to the PSEC-2 submission, preserves the main idea of [FO99]

on which it is based, and provides very nearly the same security/efficiency trade-off. Let us
refer to our modified version of PSEC-2 as PSEC-2'.

4.1 Key Generation

A fully specified group
Group = (H,G, u,v,E,D,E',D')

is chosen, together with a generator g of the group G.

Additionally, a mask generating function MGF (see §2.9) should be selected, along with
a positive integer SeedLen.

Next, a number x € {0,...,u — 1} is chosen at random, and the group element h = zg
is computed.

The public key consists of encodings of Group, g, and h, along with an indication of the
choice of MGF and the value SeedLen. The precise format of this encoding is not specified
here. [Editor’s note: should it be?]

The private key consists of the public key together with z.

27

4.2

Encryption

Recall that for a key encapsulation mechanism KEM, the goal is to produce a cipher-
text Cy that is an encryption of a key K, where K is a byte string of length KeylLen =
PSEC?2'.OutputKeyLen.

In addition to the recipient’s public key, which specifies Group, g, h, and MGF, the
encryption algorithm takes an optional format argument. If the encoding function £ supports
multiple formats (as in the elliptic curve case), this formatting argument will be passed to
the encoding function.

We introduce the following notation. Let I0 = I20SP(0,4) and I1 = I20SP(1,4).

The encryption algorithm runs as follows.

1.
2.

Choose a random byte string s of length SeedLen.

Compute
t=MGF (10 || s, [logyse 1| + 16 + KeyLen),

a byte string of length [logyss 1] + 16 + KeyLen.

. Parse t as t = u || K, where |u] = [logyss] + 16 and |K| = KeyLen.

4. Compute 7 = OS2IP(u) mod p.

5. Compute g = rg and h = rh.

6. Set EG = £(g, format) and PEH = £'(h).

7. Compute

v=s® MGF(I1 | EG | PEH, SeedLen).

8. Output the key K and the ciphertext Cy = EG || v.
4.3 Decryption
The decryption algorithm takes the secret key as well as a ciphertext C as input. It runs
as follows.

1. Parse Cy as Cy = EG || v, where EG is an encoding a group element g, and v is a byte

string of length SeedLen. This step may, of course, fail.

. Compute h = zg.
. Set PEH = &'(h).

Compute
s=v@® MGF(I1 || EG || PEH, SeedLen).

Compute
t = MGF (10 || s, [logyse 1] + 16 + KeyLen),

a byte string of length [logysg 1| + 16 + KeyLen.

28

9.

10.

4.4

Parse t as t = u || K, where |u| = [logyss 1] + 16 and | K| = KeyLen.
Compute 7 = OS2IP(u) mod p.

Compute g = rg.

Test if g = g; if not, then fail.

Output the key K.

Changes from PSEC-2

There are a number of substantial differences between PSEC-2' and the PSEC-2.

First and foremost is the fact that the above scheme is just a key encapsulation mecha-
nism. As we discussed in §2.7, using this we can build a hybrid scheme.

The PSEC-2 submission proposed a different kind of hybrid construction. We would
recommend the hybrid construction here above the hybrid construction in the PSEC-2 for
three reasons.

1.

One of the goals of this document is to consolidate the various submissions, taking
the best ideas from all of them, and obtaining a small set of schemes, each of which
offers something unique. To that end, it seems like a good idea to use the same hybrid
construction for all schemes.

. The hybrid construction proposed here has a distinct advantage over the hybrid con-

struction proposed in PSEC-2. Namely, it facilitates the implementation of the encryp-
tion and decryption algorithms as filters, reading their inputs as streams, and writing
their outputs as streams, without rewinding, and requiring only a small amount of
internal storage. See Remark 2 in §2.1. For the original PSEC-2 construction, this
does not seem possible.

. The hybrid construction proposed here does not rely on random oracles, whereas that

in PSEC-2 does. It is easy enough to build a hybrid scheme without random oracles,
assuming the underlying key encapsulation mechanism is secure, so it seems worthwhile
to do so. In particular, we want to be able to include schemes, like the ACE-Encrypt
key encapsulation mechanism, that do not use random oracles in their security analysis.

The only disadvantages of our proposed hybrid construction are that the ciphertexts
are slightly longer (an additional MAC tag is required), and additional code is required for
its implementation (the MAC code). The view put forward in this document is that these
disadvantages are outweighed by the advantages of conformity with the other schemes, and of
facilitating “streaming.” This, of course, may be a point of discussion by the ISO committee.

There are some other differences as well. In our scheme, the value v (in our notation) is
computed by masking the seed s with a cryptographic hash

MGF (I1 || EG || PEH, SeedLen),

29

whereas in PSEC-2, s is masked directly with PEH — no hash at all. Our scheme thus has
potentially more compact ciphertexts than PSEC-2. Also, by including FG in the hash, we
deal with the multiple-encoding-format problem (PSEC-2 does not allow multiple encoding
formats); this also yields a much more efficient security reduction in the multi-user/multi-
message model (see [BBMO00]).

A serious criticism of the PSEC-2 scheme as submitted is that there is no detailed proof
of the claimed security theorem, either in the submission or elsewhere in the literature.
In fact, there is some doubt as to whether the scheme actually is secure under the stated
assumptions. The problem is the way the value v (our notation) is computed in PSEC-2. As
mentioned above, this is computed as v = s @ PEH. The only requirement in the scheme is
that SeedLen < |PEH|. However, if SeedLen < |PEH]|, then the ciphertext contains some of
bits of PEH in the clear. To prove security of this scheme, then, one would (at least) need
to show that one could not compute h from g and some of the bits of the partial encoding
of h. It would appear that requiring that SeedLen > |PEH| solves the problem. Note that
the stated requirement that SeedLen < |PEH| is apparently not a typographic error, since
the examples of PSEC-2 in the appendix of the submission all have SeedLen < |PEH|.

A similar, but more severe, criticism applies to the PSEC-1 submission. More specifically,
in the PSEC-1 encryption algorithm, the ciphertext contains the XOR of the cleartext with
a substring of PEH. There is no way the semantic security of this scheme can be based
upon the DDH assumption, since the DDH assumption does not imply that the bits of an
encoding of a group element are pseudo-random.

Also note that our proposed scheme works with any cyclic group, not just elliptic curve
groups, and not just groups of prime order.

We should also mention that the scheme we have proposed here bears some similarities
not only to the PSEC-2 submission, but also to a very similar scheme presented in [BLKO00].

4.5 Security considerations

Since this proposed scheme differs significantly from PSEC-2 and other schemes in the litera-
ture, we sketch a security proof in the random oracle model assuming the CDH (see §2.11.1).
Here, we view MGF as a random oracle. Note that all relevant inputs to MGF start with
either a “zero word” or a “one word.” This effectively gives us two independent random
oracles,

. SeedLen logose] +16+ KeyLen
H, : B — Bllogxso 1l :

Hy : E(H) x E'(H) — BSeedlen,

Here, B denotes the set of bytes. Also, E(H) denotes the set of all encodings of elements in
‘H, using all formats, and £'(H) denotes the set of all partial encodings of elements in H. In
the security analysis, we shall replace the calls to MGF by appropriate queries to Hy and
H;.

Consider an adversary A that makes ¢p calls to the decryption oracle, ¢q calls to Hy and
¢, calls to H;.

Let Gy be the original attack game, and let Sy be the event that the adversary correctly
guesses the hidden bit b in this game (see §2.2). We shall define a sequence of attack games

30

G, Go, ..., Gg. Each of these games should be viewed as operating on the same underlying
probability space — only the rules for how certain random variables are computed differ. In
each game G, 1 <1 < k, there will be an event S; corresponding to S;. We shall show that
for all 1 <4 < k, that the difference | Pr[S;] — Pr[S;_;]| is negligible, and moreover, it will
be evident that in the last game, Pr[Sy] = 1/2. This will imply that Advantage pggca (A),
which is equal to | Pr[Sy] — 1/2|, is negligible.

We adopt the following convention. For an arbitrary ciphertext Cy, we denote by

EG,v,8,h, PEH, s,t,u, K, 7, g,

the values computed by the decryption algorithm on this ciphertext. Some of these may be
undefined if the algorithm would fail before the value was computed. We also denote the
target ciphertext C§, and define corresponding values EG*, v*, g%,

We classify ciphertexts Cy submitted to the encryption oracle as follows:

Type I g # 8%
Type 11 EG = EG™;
Type III § = §*, but EG # EG*.

Note that all ciphertexts Cy submitted to the decryption oracle before the encryption oracle
has been invoked are classified as Type 1. Notice that Type III ciphertexts can arise only if
the group supports multiple encoding formats, as in the case of elliptic curves.

Let S denote the set of points s at which the oracle Hy has been queried either (7) directly
by the adversary, or (ii) by a Type III decryption oracle invocation. The set S grows over
time, as more queries to Hy are made. For any byte string s of length SeedLen, we define
p(s) to be the number obtained by taking the first [logyss pt] + 16 of Hy(s), converting to an
integer, and reducing mod .

The following trivial lemma will streamline our arguments.

Lemma 1 Let E, E', and F' be events defined on a probability space such that Pr[EAN—-F] =
Pr[E' A —F|. Then we have
|Pr[E] — Pr[E"]| < Pr[F].

The proof is a simple calculation, which we omit.
We now define our sequence of games Gi, Go,

Game G;. We modify the decryption oracle as follows. If the adversary submits a Type II
ciphertext Cp, then in game G, we summarily reject Cy, without executing the decryption
algorithm at all.

Let F} be the event that in game G; such a ciphertext is rejected that would not have
been rejected under the rules of game Gy. Since these two games proceed identically until
F occurs, we have Pr[Sy A —=F;| = Pr[S; A =F}], and applying Lemma 1 with (Sy, S1, F1),
we have | Pr[Sy| — Pr[S;]| < Pr[Fy].

31

So it suffices to bound Pr[Fi]. Consider a Type II ciphertext Cy submitted to the de-
cryption oracle in game Gy. Since Cy # Cjj, we must have v # v*, which implies s # s*. To
accept under the rules of game Gy, we must have r = r*.

To make this happen, the adversary must find an input s # s* to Hy such that p(s) = r*.
Thus, Pr[F1] < (g0 + gp)p~ (1 4+ 271?8). The factor (1 + 271?8) comes from the fact that the
value 7 is not exactly uniformly distributed over {0,...,u — 1}.

So we have

| Pr[So] — Pr[S1]| < (g0 + gp)p™' (1 +27"%). (1)

Game G,. In this game, we modify the decryption oracle as follows. Suppose a Type
I ciphertext Cy is submitted, and suppose that s ¢ S. Then we summarily reject this
ciphertext, without ever proceeding past step 4 of the decryption algorithm.

Note that in this game, Type I and II decryption oracle invocations never evaluate H
at points not already in S.

Let F5 be the event that in game Gs such a ciphertext is rejected that would not have
been rejected under the rules of game G;. These two games proceed identically until Fy
occurs, and so Pr[S; A =Fy] = Pr[Sy A =F3], and applying Lemma 1 to (S1, So, F»), we have
| Pr[S;] — Pr[Sy]| < Pr[Fy).

So it suffices to bound Pr[F3]. Consider a ciphertext Cy as above is submitted to the
decryption oracle in game Gg. On the one hand, if the encryption oracle was previously
invoked and s = s*, then under the rules of game G;, we would certainly reject Cy, since
g # g*. On the other hand, if the decryption oracle was not previously invoked or it was
but s # s*, then Hy was never queried at s either by the encryption oracle, the decryption
oracle, or the adversary, and so the value r is independent of everything in the adversary’s
view. It follows that the probability that this ciphertext would not be rejected under the
rules of game G is at most p~!(1 + 27128).

From this, it follows that Pr[F}] < ¢pu~'(1 + 27'?), and therefore,

| Pr[Si] — Pr[So]| < gpp™'(1+27). (2)

Game Gj;. We make another modification to the decryption oracle. In this new game,
we process all Type I ciphertexts Cy as follows. If g is not equal to p(s’)g for any s’ € S,
then we reject without any further processing. Otherwise, if g§ = p(s')g for some s’ € S, we
compute h = p(s')h, and proceed to decrypt just as in game Gy, but starting with step 3 of
the decryption algorithm.

We argue that games Gy and Gj are identical.

Consider first a ciphertext for which g is not equal to p(s')g for any s’ € S. This
ciphertext would have anyway been rejected under the rules in game Gy. To see this, let
g = g, where 7 € {0,...,u — 1}. Now, 7 # p(s') for any s’ € S. Consider the value s.
If s € §, then we would reject under the rules in game G, since the test in step 9 would
fail; otherwise, if s ¢ S, we would also reject under the rules in game Go, since the special
rejection rule introduced in game G, would apply.

Next, consider the case where g = p(s')g for some s’ € S. It is clear that in this case,
decryption proceeds exactly as in game Go.

So we have

PI‘[Sg] = PI‘[SQ] (3)

32

Game G;. We modify game Gj3 to obtain an equivalent game Gy4. This rather technical
step is a “bridging” step that will facilitate the analysis of more drastic modifications in
game Gs.

In game G4, we introduce

e a random byte string s of length SeedLen,
e a random byte string u™ of length [logyse 11| + 16,
e a random byte string Kt of length KeyLen, and

e 3 random oracle

ht : E(H) — BSedlen,
Game Gy is identical to game Gg, except that we apply the following special rules:

R1: In the encryption oracle, we perform the following steps:

Set r* = OS2IP(u™) mod p.

Compute g* = rtg.

Set EG* = £(g*, format).

Compute v* = st @ h* (EG™).

Output the key K and the ciphertext C; = EG™ || v*.

A

R2: In the decryption oracle, when processing a Type III ciphertext, we use the value
h*(EG) in step 4, instead of H,(EG, PEH).

R3: Whenever the oracle Hy is queried — by either the adversary or a Type III decryption
oracle — at st we respond with u™ || K, instead of H(s™).

R4: Whenever the oracle H; is queried — by either the adversary or a Type I decryption
oracle — at a point (EG, PEH), where EG is an encoding of g* and PEH is a partial
encoding of zg*, we respond with h*(EG) instead of H,(FEG, PEH).

It is clear that games Gz and G, are completely equivalent, since we have consistently re-
placed one set of random variables by another set of identically distributed random variables.
In particular,

Pr[S3] = Pr[Sy). (4)

Game G;. Game Gy is the same as game Gy, except that we drop rules R3 and R4, while
retaining R1 and R2.

Note that in this game, we do not use the secret key of the cryptosystem at all. Also note
that the ciphertext Cf is no longer a valid ciphertext in general, nor does it hold in general
that s* = s™, or that t* = u™ || K, since the random oracles are no longer consistent with
the modifications made in the encryption oracle. Indeed, K™ and hence the hidden bit b are
independent of the adversary’s view in game Gjs. The string s* is also independent of the

33

adversary’s view. Further, the behavior of Type III decryption oracle queries are also not
consistent with the random oracles.

Despite these differences, however, games G4 and Gs proceed identically until the string
st appears in S or either the adversary or a Type I decryption oracle invocation queries H;
on inputs (FG, PEH), where EG is an encoding of g* and PEH is the partial encoding of

g~

Let Fy, be the event that in game Gy, the string s™ appears in S at some point in time.
Let F%, be the event that either the adversary or a Type I decryption oracle invocation
queries H; on inputs (EG, PEH), where EG is an encoding of g* and PEH is the partial
encoding of xg*. Let F5 = F5, V Fxp.

Since games G4 and Gy proceed identically until the point where F5 occurs, we have
Pr[S4A—F5] = Pr[Ss A—F5]. Applying Lemma 1 with (S, S5, F5), we have | Pr[Sy] —Pr[Ss]| <
PI‘[F5].

Since s* is independent of the adversary’s view, we have

PI"[F5a] S (q0 +qD)QfSeedLen‘

Now, Pr[Fs,] is bounded by (1 + 27'%) times the probability that an adversary A’ —
running in expected time nearly the same as the running time of the original adversary A
— can construct a list of O(g; + gp) group elements, one of which contains a solution to a
given instance of the CDH problem.

This algorithm runs by taking a random instance (g, h, g*) of the CDH problem as input,
and runs A against a slightly modified version of game Gs. In this modified game, we use
the given values g, h to form the public key in game Gjs, Also, we use the given value g*,
instead of deriving it from u™ (note that u™ is not used anywhere else in game Gs). Finally,
to implement this algorithm, we simulate the random oracles in the usual way, using standard
hash table techniques. We also use standard hash table techniques to implement the Type
I decryption oracle queries, as modified in game G3. The factor (1 + 27'%%) comes from the
fact that the distribution of g+ in game Gy is slightly non-uniform, whereas we assume the
corresponding value in the CDH instance is uniformly distributed.

From this, it follows that

| Pr[S4] — Pr[Ss]| < Advantage py(A',O(qi + qp))(1 +27128) + (5)
(qo + qD)2—SeedLen’

where Advantage ;py is as defined in §2.11.1.
It is also clear that in game Gj, the hidden bit b is independent of all values directly or
indirectly accessible to the adversary. Hence,

Pr[Ss] = 1/2. (6)
Putting together (1), (2), (3), (4), (5), (6), we obtain

Advantage pgpoo (A) < (go + 2¢p)p~" (1 +271%8) +
Advantage opy (A, O(q1 + qp)) (1 +27128) + (7)
(qo + qD)Q—SeedLen.

34

4.6 Further remarks

Note that in this scheme, we do not have to make an additional check to ensure that g lies
in G during the decryption process. This is already taken care of by the test in step 9 of the
decryption algorithm.

5 A variant of ACE-Encrypt

In this section, we present a variant of the ACE-Encrypt submission. Several changes were
made to the original submission, so that the resulting scheme fits into our uniform framework.
This variant is a key encapsulation mechanism that we call ACE-Encrypt’.

5.1 Key Generation

A fully specified group
Group = (H,G,u,v,E,D,E', D)

is chosen, together with a random generator g; of the group G. The order p of G must be
prime. We emphasize that the generator g; should be chosen at random — this is necessary
for the validity of the security theorem.

An additional parameter, CofactorMode, must be specified. This parameter takes the
value 0 or 1. Here are the rules which should be obeyed in setting this parameter.

o If v =1, then CofactorMode should be 0.

e If v > 1, CofactorMode may be set to 1 provided ged(p,v) = 1.

In addition to Group, a hash function Hash (see §2.8) and mask generating function
MGF (see §2.9) must be chosen. It is required that and that Hash.OutputLen < logysg ii-

Since we want MGF' to be a good entropy smoothing function, one should select either
MGF8 or MGF4. As discussed in §2.9, the functions MGF1 and MGF2 are not recom-
mended.

Next, numbers w, x,y,z € {0,...,u — 1} are chosen at random, and the group elements

go=w-g,c=r-g,d=y-g, h=2-g

are computed.

The public key consists of encodings of Group, the group elements g, g-,c,d, h, along
with the value CofactorMode and an indication of the choice of Hash and MGF'. The precise
format of this encoding is not specified here. [Editor’s note: should it be?]

The private key consists of the public key, together with the numbers w, z, ¥, 2.

35

5.2 Encryption

Recall that for a key encapsulation mechanism KEM, the goal is to produce a cipher-
text Cy that is an encryption of a key K, where K is a byte string of length KeylLen =
ACE _Encrypt’. OQutputKeyLen.

In addition to the recipient’s public key, the encryption algorithm takes an optional
format argument. If the encoding function £ supports multiple formats (as in the elliptic
curve case), this formatting argument will be passed to the encoding function.

The encryption scheme works as follows.

1. Choose r € {0,...,u—1}.
2. If CofactorMode = 1, set ' = r - v mod pu; otherwise, set ' = r.

3. Compute group elements

! !
Uy =7r-g1, Ua =7 -89, h=7"-h.

4. Compute the byte strings
EU1 = &(uy, format), EU2 = &E(ug, format).

5. Compute the number

a = OS2IP(Hash.eval(EU1 || EU2)).

6. Compute the number
r" = a-r' mod u.

7. Compute the group element
v=r'-c+r"-d

8. Output the ciphertext
Co=EU1 || EU2 | & (v)
and the key B
K = MGF(EU1 | £'(h), KeyLen).

5.3 Decryption
The decryption algorithm takes as input a ciphertext Cjy along with the private key.

1. Parse the ciphertext as EUI || EU2 || PEV, where EU1 encodes the group element uy,
EU2 encodes the group element uy, and PEV is a valid partial encoding of a group
element. If this parsing step fails, or if EUI and FU2 are not encoded using the same
format?, then fail.

2Version 1.0 of this document failed to include the check that EU! and EU2 are encoded using the

same format; while this check is not necessary for the basic proof of security in §5.4, it is necessary for the
reduction in §5.5.2 and the random oracle analysis in §5.5.1.

36

2. If CofactorMode = 1, set 1; = v - uy; otherwise, set Gi; = u;.
3. If CofactorMode # 1 and v > 1, test if p - u; = 0. If not, then fail.

4. Compute the number

a = OS2IP(Hash.eval(EU1 || EU2))

5. Compute the number
t =z + ya mod p.

6. Test if
w1, =uy and &'(th,) = PEV.
If not, then fail.?

7. Compute the group element

8. Output the key B
K = MGF(EU1 || £'(h), KeyLen).

5.4 Security considerations

This scheme differs in only very minor ways from schemes that have been rigorously ana-
lyzed in the literature. It most closely resembles the variation of the Cramer-Shoup scheme
discussed in detail in [ShoOO0b].

The security of the scheme is based on the DDH (see §2.11.2), and a few other specific
assumptions about the hash and mask generating functions. The security reduction is quite
tight. One can easily verify the following, using following the line of reasoning in [CS98| and
[Sho00b].

Advantage yop_pperpe (A) = O(Advantageppy (A1) +
Advantage .4, (A2) +
Advantage o (As) +

ap-p),
where:

e Ay, Ay, A3 denote adversaries that run in time essentially the same as A.

o Advantagepy is as defined in §2.11.2.

3For security reasons, one should always perform all of the computations in this step; otherwise, some
“timing” information could be gained by the adversary that is not available to it in the formal proof of
security.

37

o Advantage y,,,(A) denotes the probability that an adversary A, given encodings EU1"
and FU2" of two independent, random elements in G, can find encodings EUI! and
EU2 of elements in G, such that (EU1, EU2) # (EU1*, EU2%), but

Hash.eval(EUL || EU2) = Hash.eval(EU1™ || EU2™).

If the group supports multiple encodings, the adversary can choose the format it wants
when EUI™ and EU2" are generated; furthermore, the adversary may choose to use
the same or different formats in its choice of EUI and EU2; however, EU1* and EU2*
must be encoded using the same format, and the same holds for EU1 and EU2.

If CofactorMode = 1, then the adversary may choose EU1 to be an encoding of an
element of H that does not necessarily lie in G.

Note that this problem is a second-preimage collision problem, which is generally be-
lieved to be a much harder problem to solve than the problem of finding an arbitrary
pair of colliding inputs.

o Advantageygr(A) denotes the advantage that an adversary A has in distinguish-
ing between the following two distributions. Let u; and h be independent, ran-
dom elements of G, and let EU1 be an encoding of u;. Let R be a random byte
string of length KeyLen. The first distribution is (R, EU1), and the second is
(MGF(EU1 || ' (h), KeyLen), EU1).

e ¢p bounds the number of decryption oracle queries made by the adversary A.

The “O” above represents a very small constant, which we have not computed exactly.

5.5 Further remarks

5.56.1 Random oracles and interactive assumptions

We emphasize that this scheme can be proved secure under reasonable intractability assump-
tions, without resorting to either the random oracle heuristic, and without using “interactive”
intractability assumptions as in done in [ABR9S].

We stress that a proof of security in the random oracle model is not a proof with “just
another assumption.” One is not assuming a hash function is a random function, since this
assumption is patently false. The random oracle model is a heuristic, and a proof of security
in the random oracle model does not directly imply anything about the security of a system
“in the real world.”

We also stress that interactive intractability assumptions, like in [ABR9S8], are qualita-
tively much stronger than standard intractability assumptions. Indeed, it can be argued
that the main activity of theoretical cryptography is to show that breaking a cryptosys-
tem via some kind of subtle, interactive attack is at least as hard as solving some specific,
non-interactive problem.

ACE-Encrypt’ can also be proved secure in the random oracle model under the CDH
assumption (see [ShoO0b]), although the reduction is not nearly as tight as for PSEC-2'.
Indeed, the tightness of the reduction for PSEC-2' and the efficiency of PSEC-2' are the
main reasons for including PSEC-2' in this proposal.

38

5.5.2 ACE-Encrypt’ and ECIES'

One should also note that ACE-Encrypt’ is no less secure than ECIES’ in a very strong
sense. Indeed, assuming the two cryptosystems use the same parameters, then one can show
that any adversary A that breaks ACE-Encrypt’ can be converted into an adversary A’ with
about the same running time that breaks ECIES' with the same advantage.

To see this, consider an ECIES' public key (g,h). Upon obtaining this public key, A’
generates w, z,y at random modulo p, and then computes the ACE-Encrypt’ public key

(g17 g2,C, da h) = (g7 wg, 18, Y8, h)

A’ then gives this public key to the adversary A.

Now, whenever the adversary A makes a decryption oracle query, then knowing w, z, ¥,
A’ performs the validity test of ACE-Encrypt’, and if this passes, it uses the decryption
oracle of ECIES’ to obtain the decrypted symmetric key, giving this to A.

When A invokes the encryption oracle for ACE-Encrypt’, A" invokes the encryption oracle
for ECIES', obtaining an encoding of a group element uj. Then using w,z,y, A’ easily
constructs the remaining components of a corresponding ACE-Encrypt’ ciphertext, and gives
this to A.

One needs to check that A’ carries out a legal chosen ciphertext attack, i.e., that A’ never
attempts to submit the target ciphertext to the decryption oracle subsequent to the invoca-
tion of the encryption oracle. But this follows easily from the following claim: for any two
valid ACE-Encrypt’ ciphertexts Co = EUL || EU2 || PEV and Cf = EU1™ || EU2" || PEV ™,
if EU1 = EU1%, then Cy = C. This claim relies on the fact that the validity test for a
ciphertext Cj as above ensures that EUI and EUZ2 are encoded using the same format. If
this were not done, then simply by replacing EU2 by a different encoding EU27 of the same
group element, one would violate the above claim.

When A terminates and outputs a bit b, A’ also terminates and outputs the same thing.

It is easily seen that this simulation is perfect, and that whatever advantage A has in
breaking ACE-Encrypt’, A’ has the same advantage in breaking ECIES'.

5.5.3 ACE-Encrypt and ACE-Encrypt’

We outline the major differences between ACE-Encrypt and ACE-Encrypt'.

e We have generalized the algorithm to work with an arbitrary, abstract group, and to
work with an arbitrary message authentication code and symmetric key encryption
scheme.

e We have chosen not to use the rather specialized universal one-way hash function to
compute the quantity . Instead, we use a standard cryptographic hash, and make a
specific — but reasonable — “second preimage collision resistance” assumption.

The proposed standard need not necessarily preclude the possibility of using such a
specialized hash function, so long as we allow such a hash to have a variable length
key that is stored in the public key.

39

e We have chosen not to use the rather specialized entropy-smoothing hash function to
derive the key K. Instead, we again use a standard cryptographic hash, and make a
specific — but again, reasonable — “entropy smoothing” assumption.

The proposed standard need not necessarily preclude the possibility of using such a
specialized hash function, so long as we allow such a hash to have a variable length
key that is stored in the public key.

6 RSA-OAEP

6.1 Message encoding functions

EME-OAEP is a fully specified version of Bellare and Rogaway’s original OAEP scheme for
message encoding [BR94].
In general, a message encoding scheme EME of this type specifies two algorithms:

e EME.Encode(M, L, ELen) takes as input a message M and a label L, and an output
length ELen. Here, M and L are byte strings whose lengths are bounded, as described
below. It outputs a byte string E of length ELen.

e EME.Decode(E, L) takes as input a byte string E and a label L. It attempts to find a
message M such that EME.Encode(M, L, |E|) = E. It returns M if such an M exists,
and otherwise fails.

In addition to this, the mechanism should specify a bound EMFE.Bound such that when
EME.Encode(M, L, ELen) is invoked, the condition |M| < ELen— EME.Bound should hold;
if not, the encoding algorithm fails. Additionally, the encoding algorithm may also fail if | L|
exceeds some (very large) implementation-defined bound.

The algorithm EME.Encode will in general be probabilistic, so that the same message
can be encoded in a number of ways.

6.2 EME-OAEP

We now describe EME-OAEP.

The scheme is parameterized by a hash function Hash (see §2.8) and a mask generation
function MGF (see §2.9). Current standards, as well as the RSA-OAEP submission to ISO,
recommend the use of the function MGF1 using Hash. Let HLen = Hash.QutputLen.

The quantity EME_OAEP.Bound is defined as

EME_OAEP.Bound = 2 - HLen + 1.

6.2.1 Encoding function
The algorithm EME_OAEP.Encode(M, L, ELen) runs as follows:

1. Check that |M| <= ELen — 2 - HLen — 1; if not, then fail.

40

. Generate a random byte string r of length HLen.

. Let pad be the byte string of length ELen — |M| —2- HLen consisting of a sequence of

0-bytes, followed by a single 1-byte.
Set x = Hash.eval(L) || pad || M.

Set s = MGF (r, ELen — HLen) & z.
Set t = MGF (s, HLen) @ r.

Output E =t s.

6.2.2 Decoding function
The algorithm EME_QOAEP.Decode(E, L) runs as follows.

1.

2.

6.3

Let ELen = |E)|.
Check if ELen > 2 - HLen + 1; if not, then fail.

Parse E as E =t || s, where |t| = HLen and |s| = ELen — HLen.

. Set r = MGF (s, HLen) & t.

Set © = MGF (r, ELen — HLen) & s.

. Test that = is of the form x = Hash.eval(L) || pad | M, where pad is a byte string

consisting of zero or more 0-bytes, followed by a 1-byte. If not, then fail.

Output M.

RSA-OAEP

We describe a generic RSA encryption scheme, based on an arbitrary message encoding
mechanism EME. If one uses EME-OAEP, the resulting scheme is called RSA-OAEP.

6.3.1 Key generation

The public key consists of an RSA modulus n that is the product of two large primes, and
an exponent e. It also specifies any parameters of EME (such as Hash and MGF, in the
case of EME-OAEP). Let nLen denote the length, in bytes, of n.

The secret key consists of the decryption exponent d, where ed = 1 mod n.

41

6.3.2 Encryption

The algorithm to encrypt a message M with label L runs as follows.
1. Set E = EME.Encode(M, L, nLen — 1).
2. Set m = OS2IP(E).

3. Set ¢ = m® mod n.

S

. Output C = I20SP(c, nLen).

6.3.3 Decryption
The algorithm to decrypt a ciphertext C' with label L runs as follows.
1. If |C| # nLen, then fail.
2. Let ¢ = OS2IP(C).
3. Check that ¢ < n — 1; if not, then fail.
4. Set m = ¢? mod n.
5. Set E = I205P(m, nLen — 1); note that this step may fail if m is too large.
6. Set M = EME.Decode(FE, L); note that this step may fail.

It should be stressed that any error codes returned by any subroutines called by the
decryption algorithm should all be converted to a unique error code — in general, the precise
cause of the error should not be revealed.

6.4 Defects of RSA-OAEP

RSA-OAEP suffers from two defects.

The first is a security defect. It was a widely held belief that the general OAEP construc-
tion was secure against adaptive chosen ciphertext attack, assuming the underlying trapdoor
permutation was one-way. This belief is based on a supposed random-oracle proof in [BR94].
This of course would imply the security of RSA-OAEP in the random oracle model, assuming
that RSA is one-way. However, it was recently shown in [Sho0Oa] that the proof of security
of the general OAEP construction was invalid, and further, the general construction can not
be proven secure using standard proof techniques.

This result by itself does not imply that RSA-OAEP is insecure; it simply invalidates
the original justification of its security. In fact, in [ShoOOa|, it is shown that RSA-OAEP
with e = 3 is secure (in the random oracle model). This result is extended by [FOPSO00] to
arbitrary e. It should be noted however, that the security reduction is much less efficient in
[FOPS00] than that proposed in [BR94] for OAEP.

The fact that RSA-OAEP can be proved secure is essentially an accident. The proofs of
security exploit particular algebraic properties of the RSA function.

42

In [Sho00a], a slight variant of OAEP is presented, called OAEP+. A detailed proof of
security is given, on the general assumption of a trapdoor one-way permutation. Moreover,
the security reduction is much more efficient than that of [FOPS00] or even [BR94].

Another defect of RSA-OAEP is that it only encrypts messages of a bounded length.
Because of this, RSA-OAEP is really only useful as a key encapsulation mechanism (see
§2.2), and it is left to application engineers to implement a “digital envelope” for encrypting
longer messages. See Remark 1 for a discussion about why we believe that this standard
should provide a complete solution to the “digital envelope” problem, rather than just a
partial solution. Also, using RSA-OAEP for nothing more than key encapsulation completely
wastes one of the main feature of OAEP, namely, its very good “message expansion” rate.
Indeed, if all one wants to do with RSA is encapsulate a key, then one is better served
using the Simple RSA scheme in §8, as that method is both simpler and quantitatively more
secure.

Because of these two defects, we propose that the new ISO standard contain a variation
of RSA-OAEP+ that offers both a higher level of security than RSA-OAEP, while at the
same time introduces a standard for encrypting messages of arbitrary length using RSA.

It is a question for debate as to whether the ISO standard should contain RSA-OAEP at
all, given the above defects. This is a point for discussion.

7 RSA-OAEP-+

In this section, we propose a new encryption scheme, called RSA-OAEP+. It has better
provable security properties than RSA-OAEP, and also provides a secure mechanism for
encrypting messages of arbitrary length.

7.1 Extended message encoding functions

To facilitate encryption of arbitrary length cleartexts, we extend the notion of a message
encoding scheme.
In general, an extended message encoding scheme XEME specifies two algorithms:

e XEME.Encode(M, L, ELen, KeyLen) takes as input a message M, a label L, an encod-
ing output length ELen, and a key output length KeyLen. Here, M and L are byte
strings whose lengths are bounded, as described below. It outputs a pair (E, K) of
byte strings with |E| = ELen and |K| = KeyLen.

e XEME.Decode(E, L, KeyLen) takes as input a byte string E and a label L. It attempts
to find a message M and a key K such that EME.Encode(M, L, |E|, KeyLen) = (E, K).
It returns the pair (M, K) if it exists, and otherwise fails.

In addition to this, the mechanism should specify a bound XEME.Bound such that when

XEME .Encode(M, L, ELen, KeyLen) is invoked, the condition |M| < ELen — XEME.Bound
should hold; if not, the encoding algorithm fails. Additionally, the encoding algorithm may
also fail if |L| or KeyLen exceed some (very large) implementation-defined bound.

43

The algorithm XEME.Encode will in general be probabilistic, so that the same message
can be encoded in a number of ways.

7.2

XEME-OAEP+

We now describe the extended message encoding scheme XEME-OAEP+-.
The scheme is parameterized by a mask generation function MGF (see §2.9) and an
integer MaskLen > 1. Any of the functions described in §2.9 are suitable.

The quantity XEME_OAEP+.Bound is defined as

XEME _OAEP+.Bound = 2 - MaskLen + 1.

Let (10,11,...) denote the values (I20SP(0,4), I20SP(1,4),...).

7.2.1 Encoding function
The algorithm XEME_OAEP+.Encode(M, L, ELen, KeyLen) runs as follows.

1.

2.

Check that |M| <= ELen — 2 - MaskLen — 1; if not, then fail.

Generate a random byte string r of length MaskLen.

. Let pad be the byte string of length ELen — |M|—2- MaskLen consisting of a sequence

of 0-bytes, followed by a single 1-byte.

Set z = pad || M.
Set
check = MGF (10 || r|| z || I20SP(KeyLen,4) || L, MaskLen).
Set
' = MGF(I1 || r, ELen — 2 - MaskLen) & x.
Set
s = check || 2.
Set
t = MGF (12 || s, MaskLen) & r.
Output
E=t]s
and

K = MGF (I3 || r, KeyLen).

44

7.2.2 Decoding function
The algorithm XEME_OAEP+.Decode(E, L) runs as follows.

1. Let ELen = |E|.
2. Check if ELen > 2 - MaskLen + 1; if not, then fail.
3. Parse E as E =t || s, where |t| = MaskLen and |s| = ELen — MaskLen.

4. Set
r = MGF (12 || s, MaskLen) & t.

5. Parse s as check || z', where |check| = MaskLen and |x'| = ELen — 2 - MaskLen.

6. Set
x = MGF(I1 ||r, ELen — 2 - MaskLen) @ x'.

7. Test if z is of the form = = pad || M, where pad is a byte string consisting of zero or
more 0-bytes, followed by a 1-byte; if not, then fail.

8. Test if
check = MGF (10 || r || z || I20SP(KeyLen,4) || L, MaskLen).

If not, then fail.

9. Output M and
K = MGF(I3 || r, KeyLen).

Remark 11 This encoding scheme is very similar to that of [Sho0Oa]. Besides a few in-
consequential formatting changes, this scheme deals with a label L and produces a key K
of length KeyLen. The scheme in [Sho0Oa] does not deal with labels or key outputs at all.
Notice that both KeyLen and L are hashed into the value check — this is important for the
security of the scheme. <

Remark 12 In general, we have kept the changes between EME-OAEP and XEME-OAEP+
minimal. But since some changes were anyway necessary, we took the liberty to propose a
couple of further changes.

The main change is that we use the function MGF in several places, and we insert the
strings 10, 11, etc., into the different invocations of MGF'. This is done so that these can be
more properly modeled as independent random oracles, as required in the proof of security.
<

45

7.3 RSA-OAEP+

We describe a generic extended RSA encryption scheme that uses an arbitrary ertended mes-
sage encoding scheme XEMFE. 1f the XEME-OAEP+ encoding scheme is used, the resulting
encryption scheme is called RSA-OAEP+. We call this an extended RSA encryption scheme,
since it handles messages of arbitrary length.

This scheme also makes use of a symmetric key encryption scheme SKE (see §2.5) and
a one-time message authentication code MAC (see §2.6). The techniques we use are similar
to those for building a hybrid encryption scheme (see §2.7).

7.3.1 Key generation
Just as for RSA-OAEP, the public key consists of an RSA modulus n that is the product of

two large primes, and an exponent e. It also specifies any parameters of XEME. Let nLen
denote the length, in bytes, of n.
The secret key consists of the decryption exponent d, where ed = 1 mod n.

7.3.2 Encrypting short messages

To encrypt a message M with label L, where |M| < nLen — XEME.Bound — 1, one does the
following.

1. Set (F,K) = XEME.Encode(M, L,nLen — 1,0); note that K is the empty string.
2. Set m = OS2IP(E).

3. Set ¢ = m® mod n.

=~

. Output C = I205P(c, nLen).

7.3.3 Decrypting short messages
To decrypt a ciphertext C' with label L, where |C| < nLen, one does the following.

—_

. I |C| < nLen, then fail.

2. Let ¢ = OS2IP(C).

3. Check that ¢ < n — 1; if not, then fail.

4. Set m = ¢? mod n.

5. Set E = I20S8P(m, nLen — 1); note that this step may fail if m is too large.

6. Set (M, K) = XEME .Decode(E, L,0); note that this step may fail, and also that K is
the empty string.

7. Output M.

46

7.3.4 Encrypting long messages

To encrypt a message M with label L, where |M| > nLen — XEME.Bound — 1, one does the
following.

1. Let M = My || My, where |My| = nLen — XEME.Bound — 1.

2. Set (E, K) = XEME.Encode(My, L,nLen — 1, SKE.KeyLen + MAC.KeyLen).
3. Set m = OS2IP(E).

4. Set ¢ = m® mod n.

5. Set Cy = I20SP(c, nLen).

Parse K as K = k|| k', where |k| = SKE.KeyLen and |k'| = MAC.KeyLen.
Encrypt M; under the key k£ using SKE, and let C; be the resulting ciphertext.
8. Apply the MAC to C, using the key &', obtaining tag.

9. Output the ciphertext C = Cy || C, || tag-

7.3.5 Decrypting long messages

To decrypt a ciphertext C' with label L, where |C| > nLen, one does the following.
1. Test if |C| > nLen + MAC.TagLen; if not, then fail.
2. Parse C as C = Cy || C1 || tag, where |Cy| = nLen and |tag| = MAC.TagLen.
3. Let ¢ = OS2IP(Cy).
4. Check that ¢ < n — 1; if not, then fail.
5. Set m = ¢? mod n.
6. Set £ = I20SP(m,nLen — 1); note that this step may fail if m is too large.

7. Set (My, K) = XEME.Decode(E, L, SKE.KeyLen + MAC.KeyLen). Note that this
step may fail.

8. Test if |My| = nLen — XEME.Bound — 1; if not, then fail.
9. Parse K as K = k|| k', where |k| = SKE.KeyLen and |k'| = MAC.KeyLen.

10. Apply the MAC to C; using the key k', and check if the resulting tag matches the
given tag; if not, then fail.

11. Decrypt C' under the key k using SKE, and let M; be the resulting plaintext.
12. Output M = M, || M;.

47

7.4 Security considerations

It is straightforward to adapt the proof of security in [Sho00a] to show that this scheme is
secure in the random oracle model against adaptive chosen ciphertext attack, assuming the
RSA inversion problem is hard.

That proof implies that for any adversary A, its advantage in breaking the cryptosystem
RSA_OAEP+ is bounded by

Advantagegsy oapp+(A) = O(Advantagegg, (A1) +
Advantage pppi(Ag, 1) +
qp - Advantage 40 (As, 11, l2) +
apqm - 2—MaskLen)

Here,

e A; is an algorithm that runs in time roughly equivalent to that of A, plus O(q%)
applications of the RSA function,

e Ay, A3 are adversaries whose running times are about the same as A,

e Advantageprgs(A) denotes the success probability of an algorithm A has in solving a
random instance of the RSA inversion problem,

® ¢p is a bound on the number of decryption oracle queries made by A,

e ¢y is a bound on the number of random oracle queries made by A,

e [, is a bound on the length of the target cleartext, and

e /5 is a bound on the length of ciphertexts submitted to the decryption oracle.

Note that this security reduction is actually somewhat more efficient than the original
(and incorrect) security reduction for RSA-OAEP in [BR94]. It is also far more efficient
than the security reduction in [FOPS00]. In that reduction, the algorithm A’ for inverting
RSA is somewhat slower than that of RSA-OAEP+, but worse, if the advantage of A is e,
then the success probability of A’ is about €.

Even though the security reduction for RSA-OAEP+ is tighter than that for RSA-OAEP,
we should perhaps point out that because of the term O(g%) in the running time of the RSA
inversion algorithm, this reduction actually says very little about the security of, say, 1024-
bit RSA. This is because one can (most likely) factor 1024-bit numbers in less time than
that required by the implied RSA inversion algorithm. However, as pointed out in [Sho00Oa),
for exponent e = 3, there is a much more efficient security reduction whose running time is
linear in gy. Is this a reason recommend the use of e = 37 Perhaps. Alternatively, one can
use the Simple RSA scheme (see §8).

Of course, if the security reduction for RSA-OAEP+ implies very little about concrete
security, the security reduction for RSA-OAEP in [FOPS00] says even less.

48

8 Simple RSA

We also suggest for possible inclusion in the ISO standard the following very simple version
of RSA. It is based on the ideas in [BR93].

The scheme we present is a key encapsulation mechanism (see §2.2), which can be turned
into an encryption scheme as described in §2.7.

The main advantages of this scheme are its simplicity and the fact that it yields a much
more efficient (and hence meaningful) security reduction compared to that for OAEP or
OAEP+. The disadvantage is that ciphertexts are a little bit larger.

8.1 Key Generation

Just as for RSA-OAEP, the public key consists of an RSA modulus n that is the product of
two large primes, and an exponent e. It also specifies a mask generation function MGF (see
§2.9). Let nLen denote the length, in bytes, of n.

The secret key consists of the decryption exponent d, where ed = 1 mod n.

8.2 Encryption

Recall that Simple RSA is a key encapsulation mechanism, and so the goal of the en-
cryption algorithm is simply to produce a pseudo-random key K of length KeylLen =
SimpleRSA. OutputKeyLen and a ciphertext C' that encrypts K.

The encryption algorithm runs as follows.

1. Generate a random number r € {0,...,n — 1}.
2. Compute y = r° mod n.

3. Compute K = MGF (I20SP(r,nLen), KeyLen).
4. Compute C = I20SP(y,nLen).

5. Output the ciphertext C and the key K.

8.3 Decryption

Given a ciphertext C', decryption runs as follows.
1. Check that |C| = nLen; if not, then fail.
2. Set y = OS2IP(C).
3. Check that y < n; if not, then fail.
4. Compute r = y mod n.

5. Compute K = MGF (I20SP(r,nLen), KeyLen).
6. Output the key K.

49

8.4 Security considerations

The security of Simple RSA can be analyzed in the random oracle model in a manner very
similar to that in [BR93|, where we model the invocation of MGF as a random oracle query.
It is easy to show that

Advantage g, .psa(A) < Advantage pg,(A') + nBound /qp, (8)

where

e A’is an algorithm for solving a random instance of the RSA problem that runs in time
roughly the same as that of A; more precisely, the running time is that of A, plus the
time to perform gy exponentiations modulo n, where ¢y is a bound on the number of
random oracle queries made by A;

® ¢p is a bound on the number of decryption oracle queries made by A;
e nBound is an lower bound on n.

We sketch a proof of this. Let Gy be the original attack game played by adversary A,
and let Sy be the event that A correctly guesses the hidden bit b in game Gg. Let H denote
the random oracle mapping elements of Z, to bit strings of length KeyLen. Let y* € Z,
denote the target ciphertext, and let r* = (y*)/¢ € Z,.

We next define a game G that is the same as game Gy, except that if the target ciphertext
y* was submitted to the decryption oracle prior to the invocation of the encryption oracle,
then the game is halted. Let S; be the event in game G corresponding to the event Sj.

Let F; be the event that game G; is halted as above. Clearly, Pr[Fi] < nBound/qp,
and since games Gy and G; proceed identically until F; occurs, it follows by Lemma 1 that
| Pr[So] — Pr[S1]| < nBound/qp.

We next define a game Gy that is the same as Gy, except that (1) the target ciphertext
is generated at the beginning of the game, and (2) if the adversary ever queries H at r*, we
halt the game. Let S5 be the event in game G, corresponding to the event Sy.

It is clear by construction that Pr[Sy] = 1/2, since the key H(r*) is independent of
everything else that is accessible to the adversary in game Go, either directly or indirectly.
Indeed, only the encryption oracle evaluates H at r* in this game.

Let F; be the event that game G is halted as above. It is clear that both games Gy
and G- proceed identically until F5 occurs, and so by Lemma 1, we have | Pr[S;] — Pr[S;]| <
Pr[Fy]. Thus, it suffices to bound Pr[F}].

We claim that

Pr[Fy] < Advantage pgs(A")

for an algorithm A’ that runs in time bounded as described above. The inequality (8) will
follow immediately.

Algorithm A’ runs as follows. It takes as input a random RSA modulus n, an RSA
exponent e, and a random element y* € Z,,. It creates a public key using /N and e, and then
lets adversary A run in game Go.

20

When adversary A invokes the encryption oracle, algorithm A’ responds to A with the pair
(K*,y*), where K* is a random bit string of length KeyLen, and y* is the above-mentioned
input to A.

Algorithm A’ simulates the random oracle H as well as the decryption oracle, as follows.
For every input r € Z,, to the random oracle, A’ computes y = r¢ € Z,,, and places the triple
consisting of 7, y, and the random value K = H(r) in a table; however, if y = y*, algorithm
A’ instead outputs r and halts. When the adversary A submits a ciphertext y € Z, to
the decryption oracle, algorithm A’ looks up the value y in the above table to determine if
the random oracle has been evaluated at r = y/¢ € Z,. If so, algorithm A’ responds to
the decryption oracle invocation with the value K = H(r) stored in the table. Otherwise,
algorithm A’ generates a fresh random key K, and places the pair (y, K) in a second table;
moreover, if in the future the adversary A should evaluate the random oracle at a point
r € Z, such that r¢ = y, then the key K generated above will be used for the value of H(r).

It is clear that algorithm A’ perfectly simulates the view of A, and that A’ outputs a
solution to the given instance of the RSA problem with probability equal to Pr[F;].

That completes the proof of security.

Quantitatively, it is clear that Simple RSA provides a much better security reduction
than RSA-OAEP+ (or RSA-OAEP). This advantage becomes even more pronounced when
one analyzes the security of many cleartexts encrypted under a single public key (as formally
modeled in [BBMO00]). In this setting, one can exploit the well-known random self-reducibility
property of the RSA inversion problem to easily show that the security of the Simple RSA key
encapsulation mechanism does not degrade at all as the number of ciphertexts increases. Note
that this argument will be valid only if the number r in the encryption algorithm for Simple
RSA is chosen uniformly modulo n, or at least with a distribution that is computationally
indistinguishable from the uniform distribution.

For RSA-OAEP+, the security degrades linearly with the number of ciphertexts, since one
cannot use the random self-reducibility property, and must instead use a “hybrid argument.”
The reason the random self-reducibility property cannot be used is that in RSA-OAEP+ (like
RSA-OAEP) the ciphertext is not uniformly distributed modulo n.

References

[ABR98] M. Abdalla, M. Bellare, and P. Rogaway. DHAES: an encryption scheme based
on the Diffie-Hellma problem. Submission to IEEE P1363, 1998.

[BBM00] M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user
setting: security proofs and improvements. In Advances in Cryptology—FEurocrypt
2000, 2000.

[BDPRO8| M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions
of security for public-key encryption schemes. In Advances in Cryptology—Crypto
’98, pages 26-45, 1998.

o1

[BLKOO]

[Bon98]

[BRO3]

[BR94]

[CGHYS]

[CS98]

[DDNO1]

[DDNOYS]

[FO99]

[FOPS00]

[JM96]

[INO1]

[Luc00]

[NR97]

J. Baek, B. Lee, and K. Kim. Secure length-saving ElGamal encryption under the
computational Diffie-Hellman assumption. In Proc. 5th Australian Conference on
Information, Security, and Privacy, 2000.

D. Boneh. The Decision Diffie-Hellman Problem. In Ants-I1I, pages 48-63, 1998.
Springer LNCS 1423.

M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for de-
signing efficient protocols. In First ACM Conference on Computer and Commu-
nications Security, pages 62-73, 1993.

M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Advances in
Cryptology— Eurocrypt 94, pages 92-111, 1994.

R. Canetti, O. Goldreich, and S. Halevi. The random oracle model, revisted. In
30th Annual ACM Symposium on Theory of Computing, 1998.

R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In Advances in Cryptology—Crypto
’98, pages 13-25, 1998.

D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In 23rd Annual
ACM Symposium on Theory of Computing, pages 542-552, 1991.

D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography, 1998.
Manuscript (updated, full length version of STOC paper).

E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Advances in Cryptology—Crypto ’99, pages 537-554, 1999.

E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is still alive!
Cryptology ePrint Archive, Report 2000/061, 2000. http://eprint.iacr.org.

D. Johnson and S. Matya. Asymmetric encryption: evolution and enhancements.
Cryptobytes, 2(1), 1996. http://www.rsasecurity.com/rsalabs.

A. Joux and K. Nguyen. Separating Decision Diffie-Hellman from Diffie-Hellman
in cryptographic groups. Cryptology ePrint Archive, Report 2001/003, 2001.
http://eprint.iacr.org.

S. Lucks. The sum of PRPs is a secure PRF. In Advances in Cryptology—Furocrypt
2000, 2000.

M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In 38th Annual Symposium on Foundations of Computer Sci-
ence, 1997.

52

[OPO1]

[RSO1]

[Sho97]

[Sho00a]

[Sho00b)

[Sta96]

T. Okamoto and D. Pointcheval. The gap-problems: a new class of problems for
the security of cryptographic schemes. In Proc. 2001 International Workshop on
Practice and Theory in Public Key Cryptography (PKC 2001), 2001.

C. Rackoff and D. Simon. Noninteractive zero-knowledge proof of knowledge and
chosen ciphertext attack. In Advances in Cryptology—Crypto ’91, pages 433444,
1991.

V. Shoup. Lower bounds for discrete logarithms and related problems. In Ad-
vances in Cryptology—FEurocrypt °97, 1997.

V. Shoup. OAEP reconsidered. Cryptology ePrint Archive, Report 2000/060,
2000. http://eprint.iacr.org.

V. Shoup. Using hash functions as a hedge against chosen ciphertext attack. In
Advances in Cryptology—Furocrypt 2000, 2000.

M. Stadler. Publicly verifiable secret sharing. In Adwvances in Cryptology-
Eurocrypt ’96, pages 190-199, 1996.

93

