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Abstract

Recently, Kurosawa and Desmedt presented a new hybrid encryption scheme which
is secure against adaptive chosen-ciphertext attack. Their scheme is a modification of
the Cramer-Shoup encryption scheme. Its major advantage with respect to Cramer-
Shoup is that it saves the computation of one exponentiation and produces shorter
ciphertexts. However, the proof presented by Kurosawa and Desmedt relies on the use
of information-theoretic key derivation and message authentication functions.

In this note we present a different proof of security which shows that the Kurosawa-
Desmedt scheme can be instantiated with any computationally secure key derivation and
message authentication functions, thus extending the applicability of their paradigm,
and improving its efficiency.

1 Introduction

The notion of chosen-ciphertext security was introduced by Naor and Yung [6] and developed
by Rackoff and Simon [7], and Dolev, Dwork, and Naor [4].

In a chosen ciphertext attack, the adversary is given access to a decryption oracle that
allows him to obtain the decryptions of ciphertexts of his choosing. Intuitively, security in
this setting means that an adversary obtains (effectively) no information about encrypted
messages, provided the corresponding ciphertexts are never submitted to the decryption
oracle.

As shown in [4], security against chosen-ciphertext attack is equivalent to the notion of
non-malleability. An encryption scheme is said to be non-malleable if given a ciphertext
c, it is infeasible to compute a ciphertext c′ whose decryption is somewhat related to the
decryption of c.

For these reasons, the notion of chosen-ciphertext security has emerged as the “right”
notion of security for encryption schemes. Indeed it can be shown that in order to model en-
cryption as a “secure envelope”, then the encryption scheme used must be chosen-ciphertext
secure.

A number of chosen ciphertext secure cryptosystems have been proposed in the litera-
ture. The first schemes were presented in [6, 7, 4], but they were quite impractical. The first
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truly practical cryptosystem that is provably secure against chosen ciphertext attack was
discovered by Cramer and Shoup [1]. The security of this scheme is based on the hardness
of the decisional Diffie-Hellman problem. In [2] Cramer and Shoup show that their original
scheme is an instance of a more generic paradigm, which can be also instantiated with the
Quadratic Residuosity and N -Residuosity assumptions.

In [8] Shoup presents an hybrid variant of the Cramer-Shoup cryptosystem. This scheme
uses the original public-key scheme to generate an encryption of a random group element κ.
Then a key derivation function (KDF) is applied to κ to compute two keys k, K which are
used to encrypt the actual message with a chosen-ciphertext secure symmetric encryption
scheme (recalled below).

Differently than in the public-key case, symmetric encryption schemes which are secure
against a chosen-ciphertext attack can be easily built out of weaker primitives. It is indeed
well known that all you need is a symmetric encryption scheme E which is secure against
passive adversaries, and a secure message authentication code (MAC). To encrypt a message
m with keys k, K it is sufficient to encrypt m with K, i.e. compute e = EK(m), and then
compute a message authentication tag for e using k, i.e. compute t = MAC k(e). The final
ciphertext is (e, t). The receiver, who also holds k, K, first checks that the tag t is correct
and only in that case decrypts e.

Recently Kurosawa and Desmedt [5] modified the hybrid scheme presented in [8]. The
advantage of their modification is that the computation of a ciphertext in their scheme
requires one less exponentiation and produces shorter ciphertexts.

However their proof of security relies on the use of information theoretically secure KDF
and MAC functions in the symmetric step of the hybrid construction. There are several
reasons why this is not desirable, among them:

efficiency The proof in [5] requires the key k to be statistically close to a random key.
This means that we cannot use a pseudo-random generator to derive k from a random
group element encrypted during the public-key phase. This in turns implies that the
public key part of the scheme must be instantiated with larger security parameters
which would result in slower execution times1;

modularity we would like to have a scheme into which we can plug any secure component
and it still remains secure. It would be hard to deploy a scheme in large-scale if
it can be used only in conjunction with certain types of MACs and KDFs (and in
particular, with KDFs and MACs that are not used at all by the designers of standard
cryptographic algorithms).

In this note we show a new and different proof of security for the Kurosawa-Desmedt
scheme. We show that it is indeed possible to use any secure key derivation function and
message authentication code. This effectively improves the efficiency and applicability of
their scheme.

1For typical security parameters, this increase in computation times totally offsets the gain from per-
forming one less exponentiation, thus making the Kurosawa-Desmedt scheme as efficient as the original
Cramer-Shoup
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2 The scheme

In this section we recall the Kurosawa-Desmedt scheme from [5]. We describe it using generic
building blocks and at the end of the section we point out where the proof of security in [5]
requires information theoretic security. The scheme makes use of:

• a group G of prime order q, with (random) generators g1 and g2.

Security assumption (DDH): Hard to distinguish (gr
1, g

r
2) from (gr

1, g
r′
2 ), where r is a

random element of Zq and r′ is a random element of Zq \ {r}.

• a message authentication code MAC , which is a function that takes two inputs, a key
k and message e ∈ {0, 1}∗, and produces a “tag” t := MAC k(e).

Security assumption: For random k, after obtaining t∗ := MAC k(e∗) for (at most
one) adversarially chosen e∗, hard to compute a forgery pair, i.e., a pair (e, t) such
that e 6= e∗ and t = MAC k(e).2

• a symmetric key encryption scheme, with encryption algorithm E and decryption
algorithm D, such that for key K and plaintext m ∈ {0, 1}∗, e := EK(m) is the
encryption of m under K, and for key K and ciphertext e ∈ {0, 1}∗, m := DK(m) is
the decryption of e under K.

Security assumption (semantic security): hard to distinguish EK(m0) from EK(m1)
for randomly chosen K and adversarially chosen m0 and m1 (where m0 and m1 are
of equal length).

• a key derivation function KDF , such that for v ∈ G, KDF (v) = (k, K), where k is a
message authentication key, and K is a symmetric encryption key.

Security assumption: hard to distinguish KDF (v) from (k, K), where v, k and K are
random.

• a hash function H : G×G→ Zq.

Security assumption (target collision resistance): given u∗
1 := gr

1 and u∗
2 := gr

2, for
random r ∈ Zq, hard to find (u1, u2) ∈ G × G \ {(u∗

1, u
∗
2)} such that H(u1, u2) =

H(u∗
1, u

∗
2).

Note that the key space for the message authentication code is assumed to consist of all
bit strings of a given length, so that by a random key k, we mean a random bit string of
appropriate length. Similarly for the symmetric encryption keys.

Note also that KDF and H may have associated keys (which are publicly known).

Key Generation: The description of the group G is generated, along with random gener-
ators g1 and g2 for G. Any keys for KDF and H are also generated. Then:

x1, x2, y1, y2
c|← Zq, c← gx1

1 gx2
2 , d← gy1

1 gy2
2 .

2Since we are defining MAC as a function there is only one possible output for any input pair k, e. It is
possible to define message authentication codes as two algorithms: a “tagging” and a “verifying” algorithm.
The tagging algorithm could be randomized and thus one of several tags could be computed on the same
input pair. The security property then would be that it is hard to compute any valid message/tag pair (e, t)
other than (e∗, t∗).
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The public key consists of the description of G, the generators g1 and g2, keys for KDF and
H (if any), along with the group elements c and d. The private key consists of the public
key, along with x1, x2, y1, y2.

Encryption of m ∈ {0, 1}∗:

r c|← Zq, u1 ← gr
1 ∈ G, u2 ← gr

2 ∈ G, α← H(u1, u2) ∈ Zq

v ← crdrα ∈ G, (k, K)← KDF (v), e← EK(m), t← MAC k(e)
output C := (u1, u2, e, t)

Decryption of C = (u1, u2, e, t):

α← H(u1, u2) ∈ Zq, v ← ux1+y1α
1 ux2+y2α

2 ∈ G, (k, K)← KDF (v)
if t 6= MAC k(e) then

output “reject”
else

m← DK(e)
output m

In addition to the above computational security assumption, the proof of security in [5]
requires the following information theoretic assumptions:

• information-theoretically secure KDF. If v ∈ G is random, then at least the first
component k of the output of KDF (v) should be (statistically close to) uniform.

• information-theoretically secure MAC. For all e and t, if k is chosen at random, then
Pr[MAC k(e) = t] is negligible.

Our proof of security, described in the next section, does not need these assumptions.
Kurosawa and Desmedt apparently introduce these assumptions to avoid a potential

circularity in their proof. Both their proof and ours use a “hybrid argument,” whereby
the initial attack game is transformed in a sequence of small steps into a game in which
the adversary’s advantage is clearly negligible. At one point in their proof, in order to
justify one of the steps in this sequence, they want to prove that the decryption oracle will
reject certain ciphertexts; to prove this, they must first prove that certain MAC keys are
randomly distributed and that certain tag values are unpredictable; to draw this conclusion,
they must first prove that the above-mentioned ciphertexts are rejected. As it happens, the
way out of this circularity chosen by Kurosawa and Desmedt is to introduce information-
theoretic security assumptions. However, we show how to avoid this using a technique that
is perhaps not so well appreciated, which we might call “deferred analysis.” We will point
out below in the proof where this technique is employed. This technique has also been used
before — for example, in [3], it is used in the proof of security of a version of the Cramer-
Shoup encryption scheme that makes use of a universal one-way hash function (rather than
a collision-resistant hash function). The original security proof in [1] was actually a bit
incomplete regarding this issue.

In Appendix A we recall the Cramer-Shoup hybrid scheme from [8] and compare the two
schemes. In particular we point out how for typical security parameters the gains posted
by the Kurosawa-Desmedt scheme may be offset by the requirement that KDF and MAC
be information theoretically secure.
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3 Security proof

Game 0

We now define a game, called Game 0, which is an interactive computation between an
adversary and a simulator. This game is simply the usual game used to define CCA security,
in which the simulator provides the adversary’s environment.

Initially, the simulator runs the key generation algorithm, obtaining the description of G,
generators g1 and g2, keys for KDF and H (if any), along with the values x1, x2, y1, y2 ∈ Zq

and c, d ∈ G. The simulator gives the public key to the adversary.
During the execution of the game, the adversary makes a number of “decryption re-

quests.” Assume these requests are C(1), . . . , C(Q), where

C(i) = (u(i)
1 , u

(i)
2 , e(i), t(i)).

For each such request, the simulator decrypts the given ciphertext, and gives the adversary
the result. We denote by α(i), v(i), k(i), and K(i) the corresponding intermediate quantities
computed by the decryption algorithm on input C(i).

The adversary may also make a single “challenge request.” For such a request, the
adversary submits two messages m0,m1, which are bit strings of equal length, to the sim-
ulator; the simulator chooses b ∈ {0, 1} at random, and encrypts mb, obtaining the “target
ciphertext” C∗ = (u∗

1, u
∗
2, e

∗, t∗). The simulator gives C∗ to the adversary. We denote by r∗,
α∗, v∗, k∗, and K∗ the corresponding intermediate quantities computed by the encryption
algorithm.

The only restriction on the adversary’s requests is that after it makes a challenge request,
subsequent decryption requests must not be the same as the target ciphertext.

At the end of the game, the adversary outputs b̂ ∈ {0, 1}.
Let X0 be the event that b̂ = b. Security means that |Pr[X0]−1/2| should be negligible.
We prove this by considering other games, Game 1, Game 2, etc. These games will be

quite similar to Game 0 in their overall structure, and will only differ from Game 0 in terms
of how the simulator works. However, in each game, there will be well defined bits b̂ and b,
so that in Game i, we always define Xi to the event that b̂ = b in that game. All of these
games should be viewed as operating on the same underlying probability space.

Before moving on, we make a couple of additional assumptions about the internal struc-
ture of Game 0 that will be convenient down the road. First, we assume that g2 is computed
as:

w c|← Z∗
q , g2 ← gw

1 .

Note that the value of w is never explicitly used in Game 0, except to compute g2. Second,
we assume that the quantities r∗, u∗

1, u∗
2, α∗, v∗, k∗, and K∗ are computed at the very start

of the game (they do not depend on the values m0, m1 provided later by the adversary, so
this can be done).

Game 1

Game 1 is the same as Game 0, except that if the adversary ever submits C(i) for decryption
with

(u(i)
1 , u

(i)
2 ) 6= (u∗

1, u
∗
2) and α(i) = α∗,
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the simulator rejects the given ciphertext.
In Game 1, the simulator may reject ciphertexts that would not have been rejected in

Game 0. Let us call Rejection Rule 0 the rule by which ciphertexts are rejected as in the
ordinary decryption algorithm (i.e., the message authentication tags do not match). Let us
call Rejection Rule 1 this new rejection rule, introduced in Game 1.

Let F1 be the event that the simulator applies Rejection Rule 1 in Game 1 to a ciphertext
to which Rejection Rule 0 does not apply. Game 0 and Game 1 proceed identically until
the this event occurs; in particular, the events X0 ∧¬F1 and X1 ∧¬F1 are the same (recall
that we view all games to operate on the same underlying probability space); therefore,

|Pr[X0]− Pr[X1]| ≤ Pr[F1]. (1)

Moreover, we have
Pr[F1] = εtcr, (2)

where εtcr is the success probability that one can find a collision in H using resources similar
to those of the given adversary. By assumption, εtcr is negligible.

Game 2

Game 2 is the same as Game 1, except that the simulator computes v∗ as

v∗ ← (u∗
1)

x1+y1α∗
(u∗

2)
x2+y2α∗

.

This change is purely conceptual, since v∗ has the same value either way. In particular,

Pr[X1] = Pr[X2]. (3)

Game 3

Now generate u∗
2 by the rule

r′ c|← Zq \ {r∗}, u∗
2 ← gr′

2 .

We have
|Pr[X2]− Pr[X3]| = εddh, (4)

where εddh is the advantage with which one can solve the DDH problem, using resources
similar to those of the given adversary. By assumption, εddh is negligible.

The details. We can easily build a “hybrid” Game 2/3 that takes τ := (g1, g2, u
∗
1, u

∗
2)

as input, so that if τ is a random DH-tuple, Game 2/3 acts just like Game 2, and if τ
is a random non-DH-tuple, then Game 2/3 acts just like Game 3. The distinguishing
algorithm runs Game 2/3 on input τ , and outputs 1 if b̂ = b, and outputs 0 otherwise.
The distinguishing advantage of this algorithm is exactly equal to |Pr[X2]− Pr[X3]|.
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Game 4

In this game, the simulator makes use of the value w ∈ Zq, where g2 = gw
1 . The simulator

did not need to make explicit use of this value in previous games. Indeed, we could not have
used the DDH assumption if the simulator had to use w. However, we are now finished with
the DDH assumption, and so the simulator is free to make use of w in this and subsequent
games.

Game 4 is the same as Game 3, except that we introduce a new Rejection Rule 2: in
responding to decryption requests, the simulator rejects any ciphertext C(i) such that

(u(i)
1 , u

(i)
2 ) 6= (u∗

1, u
∗
2) and (u(i)

1 )w 6= u
(i)
2 .

Note that the condition (u(i)
1 )w 6= u

(i)
2 is equivalent to logg1

u
(i)
1 6= logg2

u
(i)
2 .

Define F4 to be the event that a ciphertext is rejected during Game 4 using Rejection
Rule 2 to which Rejection Rules 0 and 1 are not applicable.

Clearly, Game 3 and Game 4 proceed identically until F4 occurs; in particular, the
events X3 ∧ ¬F4 and X4 ∧ ¬F4 are the same, and so

|Pr[X3]− Pr[X4]| ≤ Pr[F4]. (5)

We want to show that Pr[F4] is negligible; however, we postpone this until later. This
is the “deferred analysis” technique: instead of attempting to bound Pr[F4] right now, we
shall patiently wait until a later game, where it will be much easier. However, at this point
we augment Game 4 just slightly, utilizing the well-known “plug and pray” technique: the
simulator chooses j ∈ {1, . . . , Q} at random, and we define F ′

4 to be the event that in
Game 4, Rejection Rules 0 and 1 do not apply to C(j), but Rejection Rule 2 does apply to
C(j). Clearly,

Pr[F4] ≤ QPr[F ′
4], (6)

and so it suffices to show that Pr[F ′
4] is negligible.

It will be helpful to write down in detail how Game 4 works, starting from scratch:

• The simulator begins by generating the description of G, along with a random gener-
ator g1, and any keys for KDF and H. It then computes:

I1: w c|← Z∗
q , g2 ← gw

1

I2: x1, x2, y1, y2
c|← Zq, c← gx1

1 gx2
2 , d← gy1

1 gy2
2

I3: r∗ c|← Zq, r′ c|← Zq \ {r∗}, u∗
1 ← gr∗

1 , u∗
2 ← gwr′

1 , α∗ ← H(u∗
1, u

∗
2)

I4: v∗ ← (u∗
1)

x1+y1α∗
(u∗

2)
x2+y2α∗

I5: (k∗,K∗)← KDF (v∗)
I6: j c|← {1, . . . , Q}

The simulator gives the description of G, the generators g1 and g2, keys for KDF and
H (if any), along with c and d to the adversary.

• In processing a decryption request C(i) = (u(i)
1 , u

(i)
2 , e(i), t(i)), the simulator proceeds

as follows:
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D01: α(i) ← H(u(i)
1 , u

(i)
2 )

D02: if (u(i)
1 , u

(i)
2 ) 6= (u∗

1, u
∗
2) and α(i) = α∗ then

D03: return “reject”
D04: else if (u(i)

1 , u
(i)
2 ) = (u∗

1, u
∗
2) then

D05: if t(i) 6= MAC k∗(e(i)) then return “reject”
D06: return DK∗(e(i))
D07: else if (u(i)

1 )w 6= u
(i)
2 then

D08: v(i) ← (u(i)
1 )x1+y1α(i)

(u(i)
2 )x2+y2α(i)

D09: (k(i),K(i))← KDF (v(i))
D10: if t(i) 6= MAC k(i)(e(i)) then return “reject”
D11: return “reject”
D12: else
D13: v(i) ← (u(i)

1 )x1+y1α(i)
(u(i)

2 )x2+y2α(i)

D14: (k(i),K(i))← KDF (v(i))
D15: if t(i) 6= MAC k(i)(e(i)) then return “reject”
D16: return DK(i)(e(i))

Note that Rejection Rule 0 is applied at lines D05, D10, and D15, while Rejection
Rule 1 is applied at line D03, and Rejection Rule 2 (and no other Rejection Rule) at
line D11.

• In processing the challenge request, the adversary gives m0,m1 to the simulator. The
simulator computes

b c|← {0, 1}, e∗ ← EK∗(mb), t∗ ← MAC k∗(e∗),

and gives C∗ := (u∗
1, u

∗
2, e

∗, t∗) to the adversary.

We have written the logic of the decryption oracle in this particular way to facilitate
further analysis. Note that the computations at D08–D10 have no real effect, other than
to determine if the event F ′

4 occurs; indeed, once line D08 is reached, the ciphertext is sure
to be rejected, either at line D10 or at line D11. The event F ′

4 is simply the event that
line D11 executes in the jth decryption request.

Game 5

Game 5 is the same as Game 4, except that we change lines I2 and I4, as follows:

I2: x, y c|← Zq, c← gx
1 , d← gy

1

I4: v∗ c|← G

as well as lines D08 and D13, as follows:

D08: v(i) c|← G

D13: v(i) ← (u(i)
1 )x+yα(i)
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Note that x1, x2, y1, y2 are not used at all in Game 5.
We define F ′

5 to be the event that line D11 is executed in the jth decryption request in
Game 5. We claim that

Pr[X4] = Pr[X5] (7)

and
Pr[F ′

4] = Pr[F ′
5]. (8)

This follows from a simple linear algebra argument, along the same lines as in [1]. The point
is, we are simply swapping one set of 4-wise independent random variables for another;
indeed, in both games, the variables c, d, v∗, and v(j) (as computed at line D08) are
mutually independent and uniformly distributed over G.

Now our sequence of games reaches a fork in the road. Games 6 and 7 below (the “left
fork”) are used to show that Pr[X5] is close to 1/2. Then we define Game 6′ (the “right
fork”), which is another modification of Game 5, to show that Pr[F ′

5] is small.

Game 6

Game 6 is the same as Game 5, except that we change line I5, as follows:

I5: (k∗,K∗) c|← “keys”

That is, we simply generate the keys k∗ and K∗ at random.
Observe that in Game 5, v∗ is completely random, and is not used anywhere, except

once as an input to KDF . Based on this, it is easy to see that

|Pr[X5]− Pr[X6]| = εkdf, (9)

where εkdf is the advantage with which one can distinguish the output of the KDF from a
random key pair, using resources similar to those of the given adversary. By assumption,
εkdf is negligible.

Game 7

Game 7 is the same as Game 6, except that we change line D06, as follows:

D06: return “reject”

Let F7 be the event that line D06 is ever executed in Game 7, in any decryption request.
Clearly, Game 6 and Game 7 proceed identically until F7 occurs; in particular, the events
X6 ∧ ¬F7 and X7 ∧ ¬F7 are the same, and so

|Pr[X6]− Pr[X7]| ≤ Pr[F7]. (10)

Moreover, if F7 occurs the adversary has effectively broken the message authentication code
keyed by k∗ (which in Game 7 is truly random). More precisely,

Pr[F7] ≤ Qεmac, (11)
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where εmac is the advantage with which one can break the message authentication code
using resources similar to those of the given adversary. By assumption, εmac is negligible.
The factor of Q in (11) comes from a standard “plug and pray” argument: the forging
algorithm has to choose one of the pairs (e(i), t(i)) at random, and hope that it is actually
a forgery pair.

Also, observe that the key K∗ in Game 7 is truly random and is used for no other
purpose that to encrypt mb. Based on this, it is easy to see that

|Pr[X7]− 1/2| = εenc, (12)

where εenc is the probability of breaking the semantic security of the underlying symmet-
ric key encryption scheme, using resources similar to those of the given adversary. By
assumption, εenc is negligible.

Game 6′

We now backtrack to the fork in the road. Game 6′ is the same as Game 5, except that we
change line D09, as follows:

D09: (k(i),K(i)) c|← “keys”

Define F ′
6′ to be the event that line D11 is executed in the jth decryption request in

Game 6′. Observe that at line D08 in Game 5, the value v(j) is completely random, and is
not used anywhere, except once as an input to KDF . Based on this, it is easy to see that

|Pr[F ′
5]− Pr[F ′

6′ ]| = ε′kdf, (13)

where ε′kdf is the advantage with which one can distinguish the output of the KDF from a
random key pair, using resources similar to those of the given adversary. By assumption,
ε′kdf is negligible.

Observe that in Game 6′, the key k(j) used in the message authentication code at line
D10 is completely random. From this, it easily follows that

Pr[F ′
6′ ] ≤ ε′mac, (14)

where ε′mac is the probability of breaking the message authentication code, using resources
similar to those of the given adversary. By assumption, ε′mac is negligible. Indeed, ε′mac is
the probability of breaking the message authentication code “blind” (without first obtaining
one valid tag).

Completing the proof

We have

Pr[F4] ≤ QPr[F ′
4] [by (6)]

= QPr[F ′
5] [by (8)]

≤ Q(Pr[F ′
6′ ] + ε′kdf) [by (13)]

≤ Q(ε′mac + ε′kdf) [by (14)]

10



Thus, we have
Pr[F4] ≤ Q(ε′mac + ε′kdf). (15)

Finally, combining (15) with (1), (2), (3), (4), (5), (7), (9), (10), (11), and (12), we have:

|Pr[X0]− 1/2| ≤ εtcr + εddh + εkdf + εenc + Q(εmac + ε′mac + ε′kdf). (16)

By assumption, the right-hand side of (16) is negligible, which finishes the proof.

4 Hash Proof Systems

In [2] Cramer and Shoup showed that their original scheme in [1] was a special instance of
a generic paradigm based on hash proof systems. We briefly recall here the basic ideas and
how they can be applied to the scheme described in the previous section.

Smooth projective hashing [2]: Let X be a set and L ⊂ X a language. Loosely
speaking, a hash function Ha that maps X to some set is projective if there exists a projection
key that defines the action of Ha over the subset L of the domain X. That is, there exists
a projection function α(·) that maps keys k into their projections s = α(a). The projection
key s is such that for every x ∈ L it holds that the value of Ha(x) is uniquely determined
by s and x. In contrast, nothing is guaranteed for x 6∈ L, and it may not be possible to
compute Ha(x) from s and x. A smooth projective hash function has the additional property
that for x /∈ L, the projection key s actually says nothing about the value of Ha(x). More
specifically, given x and s = α(a), the value Ha(x) is uniformly distributed (or statistically
close) to a random element in the range of Ha.

An interesting feature of smooth projective hashing is that if L is an NP-language, then
for every x ∈ L it is possible to efficiently compute Ha(x) using the projection key s = α(a)
and a witness of the fact that x ∈ L. Alternatively, given a itself, it is possible to efficiently
compute Ha(x) even without knowing a witness.

Using the techniques from [2], Kurosawa and Desmedt in [5] generalize the above scheme can
be generalized using smooth projective hashing as follows. The sets X, L and a projection
key s = α(a) will be the public key. The key a will be the secret key.

To encrypt m, the sender chooses an element x ∈ L together with a witness. He then
computes v = Ha(x) using the projection s and the witness. Then the keys (k, K) =
KDF (v) are derived as above. The rest of the encryption procedure remains the same, i.e.,
e = EK(m) and t = MACk(e). The ciphertext is x, e, t.

The receiver on input (x, e, t) computes v′ = Ha(x) and (k,K) = KDF (v′). If t =
MACk(e) then it decrypts m = DK(e).

Security Analysis. As in the proof in [2] the basic computational assumption underlying
the security of this scheme is that it is hard to distinguish between random elements in L
and random elements outside of L.

The proof of security in [5] requires the projective hash function to be strongly 2-
universal, which is a stronger condition than smoothness. Basically it is required that
for x /∈ L, even given s = α(a) and the value Ha(x′) for x′ /∈ L and x′ 6= x, the distribution
of the value Ha(x) is statistically close to the uniform distribution over the range of Ha.
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Their generalized scheme, however, still requires information-theoretically secure KDF and
MAC functions.

Our proof, which lifts such requirements on the KDF and MAC functions, also general-
izes assuming strong 2-universal projective hashing, that one can efficiently sample elements
outside of L, and there is a trapdoor that allows for efficiently testing language membership.
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A The original scheme

The Cramer-Shoup hybrid encryption scheme proposed in [1], and refined in [8], uses the
same tools as the one described above. However key generation, encryption and decryption
algorithms are different.

Key Generation: The description of the group G is generated, along with a random
generator g1 for G. Any keys for KDF and H are also generated. Then:

w, x, y, z c|← Zq, g2 ← gw
1 , c← gx

1 , d← gy
1 , h← gz

1 .

The public key consists of the description of G, the generators g1 and g2, keys for KDF and
H (if any), along with the group elements c, d, h. The private key consists of the public key,
along with w, x, y, z.
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Encryption of m ∈ {0, 1}∗:

r c|← Zq, κ← hr, u1 ← gr
1 ∈ G, u2 ← gr

2 ∈ G, α← H(u1, u2) ∈ Zq

v ← crdrα ∈ G, (k, K)← KDF (κ), e← EK(m), t← MAC k(e)
output C := (u1, u2, v, e, t)

Decryption of C = (u1, u2, v, e, t):

α← H(u1, u2) ∈ Zq, v′ ← ux+yα
1 ∈ G, κ′ ← uz

1, (k, K)← KDF (κ′)
if t 6= MAC k(e) or v′ 6= v or u2 6= uw

1 then
reject

else
m← DK(e)
output m

Notice that compared to the Kurosawa-Desmedt scheme, the encryption algorithm in
this scheme computes an extra exponentiation (the computation of κ) and a longer cipher-
text (it includes the group element v). However, that does not translate into a direct gain
in efficiency.

In the Cramer-Shoup scheme we can choose the prime q to be 160-bit long. This results in
a random value κ which is computationally indistinguishable from a random group element.
Then, under a suitable computational assumption on KDF , we can derive keys k, K of any
required length using a pseudo-random number generator.

On the other hand, the key k in the Kurosawa-Desmedt scheme must be derived from
v in an information-theoretic way. We can’t apply a pseudo-random number generator,
otherwise we lose the information-theoretic security. For common security parameters k is
required to be at least 170-bits long. The only way we know how to do this is to map v
into an 160-bit string using universal hashing and the Entropy Smoothing Theorem. But
this requires v to come from a distribution with min-entropy at least, say, 320. Considering
that from κ we also need to derive the key K (say, another 128 bits), then it seems that
the group G must have order q of at least about 450 bits. This increase in the security
parameter clearly offsets the gain obtained by dropping one exponentiation.

Using our proof, however, we can claim that the Kurosawa-Desmedt scheme can be used
with a group G of order q where q is a 160-bit prime.

We also note that the scheme in [8] is optimized so that all exponentiations in the
decryption algorithm are with respect to the same base — this allows for speedups using
techniques for exponentiation with preprocessing. We believe that similar optimizations
can be applied to the Kurosawa-Desmedt scheme. Also, the scheme in [8] can be proven
secure in the random oracle model under the computational Diffie-Hellman assumption —
we believe that the same can be proven for the Kurosawa-Desmedt scheme.
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