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Abstract

We present a new encryption scheme which is secure against adaptive chosen-
ciphertext attack (or CCA2-secure) in the standard model (i.e. without the use of
random oracle). Our scheme is a hybrid one: it first uses a public-key step (the Key
Encapsulation Module or KEM) to encrypt a random key, which is then used to encrypt
the actual message using a symmetric encryption algorithm (the Data Encapsulation
Module or DEM).

Our scheme is a modification of the hybrid scheme presented by Shoup in [18] (based
on the Cramer-Shoup scheme in [4]). Its major practical advantage is that it saves the
computation of one exponentiation and produces shorter ciphertexts.

This effciency improvement is the result of a surprising observation: previous hybrid
schemes were proven secure by proving that both the KEM and the DEM were CCA2-
secure. On the other hand, our KEM is not CCA2-secure, yet the whole scheme is,
assuming the Decisional Diffie-Hellman (DDH) Assumption.

Finally we generalize our new scheme in two ways: (i) we show that security holds
also if we use projective hash families (as the original Cramer-Shoup) and (ii) we show
that in the random oracle model we can prove security under the weaker Computational
Diffie-Hellman (CDH) Assumption.

1 Introduction

The notion of chosen-ciphertext security was introduced by Naor and Yung [13] and devel-
oped by Rackoff and Simon [15], and Dolev, Dwork, and Naor [8].

In a chosen ciphertext attack, the adversary is given access to a decryption oracle that
allows him to obtain the decryptions of ciphertexts of his choosing. Intuitively, security in
this setting means that an adversary obtains (effectively) no information about encrypted
messages, provided the corresponding ciphertexts are never submitted to the decryption
oracle.

As shown in [8], security against chosen-ciphertext attack is equivalent to the notion of
non-malleability. An encryption scheme is said to be non-malleable if given a ciphertext
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c, it is infeasible to compute a ciphertext c′ whose decryption is somehow related to the
decryption of c.

For these reasons, the notion of chosen-ciphertext security has emerged as the “right”
notion of security for encryption schemes. Indeed it can be shown that in order to model en-
cryption as a “secure envelope”, then the encryption scheme used must be chosen-ciphertext
secure.

A number of chosen ciphertext secure cryptosystems have been proposed in the litera-
ture. The first schemes were presented in [13, 15, 8], but they were quite impractical. The
first truly practical cryptosystem that is provably secure against chosen ciphertext attack
was discovered by Cramer and Shoup [4]. The security of this scheme is based on the hard-
ness of the decisional Diffie-Hellman problem. In [5] Cramer and Shoup show that their
original scheme is an instance of a more generic paradigm, which can be also instantiated
with the Quadratic Residuosity and N -Residuosity assumptions.

In [18] Shoup presented an hybrid variant of the Cramer-Shoup cryptosystem. In a
hybrid encryption scheme public-key encryption techniques are used to derive a shared
key between sender and receiver: this component is called the Key Encapsulation Module or
KEM. This key is then used to encrypt the actual message via symmetric-key techniques (the
Data Encapsulation Module or DEM). Shoup formalized the notion of a chosen-ciphertext
attack security for a KEM and showed that if both KEM and DEM are chosen-ciphertext
secure, then the resulting hybrind encryption also is.

Differently than in the public-key case, symmetric encryption schemes which are secure
against a chosen-ciphertext attack can be easily built out of weaker primitives. It is indeed
well known that all you need is a symmetric encryption scheme E which is secure against
passive adversaries, and a secure message authentication code (MAC). To encrypt a message
m with keys k,K it is sufficient to encrypt m with K, i.e. compute e = EK(m), and then
compute a message authentication tag for e using k, i.e. compute t = MACk(e). The final
ciphertext is (e, t). The receiver, who also holds k,K, first checks that the tag t is correct
and only in that case decrypts e.

1.1 Our Contribution

We present a new encryption scheme which is secure against adaptive chosen-ciphertext
attack (or CCA2-secure) in the standard model (i.e. without the use of random oracle).
Our scheme is a hybrid one: it first uses a public-key step (the Key Encapsulation Module
or KEM) to encrypt a random key, which is then used to encrypt the actual message using
a symmetric encryption algorithm (the Data Encapsulation Module or DEM).

Our scheme is a modification of the hybrid scheme presented by Shoup in [18] (based
on the Cramer-Shoup scheme in [4]). Its major practical advantage is that it saves the
computation of one exponentiation and produces shorter ciphertexts.

This efficiency improvement is the result of a surprising observation: previous hybrid
schemes were proven secure by proving that both the KEM and the DEM were CCA2-secure.
On the other hand, our KEM is not CCA2-secure, yet the whole scheme is, assuming the
Decisional Diffie-Hellman (DDH) Assumption.

Finally we generalize our new scheme in two ways: (i) we show that security holds also if
we use projective hash families (as the original Cramer-Shoup) and (ii) we show that in the
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random oracle model we can prove security under the weaker Computational Diffie-Hellman
(CDH) Assumption.

This paper combines two separate results, presented in preliminary form in conference
papers [12, 9].

In the first result, Kurosawa and Desmedt [12] modified the hybrid scheme presented in
[18]. In particular they modified Shoup’s KEM to one which they did not know how to prove
CCA2-secure. Yet, they were able to prove that the whole hybrid encryption scheme was
CCA2-secure. The advantage of their modification is that, in theory, the encryption step in
their scheme requires one less exponentiation and produces shorter ciphertexts (compared
to Shoup’s hybrid scheme).

However their proof of security relies on the use of information theoretically secure
components in the symmetric step of the hybrid construction (specifically the key derivation
function and the MAC). There are several reasons why this is not desirable, among them:

efficiency The proof in [12] requires the key k to be statistically close to a random key.
This means that we cannot use a pseudo-random generator to derive k from a random
group element encrypted during the public-key phase. This in turns implies that the
public key part of the scheme must be instantiated with larger security parameters
which would result in slower execution times1;

modularity we would like to have a scheme into which we can plug any secure component
and it still remains secure. It would be hard to deploy a scheme if it can be used
only in conjunction with certain types of MACs and Key Derivation Function (KDFs
– and in particular, with KDFs and MACs that are not used at all by the designers
of standard cryptographic algorithms).

The second result presented in this paper is an alternative security proof for the Kurosawa-
Desmedt scheme shown by Gennaro and Shoup in [9]. This proof removes the need for
information theoretically secure key derivation functions and message authentication codes,
thereby effectively improving the efficiency and applicability of their scheme.

1.2 Related Work

In our preliminary versions [12, 9] we were not able to prove or disprove the CCA2-security
of the Kurosawa-Desmedt KEM. Recently Herranz et al. in [10] proved that this KEM is
actually not CCA2-secure.

An interesting question is then, what property does the Kurosawa-Desmedt KEM satisfy,
that allows it to be “secure enough” to construct a fully CCA2-secure hybrid scheme? Abe
et al. in [1] give a possible answer to this question. They formalize the notion of Tag-KEM
in which the Key Encapsulation Module is also given an external input (a tag). They define
the notion of CCA2-security for Tag-KEMs and show that the Kurosawa-Desmedt scheme
can be “explained” as a CCA2-secure Tag-KEM combined with a semantically-secure DEM.
A different approach was taken by Hofheinz and Kiltz in [11] where they define the notion

1For typical security parameters, this increase in computation times totally offsets the gain from per-
forming one less exponentiation, thus making the Kurosawa-Desmedt scheme as efficient as the original
Cramer-Shoup
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of constrained CCA-security for a KEM, and show that together with a (one-time) secure
authenticated DEM, this yields a CCA2-secure hybrid encryption scheme, which includes
Kurosawa-Desmedt as an example.

2 Preliminaries

We denote by n a security parameter. PPT denotes probabilistic polynomial time.
If S is a set, with |S| we denote its cardinality. If m is a string or a number, |m| denotes

its bit length.
If A(·, ·, · · · ) is a probabilistic algorithm, then x R← A(x1, x2, · · · ) denotes the experiment

of running A on input x1, x2, · · · with x being the outcome. If S is a set, x R← S denotes
the experiment of choosing x ∈ S uniformly at random. If X is a probability distribution
over S then x R← X denotes the experiment of choosing x ∈ S according to the distribution
X.

We say that a real-valued function ε(·) defined over the integers is negligible if for every
constant c ≥ 0 there exists an integer nc such that for all n > nc ε(n) < n−c.

Finally we refer to probabilistic polynomial-time algorithms as efficient algorithms.

2.1 Public Key Encryption

A public key encryption scheme is a tuple of three algorithms PKE = (K, E ,D). The key
generation algorithm K generates a pair (pk, sk) R← K(1n), where pk is a public key and sk
is a secret key.

The encryption algorithm E takes a public key pk and a plaintext m, and returns a
ciphertext c R← Epk(m). The decryption algorithm D takes a secret key sk and a ciphertext
c, and returns Dsk(c) which is either a message m or reject.

The chosen plaintext attack (CPA) game is defined as follows. A key pair is generated
by the key generation algorithm: (pk, sk) R← K(1n). Then a PPT adversary A, on input
the public key pk, queries a pair of equal length messages m0 and m1 to an encryption
oracle. The encryption oracle chooses b R← {0, 1} and computes a challenge ciphertext
c∗

R← Epk(mb), which is given to A. The game ends with A outputting a bit b̃.
The adaptive chosen ciphertext attack (CCA2) game is defined similarly. The difference

is that the adversary A is given access to a decryption oracle, Dsk(·) which A can query on
any ciphertext except the challenge ciphertext c∗.

We define the CCA2 advantage of A as a function of the security parameter as follows:

AdvccaA,PKE(n)
4
= |Pr(b̃ = b)− 1/2|. (1)

Definition 1 We say that PKE is secure against adaptive chosen ciphertext attack (or
CCA2-secure) if for all efficient adversaries A, we have that AdvccaA,PKE(n) is negligible.

2.2 Symmetric Key Encryption

A symmetric key encryption scheme is a pair of algorithms SKE = (E,D).
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The encryption algorithm E takes a secret key k ∈ {0, 1}n and a plaintext m, and
returns a ciphertext c R← Ek(m). The decryption algorithm D takes the secret key k and a
ciphertext c, and returns Dk(c) which is either a message m or reject.

The one-time chosen plaintext attack (one-time CPA) game is defined as follows. A
secret key is generated uniformly and at random k

R← {0, 1}n. Then a PPT adversary A,
queries a pair of equal length messages m0 and m1 to an encryption oracle. The encryption
oracle chooses b R← {0, 1} and computes a challenge ciphertext c∗ R← Ek(mb), which is given
to A. The game ends with A outputting a bit b̃.

We define the one-time CPA advantage of A as a function of the security parameter as
follows:

Advcpa1
A,SKE(n)

4
= |Pr(b̃ = b)− 1/2|. (2)

Definition 2 We say that SKE is one-time semantically secure (or one-time CPA-secure)
if for all efficient adversaries A we have that Advcpa1

A,SKE(n) is negligible.

2.3 Message Authentication Codes

A message authentication code MAC is a function

MAC : {0, 1}n × {0, 1}∗ −→ {0, 1}`(n)

for some polynomial `(·). The first input is the key k ∈ {0, 1}n, and the second input is the
message m ∈ {0, 1}∗. The output is called a “tag” t := MACk(e).

The one-time chosen message attack (CMA1) game is defined as follows. A key is
selected uniformly at random k

R← {0, 1}n. The adversary A is given t∗ := MACk(e∗) for (at
most one) adversarially chosen e∗, after which the adversary outputs a pair (e, t). We say
that (e, t) is a forgery if e 6= e∗ and t = MACk(e). Informally we say that a MAC is secure
if it is hard to compute a forgery. 2

More formally we define the success probability of A in the CMA1 game as

Succcma1
A,MAC(n)

4
= Pr(e 6= e∗ ∧ t = MACk(e)). (3)

Definition 3 We say that MAC is one-time unforgeable if for all efficient adversaries A,
we have that Succcma1

A,MAC(n) is negligible.

2.4 Key Derivation Functions

Note that we defined the secret keys for the message authentication code and the symmetric
encryption scheme to consist of all bit strings of a given length. In the scheme we propose
these keys will have to be derived from a secret value which belongs to a given domain (in

2Since we are defining MAC as a function there is only one possible output for any input pair k, e. It is
possible to define message authentication codes as two algorithms: a “tagging” and a “verifying” algorithm.
The tagging algorithm could be randomized and thus one of several tags could be computed on the same
input pair. The security property then would be that it is hard to compute any valid message/tag pair (e, t)
other than (e∗, t∗).
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our case a cyclic group of prime order). For this reason we are going to use a key derivation
function KDF:

KDF : ∆ −→ {0, 1}2n

where ∆ is a given domain. If v ∈ ∆, then KDF(v) = (kmac, kenc), where kmac is a message
authentication key, and kenc is a symmetric encryption key.

The security assumption we make on KDF is that a PPT adversary cannot distinguish
between KDF(v) and (k1, k2), where v, k1 and k2 are randomly chosen.

More formally let A be a PPT adversary that is given as input two n-bit strings and it
outputs a bit. We define his advantage as

AdvA,KDF(n)
4
= |Pr

v
R←∆

(A(KDF(v)) = 1)− Pr
(k1,k2)

R←{0,1}2n
(A(k1, k2) = 1)|. (4)

Definition 4 We say that KDF is a secure key derivation function if for all efficient ad-
versaries A, we have that AdvA,KDF(n) is negligible.

2.5 Target Collision Resistant Hash Functions

Let H be a family of hash functions where each function H ∈ H is from an arbitrary domain
∆ to the set of n-bit strings.

We say that H is target-collision resistant (TCR) – a concept introduced by Naor and
Yung in [14] – if given a randomly chosen element in the domain x

R← ∆ and a randomly
chosen hash function H

R← H, it is infeasible for an adversary A to find y 6= x such that
H(x) = H(y).3

Define the success probability of the adversary A in finding a collision as

SucctcrA,H(n)
4
= Pr

x
R←∆,H

R←H
(A(x,H) = y : y 6= x ∧ H(y) = H(x)).

Definition 5 We say that H is a secure TCR hash function family if for any efficient
adversary A, SucctcrA,H(n) is negligible.

It is known that TCR families can be built from arbitrary one-way functions [14, 16]. In
practice, one can use a dedicated cryptographic hash function, like SHA-1, appropriately
keyed.

2.6 Diffie-Hellman Assumption

Let G = {G}n be a family of Abelian groups, where each Gn has prime order qn, where
qn > 2n. We assume that multiplication and testing group membership in Gn can be
efficiently performed.

The Computational Diffie-Hellman (CDH) Assumption [7] states that given g, h random
generators of Gn, and u = gr for r R← Zqn then it is infeasible to compute z = hr. More
formally for any adversary A define

SucccdhA,Gn(n) = Pr
r
R←Zqn

(A(g, h, u = gr) = hr)

3Naor and Yung in [14] actually introduce a stronger notion – universal one-way hash function families
– where the target x is chosen by the adversary before the function H is selected.
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Definition 6 We say that the CDH Assumption holds over the group family G if for all
efficient adversaries A, we have that SucccdhA,Gn(n) is negligible.

The Decisional Diffie-Hellman Assumption is stronger than the CDH, in that it assumes
that the value z = hr is even hard to recognize when given to the adversary. Given g1, g2

random generators of G, consider the following distributions over G4
n:

DHn = {(g1, g2, g
r
1, g

r
2) | r R← Zqn}

NDHn = {(g1, g2, g
r1
1 , g

r2
2 ) | r1, r2

R← Zq with r1 6= r2}

The Decisional Diffie-Hellman (DDH) assumption claims that DH and NDH are compu-
tationally indistinguishable.

For an adversary A, we define his advantage as follows:

AdvddhA,Gn(n)
4
=

|Pr
(g1,g2,u1,u2)

R←DHn
(A(g1, g2, u1, u2) = 1) − Pr

(g1,g2,u1,u2)
R←NDHn

(A(g1, g2, u1, u2) = 1)|.

Definition 7 We say that the DDH Assumption holds over the group family G if for all
efficient adversaries A, we have that AdvddhA,Gn

(n) is negligible.

Our formulation of the DDH Assumption assumes that it is hard to distinguish between
a random DH tuple (a random element of G4

n sampled according to DHn) and a random
non-DH tuple (a random element of G4

n sampled according to NDHn). The more typical
formulation considers distinguishing between DHn and the Randn distribution that samples
u1, u2 uniformly at random and independently in Gn. Clearly the two formulations are
equivalent up to the negligible additive factor of 1/qn which accounts for the statistical
difference between the NDHn and Randn distributions.

In the following we may omit the security parameter n when clear from the context.

3 The Scheme

This section describes the Kurosawa-Desmedt hybrid encryption scheme, which we denote
as KD. The scheme uses a cyclic group G of prime order, a symmetric encryption scheme
SKE = (E,D), a TCR hash function family H (defined over the set G2) and a key derivation
function KDF (defined over G).

Key Generation: The description of a cyclic group G of prime order q is generated,
along with random generators g1 and g2 for G. We assume that multiplication and group
membership can be efficiently performed in G. We also choose H R← H where H is a TCR
hash function family. Also a key derivation function KDF is selected (if keys are needed for
it, they are appropriately generated). Then perform the following steps:

x1, x2, y1, y2
R← Zq, c← gx1

1 gx2
2 , d← gy11 g

y2
2 .

The public key consists of the description of G, the generators g1 and g2, the functions KDF
and H, along with the group elements c and d.

The private key consists of the public key, along with x1, x2, y1, y2.

7



Encryption of m ∈ {0, 1}∗:

r
R← Zq, u1 ← gr1 ∈ G, u2 ← gr2 ∈ G, α← H(u1, u2) ∈ Zq

v ← crdrα ∈ G, (k,K)← KDF(v), e← EK(m), t← MACk(e)
output C := (u1, u2, e, t)

Decryption of C = (u1, u2, e, t):

α← H(u1, u2) ∈ Zq, v ← ux1+y1α
1 ux2+y2α

2 ∈ G, (k,K)← KDF(v)
if t 6= MACk(e) then

output “reject”
else

m← DK(e)
output m

Theorem 1 Assuming that (i) the DDH Assumption holds over G (a group of prime order
q); (ii) SKE = (E,D) is a one-time semantically secure symmetric encryption scheme; (iii)
MAC is a one-time unforgeable MAC; (iv) H is a TCR hash function family and (v) KDF is
a secure key derivation function, then the encryption scheme KD described above is secure
against adaptive chosen ciphertext attack.

4 Security Proof

This section presents the Gennaro-Shoup proof of Theorem 1 first presented in [9]. The
main difference between this proof of the original proof by Kurosawa-Desmedt in [12] is
that the latter requires the following information theoretic assumptions:

• information-theoretically secure KDF. If v ∈ G is random, then at least the first
component k of the output of KDF(v) should be (statistically close to) uniform.

• information-theoretically secure MAC. For all e and t, if k is chosen at random, then
Pr[MACk(e) = t] is negligible.

The proof of security described in the next section does not need these assumptions.
Kurosawa and Desmedt [12] apparently introduce these assumptions to avoid a potential

circularity in their proof. Both their proof and ours use a “hybrid argument,” whereby the
initial attack game is transformed, using a sequence of small steps, into a game in which
the adversary’s advantage is clearly negligible.

At one point in their proof, in order to justify one of the steps in this sequence, their proof
must prove that the decryption oracle will reject a certain type of “invalid” ciphertexts.
We say that a ciphertext is invalid if ui = grii with r1 6= r2 mod q. In the KD scheme,
ciphertexts are rejected only based on the MAC test. Thus the proof uses a reduction to the
unforgeability of the MAC function: this requires a proof that the MAC keys are randomly
distributed. But to draw this conclusion, they must first prove that invalid ciphertexts are
rejected.

As it happens, one possible way out of this circularity is to introduce information-
theoretic security assumptions. However, we show how to avoid this using two tools. First
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we use the fact that the DDH problem has two “independent trapdoors”: if one knows
w = logg1 g2 then it is possible to check if logg1 u1 = logg2 u2 = r (by testing if uw1 = u2)
even without knowing r. By giving this value w to the simulator in one of the games, we
have a way to detect and reject invalid ciphertexts, without using the MAC test (Game
3 in the proof below). We then need to show that using w instead of the MAC test to
reject invalid ciphertext does not change the adversary view of the game in a substantial
way (Game 5’ in the proof). Here we use a new technique that is perhaps not so well
appreciated, which we might call “deferred analysis.” We will point out below in the proof
where this technique is employed. This technique has also been used before — for example,
in [6], it is used to refine the proof of security of the Cramer-Shoup encryption scheme by
requiring a universal one-way hash function (rather than a collision-resistant hash function)
for the computation of α.

In Appendix A we recall the Cramer-Shoup hybrid scheme from [18] and compare the
two schemes. In particular we point out how for typical security parameters the gains posted
by the Kurosawa-Desmedt scheme may be offset by the requirement that KDF and MAC
be information theoretically secure. Thus the importance of the proof presented here is not
merely theoretical, but it affects the practical efficiency of the new scheme.

4.1 Proof of Theorem 1

Our proof, like the original one by Kurosawa and Desmedt, is also constructed as a sequence
of Games. The first game, Game 0, is basically identical to the CCA2 game, and the
adversary’s advantage is defined accordingly. In the last Game, the adversary will still have
to guess a given bit (as in the CCA2 game) but in this last game, the bit is information-
theoretically hidden to the adversary, so his advantage must be exactly 1/2. To go from
the first to the last game, we define various intermediate games. Under the assumptions of
Theorem 1, each Game i must be “very similar” to Game i−1, meaning that the adversary’s
advantage in Game i is bounded away from his advantage in Game i by at most a negligible
quantity. This is sufficient to complete the proof.

We start with the following simple but useful Lemma.

Lemma 1 [6, Lemma 6.2] Let S1, S2 and F be events defined on some probability space.
Suppose that the event S1 ∧ ¬F occurs if and only if S2 ∧ ¬F occurs. Then

|Pr(S1)− Pr(S2)| ≤ Pr(F ).

Game 0

We now define a game, called Game 0, which is an interactive computation between an
adversary A and a simulator. This game is simply the usual CCA2 game used to define
CCA2-security, in which the simulator provides the adversary’s environment.

Initially, the simulator runs the key generation algorithm, obtaining the description of G,
generators g1 and g2, keys for KDF and H (if any), along with the values x1, x2, y1, y2 ∈ Zq
and c, d ∈ G. The simulator gives the public key to the adversary.
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During the execution of the game, the adversary makes a number of “decryption re-
quests.” Assume these requests are C(1), . . . , C(Q), where

C(i) = (u(i)
1 , u

(i)
2 , e(i), t(i)).

For each such request, the simulator decrypts the given ciphertext, and gives the adversary
the result. We denote by α(i), v(i), k(i), and K(i) the corresponding intermediate quantities
computed by the decryption algorithm on input C(i).

The adversary may also make a single “challenge request.” For such a request, the
adversary submits two messages m0,m1, which are bit strings of equal length, to the sim-
ulator; the simulator chooses b ∈ {0, 1} at random, and encrypts mb, obtaining the “target
ciphertext” C∗ = (u∗1, u

∗
2, e
∗, t∗). The simulator gives C∗ to the adversary. We denote by r∗,

α∗, v∗, k∗, and K∗ the corresponding intermediate quantities computed by the encryption
algorithm.

The only restriction on the adversary’s requests is that after it makes a challenge request,
the subsequent decryption requests must not be the same as the target ciphertext.

At the end of the game, the adversary A outputs b̃ ∈ {0, 1}. Let X0 be the event that
b̃ = b. Since Game 0 is identical to the CCA2 game we have that

AdvccaA,KD(n) = |Pr[X0]− 1/2| (5)

and our goal is to prove that this quantity is negligible.
We prove this by considering other games, Game 1, Game 2, etc. These games will be

quite similar to Game 0 in their overall structure, and will only differ from Game 0 in terms
of how the simulator works. However, in each game, there will be well defined bits b̃ and b,
so that in Game i, we always define Xi to the event that b̃ = b in that game. All of these
games should be viewed as operating on the same underlying probability space.

Before moving on, we make a couple of additional assumptions about the internal struc-
ture of Game 0 that will be convenient down the road. First, we assume that g2 is computed
as:

w
R← Z∗q , g2 ← gw1 .

Note that the value of w is never explicitly used in Game 0, except to compute g2. Second,
we assume that the quantities r∗, u∗1, u∗2, α∗, v∗, k∗, and K∗ are computed at the very start
of the game (they do not depend on the values m0, m1 provided later by the adversary, so
this can be done).

Finally we assume that the simulator computes v∗ as

v∗ ← (u∗1)x1+y1α∗(u∗2)x2+y2α∗ .

This change is purely conceptual, since v∗ has the same value either way.
These changes do not affect the view of the adversary, which during Game 0 remains

identical to the view during the CCA2 games, thus Equation (5) still holds.

Game 1

In Game 1 the simulator changes the way it generates (u∗1, u
∗
2), which will be computed

according to the following rule:

r1, r2
R← Zq with r2 6= r1, u∗i ← grii for i = 1, 2.
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Lemma 2 There exists an efficient adversary A1 such that

|Pr[X1]− Pr[X0]| ≤ AdvddhA1,G(n).

By the assumption that the DDH assumption holds over G, we have that AdvddhA1,G
(n) is

negligible.

Proof: Let ε = |Pr[X1] − Pr[X0]|. We can easily build a distinguisher A1 that decides
the DDH problem in G with advantage ε.

The distinguisher A1 runs on input τ := (g1, g2, u
∗
1, u
∗
2). It then runs an “hybrid

Game 0/1” as the simulator. In this hybrid game, the simulator follows the instructions of
Game 0, except that when the target ciphertext is created it uses (u∗1, u

∗
2).

Thus if τ is a random DH tuple, Game 0/1 acts just like Game 0, and if τ is a random
non-DH tuple, then Game 0/1 acts just like Game 1. The distinguishing algorithm runs
Game 0/1 on input τ , and outputs 1 if b̂ = b, and outputs 0 otherwise. The distinguishing
advantage of this algorithm is exactly equal to ε.

By definition of AdvddhA1,G
(n), then ε ≤ AdvddhA1,G

(n).

Game 2

Game 2 is the same as Game 1, except that if the adversary ever submits C(i) for decryption
with

(u(i)
1 , u

(i)
2 ) 6= (u∗1, u

∗
2) and α(i) = α∗,

the simulator rejects the given ciphertext.
In Game 2, the simulator may reject ciphertexts that would not have been rejected in

Game 1. Let us call Rejection Rule 0 the rule by which ciphertexts are rejected as in the
ordinary decryption algorithm (i.e., the message authentication tags do not match). Let us
call Rejection Rule 1 this new rejection rule, introduced in Game 2.

Let F2 be the event that the simulator applies Rejection Rule 1 in Game 2 to a ciphertext
to which Rejection Rule 0 does not apply. Game 1 and Game 2 proceed identically until
the this event occurs; in particular, the events X1 ∧¬F2 and X2 ∧¬F2 are the same (recall
that we view all games as operating on the same underlying probability space); therefore,
using Lemma 1 we get:

|Pr[X1]− Pr[X2]| ≤ Pr[F2]. (6)

We now bound Pr[F2] as follows.

Lemma 3 There exists an efficient adversary A2 such that Pr[F2] ≤ SucctcrA2,H(n) + 1/q.

By the assumption that H is a TCR family, then we have that Pr[F2] is negligible.

Proof: We build a collision-finder A2 that breaks the TCR property ofH with probability
Pr[F2]− 1/q. By definition of SucctcrA2,H(n), the Lemma follows.

The collision finder A′ is given as input a random function H ∈ H and a random point
(u∗1, u

∗
2) ∈ G2 (remember that the functions in H are defined over G2).

A′ runs Game 2 as the simulator and will use (u∗1, u
∗
2) to construct the target ciphertext

in response to an encryption query. Notice that if the input pair (u∗1, u
∗
2) is a non-DH pair
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(i.e. logg1 u
∗
1 6= logg2 u

∗
2) this is exactly how Games 1 and 2 are defined (the target ciphertext

is created with a random non-DH pair (u∗1, u
∗
2)).

If the pair (u∗1, u
∗
2) is a non-DH pair then with probability Pr[F2] the adversary outputs

a pair
(u(i)

1 , u
(i)
2 ) 6= (u∗1, u

∗
2) and α(i) = α∗,

and the collision finder outputs (u(i)
1 , u

(i)
2 ) as the desired collision.

By accounting for the 1/q probability that the input pair (u∗1, u
∗
2) is a DH-pair (i.e.

logg1 u
∗
1 = logg2 u

∗
2) we have that the collision finder works with probability Pr[F2] − 1/q

and the Lemma follows.

Game 3

In this game, the simulator makes use of the value w ∈ Zq, where g2 = gw1 . The simulator
did not need to make explicit use of this value in previous games. Indeed, we could not have
used the DDH assumption if the simulator had to use w. However, we are now finished with
the DDH assumption, and so the simulator is free to make use of w in this and subsequent
games.

Game 3 is the same as Game 2, except that we introduce a new Rejection Rule 2: in
responding to decryption requests, the simulator rejects any ciphertext C(i) such that

(u(i)
1 , u

(i)
2 ) 6= (u∗1, u

∗
2) and (u(i)

1 )w 6= u
(i)
2 .

Note that the condition (u(i)
1 )w 6= u

(i)
2 is equivalent to logg1 u

(i)
1 6= logg2 u

(i)
2 .

Define F3 to be the event that a ciphertext is rejected during Game 3 using Rejection
Rule 2 to which Rejection Rules 0 and 1 are not applicable.

Clearly, Game 2 and Game 3 proceed identically until F3 occurs; in particular, the
events X2 ∧ ¬F3 and X3 ∧ ¬F3 are the same, and so

|Pr[X2]− Pr[X3]| ≤ Pr[F3]. (7)

We want to show that Pr[F3] is negligible; however, we postpone this until later. This
is the “deferred analysis” technique: instead of attempting to bound Pr[F3] right now, we
shall patiently wait until a later game, where it will be much easier. However, at this point
we augment Game 3 just slightly, utilizing the well-known “plug and pray” technique: the
simulator chooses j ∈ {1, . . . , Q} at random, and we define F ′3 to be the event that in
Game 3, Rejection Rules 0 and 1 do not apply to C(j), but Rejection Rule 2 does apply to
C(j). Clearly,

Pr[F3] ≤ QPr[F ′3], (8)

and so it suffices to show that Pr[F ′3] is negligible.
It will be helpful to write down in detail how Game 3 works, starting from scratch:

• The simulator begins by generating the description of G, along with a random gener-
ator g1, and any keys for KDF and H. It then computes:

12



I1: w
R← Z∗q , g2 ← gw1

I2: x1, x2, y1, y2
R← Zq, c← gx1

1 gx2
2 , d← gy11 g

y2
2

I3: r1, r2
R← Zq with r2 6= r1 u∗1 ← gr11 , u

∗
2 ← gwr21 , α∗ ← H(u∗1, u

∗
2)

I4: v∗ ← (u∗1)x1+y1α∗(u∗2)x2+y2α∗

I5: (k∗,K∗)← KDF(v∗)

I6: j
R← {1, . . . , Q}

The simulator gives the description of G, the generators g1 and g2, keys for KDF and
H (if any), along with c and d to the adversary.

• In processing a decryption request C(i) = (u(i)
1 , u

(i)
2 , e(i), t(i)), the simulator proceeds

as follows:

D01: α(i) ← H(u(i)
1 , u

(i)
2 )

D02: if (u(i)
1 , u

(i)
2 ) 6= (u∗1, u

∗
2) and α(i) = α∗ then

D03: return “reject”
D04: else if (u(i)

1 , u
(i)
2 ) = (u∗1, u

∗
2) then

D05: if t(i) 6= MACk∗(e(i)) then return “reject”
D06: return DK∗(e(i))
D07: else if (u(i)

1 )w 6= u
(i)
2 then

D08: v(i) ← (u(i)
1 )x1+y1α(i)

(u(i)
2 )x2+y2α(i)

D09: (k(i),K(i))← KDF(v(i))
D10: if t(i) 6= MACk(i)(e(i)) then return “reject”
D11: return “reject”
D12: else
D13: v(i) ← (u(i)

1 )x1+y1α(i)
(u(i)

2 )x2+y2α(i)

D14: (k(i),K(i))← KDF(v(i))
D15: if t(i) 6= MACk(i)(e(i)) then return “reject”
D16: return DK(i)(e(i))

Note that Rejection Rule 0 is applied at lines D05, D10, and D15, while Rejection
Rule 1 is applied at line D03, and Rejection Rule 2 (and no other Rejection Rule) at
line D11.

• In processing the challenge request, the adversary gives m0,m1 to the simulator. The
simulator computes

b
R← {0, 1}, e∗ ← EK∗(mb), t∗ ← MACk∗(e∗),

and gives C∗ := (u∗1, u
∗
2, e
∗, t∗) to the adversary.

We have written the logic of the decryption oracle in this particular way to facilitate
further analysis. Note that the computations at D08–D10 have no real effect, other than
to determine if the event F ′3 occurs; indeed, once line D08 is reached, the ciphertext is sure
to be rejected, either at line D10 or at line D11. The event F ′3 is simply the event that
line D11 is executed in the jth decryption request.
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Game 4

Game 4 is the same as Game 3, except that we change lines I2 and I4, as follows:

I2: x, y
R← Zq, c← gx1 , d← gy1

I4: v∗
R← G

as well as lines D08 and D13, as follows:

D08: v(i) R← G

D13: v(i) ← (u(i)
1 )x+yα(i)

Note that x1, x2, y1, y2 are not used at all in Game 4.
We define F ′4 to be the event that line D11 is executed in the jth decryption request in

Game 4.

Lemma 4 We claim that
Pr[X3] = Pr[X4] (9)

and
Pr[F ′3] = Pr[F ′4]. (10)

Proof: This Lemma follows from a simple linear algebra argument, along the same lines
as in [4]. The point is, we are simply swapping one set of 4-wise independent random
variables for another; indeed, in both games, the variables c, d, v∗, and v(j) (as computed
at line D08) are mutually independent and uniformly distributed over G.

More in detail: consider the variables c, d, v∗, and v(j) in Game 3. Consider the variables
x1, x2, y1, y2 ∈ Zq: they satisfy the following equations defined by the public key:

x1 + wx2 = logg1 c mod q. (11)

y1 + wy2 = logg1 d mod q. (12)

We also have an equation defined by the value of v∗:

r1x1 + wr2x2 + α∗(r1y1 + wr2y2) = logg1 v
∗ mod q. (13)

If the adversary submits a decryption request C(i) such that

(u(i)
1 , u

(i)
2 ) 6= (u∗1, u

∗
2) and (u(i)

1 )w 6= u
(i)
2 .

then the corresponding value of v(i) computed by the simulator in line D08 is determined
by the following equation

r
(i)
1 x1 + wr

(i)
2 x2 + α(i)(r(i)

1 y1 + wr
(i)
2 y2) = logg1 v

(i) mod q. (14)

where u(i)
1 = g

r
(i)
1

1 and u
(i)
2 = g

r
(i)
2

2 .
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Notice that since r2 6= r1 (line I3), and r
(i)
1 6= r

(i)
2 (since (u(i)

1 )w 6= u
(i)
2 ) and α∗ 6= α(i)

(otherwise line D08 is not executed), we have that the Eqs. (11), (12), (13) and (14) are
linearly independent and thus the values c, d, v∗ and v(i) are uniformly and independently
distributed in G. Thus the change effected in Game 4 to the definitions of these values does
not change their distributions.

The change in line D13 to the definition of v(i) clearly does not affect its distribution
either, since it is just a rewriting of the original definition of v(i) by setting x1 + wx2 =
x mod q and y1 + wy2 = y mod q.

Now our sequence of games reaches a fork in the road. Games 5 and 6 below (the “left
fork”) are used to show that Pr[X4] is close to 1/2. Then we define Game 5′ (the “right
fork”), which is another modification of Game 4, to show that Pr[F ′4] is small.

Game 5

Game 5 is the same as Game 4, except that we change line I5, as follows:

I5: (k∗,K∗) R← {0, 1}2n

That is, we simply generate the keys k∗ and K∗ at random.

Lemma 5 There exists an efficient adversary A3 such that |Pr[X4] − Pr[X5]| ≤
AdvA3,KDF(n).

Proof: Observe that in Game 4, v∗ is completely random, and is not used anywhere,
except once as an input to KDF. Thus the construction of adversary A3 is immediate, and
the Lemma follows from the definition of secure KDF.

By the assumption that KDF is a secure key derivation function we have that
AdvA3,KDF(n) is negligible.

Game 6

Game 6 is the same as Game 5, except that we change line D06, as follows:

D06: return “reject”

Let F6 be the event that line D06 is ever executed in Game 5, in any decryption request.
Clearly, Game 5 and Game 6 proceed identically until F6 occurs; in particular, the events
X5 ∧ ¬F6 and X6 ∧ ¬F6 are the same, and so

|Pr[X5]− Pr[X6]| ≤ Pr[F6]. (15)

Moreover, as we show in the following Lemma, if F6 occurs the adversary has effectively
broken the message authentication code keyed by k∗ (which in Game 6 is truly random).

Lemma 6 There exists an efficient adversary A4 such that

Pr[F6] ≤ Q · Succcma1
A4,MAC(n). (16)
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Proof: We construct a forger A4 that wins in the CMA1 game defined for message
authentication codes. Remember that A′ queries an oracle on a message e∗. In response
the oracle selects a random key k∗ and returns t∗ = MACk∗(e∗).

The forger A4 will run Game 6 as the simulator, except that it will not select a random
key k∗. Instead, when it needs to process the encryption request, it computes e∗ and queries
the MAC oracle on it, getting back t∗. It will then include t∗ in the target ciphertext.

Now with probability Pr[F6] one of the queries C(i) processed in lines D04-D06 will
contain a valid tag under k∗, which constitutes a forgery. There are at most such Q queries
and the forger A4 will select one pair (e(i), t(i)) at random, hoping it is a forgery. Thus, its
probability of success is Pr[F6]

Q .

By the definition of SuccA4,cma1
MAC (n) the Lemma follows.

Lemma 7 There exists an efficient adversary A5 such that

|Pr[X6]− 1/2| ≤ Advcpa1
A5,SKE(n). (17)

Proof: Observe that the key K∗ in Game 6 is truly random and is used for no other
purpose that to encrypt mb. Remember that Pr[X6] is the probability of guessing the bit b
determining which message between m0 and m1 is encrypted in e∗ under K∗. Thus by the
definition of AdvcpaA5,SKE(n) the Lemma follows.

By assumption, Succcma1
A4,MAC(n) and Advcpa1

A5,SKE(n) are negligible quantities.

Game 5′

We now backtrack to the fork in the road. Game 5′ is the same as Game 5, except that we
change line D09, as follows:

D09: (k(i),K(i)) R← {0, 1}2n

Define F ′5′ to be the event that line D11 is executed in the jth decryption request in
Game 5′.

Lemma 8 There exists efficient adversaries A6 and A7 such that

|Pr[F ′4]− Pr[F ′5′ ]| ≤ AdvA6,KDF(n) (18)

and
Pr[F ′5′ ] ≤ Succcma1

A7,MAC(n). (19)

Proof: Recall that F ′4 is defined as the event that line D11 is executed in Game 4.
Observe also that in Game 4, at line D08, the value v(j) is completely random, and is

not used anywhere, except once as an input to KDF. In Game 5 we are replacing the output
of this invocation of KDF with random keys.

Thus any substantial difference between the probabilities Pr[F ′4] and Pr[F ′5′ ] can be used
to construct adversary A6 which breaks the security of the KDF function and the Eq. (18)
follows.
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Observe that in Game 5′, the key k(j) used in the message authentication code at line
D10 is completely random. Thus if line D11 is executed, then we immediately have the
construction of the adversary A7 which outputs a forgery for the MAC over a random key
(indeed we have this forgery without even obtaining a valid tag first). From this Eq. (19)
follows.

By assumption AdvA6,KDF(n) and SuccA7,cma1
MAC (n) are negligible.

Completing the Proof

We have

Pr[F3] ≤ QPr[F ′3] [by (8)]
= QPr[F ′4] [by (10)]
≤ Q(Pr[F ′5′ ] + AdvA6,KDF(n)) [by (18)]

≤ Q(Succcma1
A7,MAC(n) + AdvA6,KDF(n)) [by (19)]

Thus, we have
Pr[F3] ≤ Q(Succcma1

A7,MAC(n) + AdvA6,KDF(n)) (20)

Finally, by combining Lemma 2, Eq. (6) with Lemma 3, Eqs. (7) and (20), Lemmas 4,5, 6,
and 7 we have:

|Pr[X0]− 1/2| ≤ (21)
AdvddhA1,G

(n) + SucctcrA2,H(n) + Advcpa1
A5,SKE(n)+

+AdvA3,KDF(n) +Q Succcma1
A4,MAC(n)

+Q AdvA6,KDF(n) +Q Succcma1
A7,MAC(n) + 1/q

By assumption, the right-hand side of the above equation is negligible, which finishes the
proof.

4.2 Concrete Security

Theorem 1 and its proof are stated in asymptotic terms, but the proof easily yields concrete
bounds on the complexity of the reduction.

Assume we have an adversary A that runs in time t, makes Q decryption queries and
breaks the chosen-ciphertext security of KD with advantage ε. Let t′ be an upper bound
on the time needed by the simulator to run any of the Games in the proof above (i.e. the
time needed to set up the emulation in which the adversary A is run).

Then we can construct the following adversaries: Addh, Atcr, Akdf , Amac, Aske, which
respectively break the DDH problem, the TCR function, the KDF function, the MAC and
the secret key encryption scheme with probability εddh, εtcr, εkdf , εmac, εske.

These adversaries run the adversary A and the appropriate simulation (i.e. one of the
adversaries A1, . . . , A7 in the appropriate Game), thus their running time is at most t+ t′.
Notice that t′ is very small (just generating the public keys and answering the decryption
queries), so the running time of these adversaries is very close to the running time of A.
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By Equation (21) we have that

ε < εddh + εtcr + εske + (Q+ 1)εkdf + 2Qεmac

Thus it must be that at least one of the following equations must be true

εddh, εtcr, εske >
ε

5
; εkdf >

ε

5(Q+ 1)
; εmac >

ε

10Q

5 Modeling the KDF as a Random Oracle

In this section we present a slight modification of the previous scheme, that can be proven
secure assuming only the Computational Diffie-Hellman Assumption, instead of the stronger
Decisional version. However the price to pay is to model the KDF as a Random Oracle.

In the Random Oracle model [2] we assume that an oracle implementing a random
function is available to all parties. We use this oracle to implement a “complicated” hash
function. We know that this is an unrealistic model of computations and that a proof of
security in the random oracle model may not necessarily translate into a security proof in
the real model (see [3]). However proving security in the random oracle model is a well
established methodology since it intuitively assures us of the security of the scheme, unless
the hash function unexpectedly interferes with the other components.

Our encryption scheme is already proven secure if the DDH Assumption holds. Thus
this additional proof will guarantee that even if the DDH is shown not to hold, we still have
a proof of security under the weaker CDH. Our technique is based on the similar result by
Shoup for the Cramer-Shoup encryption scheme [18].

The modified scheme. The only modification in the scheme is the computation of the
symmetric keys. We apply the function KDF not only to v but also to (u1, u2). So the
description of the encryption and decryption procedures is the same except for the line
computing k,K, which in this scheme is as follows:

(k,K)← KDF(u1, u2, v)

Theorem 2 Assuming that (i) the CDH Assumption holds over G; (ii) SKE = (E,D)
is a one-time semantically secure symmetric encryption scheme; (iii) MAC is a one-time
unforgeable MAC function; (iv) H is a TCR hash function family and (v) KDF is modeled
as a Random Oracle, then the encryption scheme KD described above is secure against
adaptive chosen ciphertext attack.

Proof: The first thing to notice is that the proof of Theorem 1 applies to this scheme as
well4.

Therefore a successfull adversary for this scheme (i.e. one that wins the CCA2 game
with non-negligible probability) can be used to build a DDH distinguisher D′ which decideds
the DH problem with non-negligible probability over its input and internal coin tosses, i.e.
AdvddhD′,G(n) is non-negligible.

4We note that for this modified scheme to remain secure under the assumptions of Theorem 1 the
definition of security for the KDF function must be modified to assume that for any fixed (u1, u2) if v is
random then KDF(u1, u2, v) is pseudorandom.
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We can then use the random self-reducibility of the DDH problem (see [18, 17] – recall
that we are using a prime order group G) to build a distinguisher D which (with over-
whelming probability over its internal coin tosses) answers correctly for every input, i.e.
D(g1, g2, u1, u2) outputs 1 if and only if logg1 u1 = logg2 u2.

Therefore for the rest of the proof we are going to assume that we have such a distin-
guisher D. As before, we structure this proof as a sequence of games between a simulator
(playing the role of the decryptor) and the adversary. In these games the function KDF is
implemented as a random oracle and the simulator provides simulated answers for queries
to KDF. Game 0 as before is the regular CCA2 game.

Game 1

We now describe Game 1. In this Game the simulator is given as input a CDH target
problem defined by a group G of prime order q and the values g, h, u = gr for r ∈R Zq. We
assume that no polynomial time algorithm can compute the value z = hr with non-negligible
probability.

First, the simulator sets up the public key as follows. The underlying group is set to G.
Then the simulator chooses w,w1, w2

R← Zq and sets g1 = g, g2 = gw, c = gw1 and d = hw2 .
We first show how the simulator answers queries to the random oracle KDF. It maintains

a list S which is initially empty and is used to store query/answer pairs for the random
oracle. When the adversary queries KDF on (u1, u2, v) the simulator first checks if a pair of
the form [(u1, u2, v), (k,K)] ∈ S and if so it returns (k,K). Otherwise it chooses (k,K) R←
{0, 1}2n, adds [(u1, u2, v), (k,K)] to S and returns (k,K).

We now describe how the simulator answers the encryption query. When presented with
messages m0,m1 the simulator selects b R← {0, 1} and “encrypts” mb as follows. It chooses
(k∗,K∗) R← {0, 1}2n and computes e∗ ← EK∗(mb) and t∗ ← MACk∗(e∗). The simulator also
sets u∗1 = u and u∗2 = uw and α∗ = H(u∗1, u

∗
2). The target ciphertext is (u∗1, u

∗
2, e
∗, t∗). Note

that the value v∗ associated with this ciphertext should be

v∗ = (cdα
∗
)r = uw1hα

∗r·w−1
2

which means that if the adversary ever queries the correct v∗ we can compute hr and solve
the CDH problem as follows:

hr = (v∗u−w1)
w2
α∗

Finally we show how the simulator handles decryption queries. When the adversary
submits (u1, u2, e, t) the simulator performs the following:

D01: Set α = H(u1, u2)
D02: If u2 6= uw1 return ’reject’
D03: else if for all [(u′1, u

′
2, v
′), (k,K)] ∈ S, we have (u1, u2) 6= (u′1, u

′
2), return ’reject’

D04: else if for all [(u1, u2, v
′), (k,K)] ∈ S, we have D(g1, cd

α, u1, v
′) = 0, return ’reject’

D05: else if there exists [(u1, u2, v), (k,K)] ∈ S, s.t. D(g1, cd
α, u1, v) = 1, then

D06: if t 6= MACk(e) return ’reject’
D07: else return DK(e).
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We are left to argue that this simulation is indistinguishable from the real CCA2 game,
unless the adversary queries (u∗1, u

∗
2, v
∗) to the random oracle, but as we showed above if

the adversary does that we can solve the CDH problem.
To argue that the simulation is indistinguishable from the real CCA2 game we point

out that

• Line D02 rejects “invalid” ciphertexts where logg1 u1 6= logg2 u2. By an argument
similar to the one in Lemma 4 we know that the value v associated with such a
ciphertext is uniformly distributed in G and thus the adversary has negligible proba-
bility of finding it, and thus querying it to the random oracle.

• Lines D03 and DO4 reject valid ciphertexts for which the adversary has not queried
the correct v yet. Since KDF is modeled as a random oracle the keys (k,K) are uni-
formly distributed and thus the probability that the ciphertext is correct is negligible
as well.

Thus the only possible difference between the real CCA2 game and Game 1 is detectable
when the adversary queries v∗ to the random oracle, but at that point we can stop the
simulation and output hr contradicting the security of the CDH Assumption.

6 Hash Proof Systems

In [5] Cramer and Shoup showed that their original scheme in [4] was a special instance
of a generic paradigm based on hash proof systems. An advantage of this abstraction is
that new CCA-secure schemes can be built based on different computational assumptions,
such as Quadratic Residuosity and N -Residuosity mod N2. In this section we show that
the Kurosawa-Desmedt scheme can also be generalized to a scheme that uses hash proof
systems.

Smooth projective hashing [5]: Let X be a set and L ⊂ X a language. Let H = {Ha}
a family of hash functions from X onto some set Y . Loosely speaking, the family H is
projective if there exists a projection key that defines the action of Ha over the subset L of
the domain X. That is, there exists a projection function θ(·) that maps keys a into their
projections s = θ(a). The projection key s is such that for every x ∈ L it holds that the
value of Ha(x) is uniquely determined by s and x. In contrast, nothing is guaranteed for
x 6∈ L, and it may not be possible to compute Ha(x) from s and x. A smooth projective
hash function has the additional property that for x /∈ L, the projection key s actually says
nothing about the value of Ha(x). More specifically, given x /∈ L and s = θ(a), the value
Ha(x) follows a distribution which is statistically close to the uniform one over Y . Our
scheme requires an additional property which we call strong 2-universality. Basically it is
required that for x /∈ L, even given s = θ(a) and the value Ha(x′) for x′ /∈ L and x′ 6= x,
the distribution of the value Ha(x) is statistically close to the uniform distribution over Y .

A smooth projective hash family is called a hash proof system if L is an NP-language,
and there are two efficient algorithms to compute H. The first computes Ha(x) given x ∈ X
and the key a. The other computes Ha(x) given the projection s = θ(a) and the values
x ∈ L together with a winess of the fact that x ∈ L. For our application to encryption we
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are going to require that L is a hard on the average NP-language, in other words that it is
computationally infeasible to distinguish x ∈R L from x ∈R X \ L.

We now formally define the properties of hash proof systems that we are going to require.

Subset Decision Problem: this is defined by an instance generator algorithm IG that
on input 1n (where n is the security parameter) outputs a set Xn and a subset Ln ⊂ Xn,
with the following properties:

• Efficient Samplability: There exist efficient algorithms that sample the uniform dis-
tribution in Ln and Xn \ Ln.

• Computational Hardness: For any PPT adversary A define

AdvA,IG(n)
4
= | Pr

x←Xn\Ln
(A(x) = 1)− Pr

x←Ln
(A(x) = 1)|.

We assume that for all efficient adversaries A, AdvA,IG(n) is negligible.

• Existence of witnesses: There exist a polynomial-time (in n) computable relation R
such that

x ∈ Ln if and only if ∃w : R(x,w) = 1

The string w is called a witness for x. It is possible to efficiently sample a pair (x,w)
according to the uniform distribution.

Subset Decision Problems with Trapdoor. Our proof requires the subset decision
problem to have a “master” trapdoor that allows to decide it efficiently. While this property
was not required by the proof of the original Cramer-Shoup scheme, all their instances of
subset decision problems have such a trapdoor (see paragraph after the proof of Theorem
3).

We say that a subset decision problem has a trapdoor if there exists an alternative
instance generator algorithm IG′ that on input 1n outputs Xn, Ln, Tn. The distribution of
Xn, Ln output by IG′ is indistinguishable from Xn, Ln output by IG and thus in particular
the three properties stated above are satisfied.

Moreover we assume that there exists a PPT machine D that on input Xn, Ln, Tn and
x ∈ Xn, ouputs D(Xn, Ln, Tn, x) = 1 if x ∈ Ln and D(Xn, Ln, Tn, x) = 0 if x ∈ Xn \ Ln.

Hash Proof Systems: For every set Xn there exists a family of hash functions H =
{Ha}a∈Γ where Γ is a set of keys and Ha : Xn −→ Yn. There exists also a projection
function θ : Γ −→ ∆. The functions must satisfy the following properties:

• Efficient Samplability: There exists an efficient algorithm that samples the uniform
distribution over Γ.

• Efficient Computation via Key: There exists an efficient algorithm that on input
x ∈ Xn and a computes Ha(x).

• Efficient Computation via Projection and Witness: There exists an efficient algorithm
that on input x ∈ Ln, a witness w for x, and the projection s = θ(a) computes Ha(x).
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• Strong 2-universality: for every x, x′ ∈ Xn \ Ln, consider the following experiment.
Choose a ← Γ uniformly at random and compute s = θ(a) and Ha(x′) = y′. We
require that the distribution of Ha(x), given the events s = θ(a) and Ha(x′) = y′, is
statistically indistinguishable from the uniform distribution over Y .

The Modified Scheme. Using the techniques from [5], the Kurosawa and Desmedt scheme
described in the previous section can be generalized using hash proof systems over subset
decision problems as follows (we drop the security parameter index n for clarity). The new
scheme KD′ is defined as follows. The sets X,L are generated using IG and can be shared
by all parties. Each receiver chooses its secret key as a ← Γ, and the projection s = θ(a)
will be its public key. The key derivation function is defined over Y .

To encrypt m, the sender chooses an element x ← L together with its witness w.
He then computes v = Ha(x) using the projection s and the witness. Then the keys
(k,K) = KDF(v) are derived as before. The rest of the encryption procedure remains the
same, i.e., e = EK(m) and t = MACk(e). The ciphertext is x, e, t.

The receiver on input (x, e, t) computes v′ = Ha(x) using the secret key a. It then
computes (k,K) = KDF(v′). If t = MACk(e) then it decrypts m = DK(e).

Theorem 3 Assuming that (i) X,L is a subset decision problem with trapdoor and that
H is a strongly 2-universal hash proof system over it; (ii) SKE = (E,D) is a one-time
semantically secure symmetric encryption scheme; (iii) MAC is a one-time unforgeable MAC
function and (iv) KDF is a secure key derivation function, then the encryption scheme KD′
described above is secure against adaptive chosen ciphertext attack.

Proof: The proof follows the spirit of the proof of Theorem 1 but with some important
differences. This proof is also structured as a sequence of games.

Game 0

As in the proof of Theorem 1, Game 0 is basically the CCA2 game where the simulator
provides the adversary’s environment. The simulator runs IG for the subset decision prob-
lem to obtain X,L (we omit the security parameter n). Then the simulator chooses the
secret key a ∈ Γ and publishes s = θ(a) as the public key.

During the execution of the game, the adversary A makes a number of decryption
requests: C(1), . . . , C(Q), where C(i) = [x(i), e(i), t(i)] which the simulator decrypts using the
secret key a and gives the result to the adversary. We denote by v(i), k(i), and K(i) the
corresponding intermediate quantities computed by the decryption algorithm on input C(i).

The adversary A may also make a single “challenge request.” For such a request,
the adversary submits two messages m0,m1, which are bit strings of equal length, to the
simulator; the simulator chooses b ∈ {0, 1} at random, and encrypts mb, obtaining the
“target ciphertext” C∗ = (x∗, e∗, t∗). The simulator gives C∗ to the adversary. We denote
by v∗, k∗, and K∗ the corresponding intermediate quantities computed by the encryption
algorithm.

The only restriction on the adversary’s requests is that after it makes a challenge request,
subsequent decryption requests must not be the same as the target ciphertext.
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At the end of the game, the adversary A outputs b̃ ∈ {0, 1}. Let X0 be the event that
b̃ = b. Since Game 0 is identical to the CCA2 game we have that

AdvccaA,KD′(n) = |Pr[X0]− 1/2| (22)

and our goal is to prove that this quantity is negligible.
As in the proof of Theorem 1 we consider a sequence of games. In each game, there will

be well defined bits b̃ and b, so that in Game i, we always define Xi to the event that b̃ = b
in that game. All of these games should be viewed as operating on the same underlying
probability space.

Game 1

In this proof, the simulator in Game 1 chooses x∗ at random in X \L. Then v∗ is computed
by the simulator as Ha(x∗) (recall that the simulator knows a).

As in the proof of Theorem 1 the adversary’s probability of success in Game 1 can in-
crease with respect to Game 0, by at most a negligible quantity. Indeed we can construct an
adversary A1 such that the increase in the probability of success is bounded by AdvA1,IG(n)
which by assumption is negligible.

This is proven by an argument analogous to Lemma 2 translated to the setting of subset
decision problems.

Game 2

Game 2 in the proof of Theorem 1 is not necessary in this proof, since the (target) collision-
resistant hash function is “incorporated” in the strong 2-universality of Ha(·). To maintain
the correspondence with the proof of Theorem 1 here we assume that Game 2 is identical
to Game 1.

Notice that at this point we have Rejection Rule 0 defined as the rejection rule of the
ordinary CCA2 game (i.e. the MAC tag does not match). We do not have a Rejection Rule
1. Again to maintain the correspondence with the proof of Theorem 1, we assume that
Rejection Rule 1 is empty.

Game 3

In Game 3 the simulator runs IG′ to generate X,L together with the trapdoor T (the value
w is the master trapdoor for the DDH decision problem used in Theorem 1). The simulator
did not need to make explicit use of the trapdoor in previous games. Indeed, we could not
have used the hardness of the subset decision problem if the simulator knew the trapdoor.
However, we are now finished with that hardness assumption, so the simulator is free to
make use of T in this and subsequent games.

The simulator uses the trapdoor T to detect adversary-generated ciphertexts where
x(i) ∈ X \ L and reject them. We call this Rejection Rule 2 as in the proof of Theorem
1. Similarly we define event F3: a ciphertext is rejected during Game 3 using Rejection
Rule 2 to which Rejection Rules 0 and 1 are not applicable. We also choose j ∈R [1..Q] and
define F ′3 to be the event that in Game 3, Rejection Rules 0 and 1 do not apply to C(j),
but Rejection Rule 2 does apply to C(j).
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As in the previous proof, Game 2 and Game 3 proceed identically until F3 occurs and

|Pr[X2]− Pr[X3]| ≤ Pr[F3] ≤ QPr[F ′3]. (23)

As in the previous proof we postpone showing that Pr[F ′3] is negligible until later.
Let us write down in detail how Game 3 works, starting from scratch:

• The simulator begins by generating the environment for the simulation:

I1: X,L, T ← IG′

I2: a
R← Γ s← θ(a)

I3: x∗
R← X \ L

I4: v∗ ← Ha(x∗)
I5: (k∗,K∗)← KDF(v∗)

I6: j
R← {1, . . . , Q}

The values X,L and s are given to the adversary.

• In processing a decryption request C(i) = [x(i), e(i), t(i)], the simulator proceeds as
follows. We start labeling decryption instructions from line D04 in order to maintain
the correspondence between the instructions of the simulator in this proof, with the
ones of the simulator in the proof of Theorem 1 (lines D01-03 there dealt with the
(target) collision-resistant function which is not an issue in this proof).

D04: if x(i) = x∗ then
D05: if t(i) 6= MACk∗(e(i)) then return “reject”
D06: return DK∗(e(i))
D07: else if x(i) ∈ X \ L (decided using T ) then
D08: v(i) ← Ha(x(i))
D09: (k(i),K(i))← KDF(v(i))
D10: if t(i) 6= MACk(i)(e(i)) then return “reject”
D11: return “reject”
D12: else
D13: v(i) ← Ha(x(i))
D14: (k(i),K(i))← KDF(v(i))
D15: if t(i) 6= MACk(i)(e(i)) then return “reject”
D16: return DK(i)(e(i))

Note that Rejection Rule 0 is applied at lines D05, D10, and D15, and Rejection
Rule 2 (and no other Rejection Rule) at line D11.

• In processing the challenge request, the adversary gives m0,m1 to the simulator. The
simulator computes

b
R← {0, 1}, e∗ ← EK∗(mb), t∗ ← MACk∗(e∗),

and gives C∗ := (x∗, e∗, t∗) to the adversary.
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We have written the logic of the decryption oracle in this particular way to facilitate
further analysis. Note that the computations at D08–D10 have no real effect, other than
to determine if the event F ′3 occurs; indeed, once line D08 is reached, the ciphertext is sure
to be rejected, either at line D10 or at line D11. The event F ′3 is simply the event that
line D11 executes in the jth decryption request.

Game 4

Game 4 is the same as Game 3, except that we change lines I4 and D08, as follows:

I4: v∗
R← Y

D08: v(i) R← Y

We define F ′4 to be the event that line D11 is executed in the jth decryption request in
Game 4.

Lemma 9 Assuming that Ha(·) is a strongly 2-universal projective hash function, we have
that

Pr[X3] = Pr[X4] (24)

and
Pr[F ′3] = Pr[F ′4]. (25)

Proof: This Lemma is the analogous to Lemma 4 in the proof of Theorem 1. The
difference is that here we prove the claim using the generic property of strong 2-universality
of the projective hash function, while in the proof of Lemma 4 we had a linear algebra
argument to prove the statement from scratch (and implicitly proving that the projective
hash function used there to compute v was strongly 2-universal).

First we prove that changing line D08 makes no difference. Notice that line D08 is
invoked when x(i) ∈ X \L. By the property of strong 2-universality the value v(i) computed
as Ha(x(i)) in Game 3, is uniformly distributed in Y even when given s = θ(a) and the
value v∗ = Ha(x∗) for another x∗ ∈ X \ L. Thus to compute v(i) R← Y in Game 4 creates
the same view for the adversary.

By the same argument changing line I4 in Game 4 does not affect the adversary’s view
(since v∗ is also computed in Game 3 as Ha(x∗) for x∗ ∈ X \ L).

Now the proof continues exactly as the proof of Theorem 1, using Games 5,6 and 5’
to work on the “symmetric” components of the scheme (the KDF, MAC and encryption
functions). The final bound on the adversary’s advantage is

|Pr[X0]− 1/2| ≤ (26)
AdvA1,IG(n) + Advcpa1

A5,SKE(n)+

+AdvA3,KDF(n) +Q Succcma1
A4,MAC(n)

+Q AdvA6,KDF(n) +Q Succcma1
A7,MAC(n)
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where the adversaries A1, . . . , A7 are the analogous to the same-numbered adversaries in
the proof of Theorem 1 (again notice that there is no adversary A2 breaking the target
collision-resistant hash in this scheme).

Examples of Subset Decision Problems with Master Trapdoor: Cramer and
Shoup in [5] proposed three Subset Decision Problems that could be used to build projective
hash functions.

• DDH-Based. Here the instance generator on input n sets Xn to be a group Gn of
prime order qn, where qn > 2n. The subset Ln is defined by two random generators
g1, g2 of Gn, as

Ln = {(g1, g2, g
r
1, g

r
2) | r ∈ Zqn}

Clearly under the DDH Assumption this is a Subset Decision Problem, as defined
above. The master trapdoor here is the discrete log of g2 w.r.t. g1.

• QR-Based. Here the instance generator on input n sets Xn to be JN the subgroup of
elements of Jacobi symbol 1 in Z∗N where N is the product of two safe prime numbers
N = pnqn with pn, qn > 2n. We recall that since pn, qn are safe primes, we have that
pn = 2p′n + 1 and qn = 2q′n + 1 with p′n, q

′
n primes. The subset Ln is defined as the

subgroup of Quadratic Residues in Z∗N . Clearly if we assume that deciding Quadratic
Residuosity is hard, then this is a Subset Decision Problem, as defined above. The
master trapdoor here is the factorization of N .

• N-Residuosity-Based. In this case the instance generator on input n sets Xn = Z∗N2

as above. The subset Ln is defined as the subgroup of N -Residues in Z∗N2 . Clearly if
we assume that deciding N -Residuosity is hard in Z∗N2 , then this is a Subset Decision
Problem, as defined above. The master trapdoor here is the factorization of N , as
well.

Removing the Master Trapdoor: We note that the original proof by Kurosawa and
Desmedt in [12] (the one that uses information-theoretic KDF and MAC functions) can be
used to remove the requirement that the subset decision problem has a master trapdoor.

Theorem 4 Assuming that (i) X,L is a subset decision problem and that H is a strongly
2-universal hash proof system over it; (ii) SKE = (E,D) is a one-time semantically secure
symmetric encryption scheme; (iii) MAC is an information-theoretically secure MAC func-
tion and (iv) KDF is an information-theoretically secure key derivation function, then the
encryption scheme KD′ described above is secure against adaptive chosen ciphertext attack.

Proof: Consider the proof of Theorem 3. Game 0 and Game 1 are identical to those in
that proof, and Game 2 is also set to be identical to Game 1.

In this proof there is no Game 3, since the subset decision problem does not admit a
master trapdoor. So we assume Game 3 to be identical to Game 1. The instructions for
the simulator are as follows (again lines are labeled in order to maintain a correspondence
between the two proofs).

• The simulator begins by generating the environment for the simulation:
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I1: X,L← IG
I2: a

R← Γ s← θ(a)

I3: x∗
R← X \ L

I4: v∗ ← Ha(x∗)
I5: (k∗,K∗)← KDF(v∗)

I6: j
R← {1, . . . , Q}

The values X,L and s are given to the adversary.

• In processing a decryption request C(i) = [x(i), e(i), t(i)], the simulator proceeds as
follows.

D04: if x(i) = x∗ then
D05: if t(i) 6= MACk∗(e(i)) then return “reject”
D06: return DK∗(e(i))
D12: else
D13: v(i) ← Ha(x(i))
D14: (k(i),K(i))← KDF(v(i))
D15: if t(i) 6= MACk(i)(e(i)) then return “reject”
D16: return DK(i)(e(i))

Note that Rejection Rule 0 is applied at lines D05 and D15. There are no other
Rejection Rules.

• In processing the challenge request, the adversary gives m0,m1 to the simulator. The
simulator computes

b
R← {0, 1}, e∗ ← EK∗(mb), t∗ ← MACk∗(e∗),

and gives C∗ := (x∗, e∗, t∗) to the adversary.

We now define Game 4 by modifying the way v∗ is computed. We change line I4 to
set v∗ as a random element in Y . We need to prove that the adversary’s view does not
substantially change between Game 3 and 4. In the previous proof we argued this point
by rejecting invalid ciphertexts (i.e. ciphertexts where xi ∈ X \ L) in Game 3. In turn,
this allowed us to claim that the adversary never gained any information about the value
v(i) associated with an invalid ciphertext. Since Ha(·) is strongly 2-universal, the value of
Ha(x∗) is then uniformly distributed.

But in this proof the simulator cannot detect invalid ciphertexts, so we need to argue
that the adversary does not obtain any information about a v(i) associated to an invalid
ciphertext, in a different way. We make the following claim

Lemma 10 In both Games 3 and 4, if the adversary submits C(i) = [x(i), e(i), t(i)] with
x(i) ∈ X \ L then line D16 is executed with negligible probability.

Proof: Because Ha(·) is strongly 2-universal the value v(i) = Ha(x(i)) for x(i) ∈ X \ L is
uniformly distributed even given s = θ(a) and v∗ = Ha(x∗) (we point out that the adversary
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does not see v∗ but sees a MAC and an ecryption computed with keys derived by v∗ – in
any case, given the adversary view v(i) is uniformly distributed).

Since the KDF and MAC functions are information-theoretically secure, we have that
the value MACk(i)(e(i)) is also uniformly distributed, given the view of the adversary. Recall
that line D16 is executed if the adversary submits t(i) = MACk(i)(e(i)), but the probability
that the adversary finds the correct t(i) is thus negligible.

Now we can argue that the change made in Game 4 makes at most a negligible differ-
ence in the adversary’s success probability. From now on the proof continues unchanged
with Game 5 and 6. Game 5’ is not needed in this proof since the above Lemma bounds
immediately the increase in the adversary’s advantage (while in the previous proof we had
postponed computing this bound to Game 5’).
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A The Original Scheme

The Cramer-Shoup hybrid encryption scheme proposed in [4], and refined in [18], uses the
same tools as the one described above. However key generation, encryption and decryption
algorithms are different.

Key Generation: The description of the group G is generated, along with a random
generator g1 for G. Any keys for KDF and H are also generated. Then:

w, x, y, z
R← Zq, g2 ← gw1 , c← gx1 , d← gy1 , h← gz1 .

The public key consists of the description of G, the generators g1 and g2, keys for KDF and
H (if any), along with the group elements c, d, h. The private key consists of the public key,
along with w, x, y, z.

Encryption of m ∈ {0, 1}∗:

r
R← Zq, κ← hr, u1 ← gr1 ∈ G, u2 ← gr2 ∈ G, α← H(u1, u2) ∈ Zq

v ← crdrα ∈ G, (k,K)← KDF(κ), e← EK(m), t← MACk(e)
output C := (u1, u2, v, e, t)
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Decryption of C = (u1, u2, v, e, t):

α← H(u1, u2) ∈ Zq, v′ ← ux+yα
1 ∈ G, κ′ ← uz1, (k,K)← KDF(κ′)

if t 6= MACk(e) or v′ 6= v or u2 6= uw1 then
reject

else
m← DK(e)
output m

Notice that compared to the Kurosawa-Desmedt scheme, the encryption algorithm in
this scheme computes an extra exponentiation (the computation of κ) and a longer cipher-
text (it includes the group element v). However, that does not translate into a direct gain
in efficiency.

In the Cramer-Shoup scheme we can choose the prime q to be 160-bit long. This results in
a random value κ which is computationally indistinguishable from a random group element.
Then, under a suitable computational assumption on KDF, we can derive keys k,K of any
required length using a pseudo-random number generator.

On the other hand, the key k in the Kurosawa-Desmedt scheme must be derived from
v in an information-theoretic way. We can’t apply a pseudo-random number generator,
otherwise we lose the information-theoretic security. For common security parameters k is
required to be at least 160-bits long. The only way we know how to do this is to map v
into an 160-bit string using universal hashing and the Entropy Smoothing Theorem. But
this requires v to come from a distribution with min-entropy at least, say, 320. Considering
that from κ we also need to derive the key K (say, another 128 bits), then it seems that
the group G must have order q of at least about 450 bits. This increase in the security
parameter clearly offsets the gain obtained by dropping one exponentiation.

Using our proof, however, we can claim that the Kurosawa-Desmedt scheme can be used
with a group G of order q where q is a 160-bit prime.

We also note that the scheme in [18] is optimized so that all exponentiations in the
decryption algorithm are with respect to the same base — this allows for speedups using
techniques for exponentiation with preprocessing. A similar optimization can be applied to
the Kurosawa-Desmedt scheme.
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