
Optimistic Asynchronous Atomic Broadcast

Klaus Kursawe Victor Shoup

IBM Research
Zurich Research Laboratory

CH-8803 Rüschlikon, Switzerland
{kku,sho}@zurich.ibm.com

April 19, 2002

Abstract

This paper presents a new protocol for atomic broadcast in an asynchronous network with a
maximal number of Byzantine failures. It guarantees both safety and liveness without making
any timing assumptions or using any type of “failure detector.”

Under normal circumstances, the protocol runs in an “optimistic mode,” with extremely low
message and computational complexity — essentially, just performing a Bracha broadcast for
each request. In particular, no potentially expensive public-key cryptographic operations are
used. In rare circumstances, the protocol may briefly switch to a “pessimistic mode,” where
both the message and computational complexity are significantly higher than in the “optimistic
mode,” but are still reasonable.

Keywords: Asynchronous Consensus, Byzantine Faults, Atomic Broadcast, State Machine
Replication

1 Introduction

Atomic Broadcast is a fundamental building block in fault tolerant distributed computing. By
ordering broadcast requests in such a way that two broadcast requests are received in the same
order by all honest recipients, a synchronization mechanism is provided that deals with many of
the most problematic aspects of asynchronous networks.

We present a new protocol for atomic broadcast in an asynchronous network with a maximal
number of Byzantine failures. It guarantees both safety and liveness without making any timing
assumptions or using any type of “failure detector,” and its amortized message and computational
complexity is essentially the same as that of a simple “Bracha broadcast.”

The FLP “impossibility” result [FLP85] implies that there is no protocol for Byzantine agree-
ment that runs in an a priori bounded number of steps, and guarantees both safety and liveness.
Moreover, it is fairly well known that Byzantine agreement and atomic broadcast are equivalent,
so that any protocol for solving atomic broadcast could be used to solve Byzantine agreement, and
vice versa. However, this impossibility result does not rule out randomized protocols for which the
expected number of steps is bounded.

There are several probabilistic protocols for asynchronous Byzantine agreement in the literature.
An early protocol by Ben-Or [Ben83] requires time exponential in the number of parties. Canetti
and Rabin [CR93] present a polynomial-time protocol for asynchronous Byzantine agreement; how-
ever, their protocol cannot be used in practice, because of its enormous message complexity. Cachin

1

et al. [CKS00] give a fairly practical polynomial-time protocol for asynchronous Byzantine agree-
ment that makes use of public-key cryptographic primitives that can be proven correct in the
“random oracle” model [BR93], assuming a computationally bounded adversary. The protocol in
[CKS00] relies on a trusted dealer during system set-up, but after this, an arbitrary number of
instances of the protocol can be executed. Building on [CKS00], the paper [CKPS01] presents a
fairly practical protocol for atomic broadcast. In some settings, the atomic broadcast protocol in
[CKPS01] may be adequate; however, because of its heavy reliance on public-key cryptography, it
can easily become “compute bound.”

Our protocol is inspired by the innovative work of Castro and Liskov [CL99b, CL99a, Cas00].
Like their protocol, our protocol works in two phases: an optimistic phase and a pessimistic phase.
The optimistic phase is very “lightweight” — each request is processed using nothing more than
a “Bracha broadcast” [Bra84] — in particular, no public-key cryptography is used. As long as
the network is reasonably behaved, the protocol remains in the optimistic phase — even if some
number of parties, barring a designated leader, are corrupted. If there are unexpected network
delays, or the leader is corrupted, several parties may “time out,” shifting the protocol into the
pessimistic phase. The pessimistic phase is somewhat more expensive than the optimistic phase —
both in terms of communication and computational complexity. Nevertheless, it is still reasonably
practical, although certainly not as efficient as the optimistic phase. The pessimistic phase cleans
up any potential “mess” left by the current leader, after which the optimistic phase starts again
with a new leader.

The optimistic phase of our protocol is essentially the same as that of Castro and Liskov.
Therefore, we expect that in practice, our protocol is just as efficient as theirs. However, our
pessimistic phase is quite different, and makes use of randomized Byzantine agreement as well
as some additional public-key cryptographic operations. The pessimistic phase of Castro and
Liskov makes use of public-key cryptography as well, and it is not clear if their pessimistic phase is
significantly more or less efficient than ours — determining this would require some experimentation.

Castro and Liskov’s pessimistic protocol is completely deterministic, and hence is subject to the
FLP impossibility result. Indeed, although their protocol guarantees safety, it does not guarantee
liveness, unless one makes additional timing assumptions. Our protocol is randomized, and it guar-
antees both safety and liveness without making any timing assumptions at all, and without relying
on any kind of “failure detector.” This is a not just a theoretical issue: if the timing mechanism
does not work properly in Castro and Liskov’s protocol, the protocol may cycle indefinitely, without
doing anything useful, whereas in our protocol, the performance “gracefully” degrades.

1.1 Other Related Work

There is a rich literature on ordering broadcast channels, including several implementations and a
broad theoretical basis. However, most work in the literature is done in the crash-failure model;
much less work has been done in the Byzantine failure model.

Rampart [Rei94] and SecureRing [KMMS98] directly transfer crash-failure protocols into the
Byzantine setting by using a modified failure detector along with digital signatures. The disadvan-
tage of this approach is that it is relatively expensive, as a large number of public-key cryptographic
operations need to be performed. Furthermore, there are attacks on the failure detector [ACBMT95]
that can violate the safety of these protocols.

The BFS system by Castro and Liskov [CL99b] addresses these problems. As already mentioned,
they only require timing assumptions to guarantee liveness, while the safety properties of the
protocol hold regardless of timing issues. A similar approach is taken by Doudou et al. [DGG00],

2

but their protocol is described and analyzed in terms of a Byzantine failure detector. While both
[CL99b] and [DGG00] still rely extensively on expensive public-key cryptographic operations, the
extension of BFS in [CL99a, Cas00] relies much less on public-key cryptography.

2 System Model and Problem Statement

2.1 Formal System Model

Our formal system model and definitions of security are taken from [CKS00, CKPS01], which
models attacks by computationally bounded adversaries. We refer the reader to [CKPS01] for
complete details. We give only a brief summary here.

We assume a network of n parties P1, . . . , Pn, t of which are corrupted and fully controlled by
an adversary. We shall assume that t < n/3. We also assume a trusted dealer that is needed only at
system set-up time. Informally, the adversary also has full control over the network; the adversary
may insert, duplicate, and reorder messages at will.

More formally, at the beginning of the attack, the trusted dealer is run, initializing the internal
state of the honest parties; the initial state information for the corrupted parties is given to the
adversary. The attack then proceeds in steps. In each step of the attack, the adversary delivers
a single message to an honest party, upon receipt of which the party updates its internal state
and generates one or more response messages. These response messages indicate their origin and
intended destination; however, the adversary is free to do with these messages what he wishes: to
deliver them when he wishes, in any order that he wishes; he may also deliver them more than
once, or not all. We do assume, however, that the adversary may not modify messages or “fake”
their origin. This assumption is reasonable, since this property can be effectively enforced quite
cheaply using message authentication codes.

We assume that the adversary’s corruptions are static: the set of corrupted parties is chosen
once and for all at the very beginning of the attack. Making this assumption greatly simplifies the
security analysis, and allows one to make use of certain cryptographic primitives that could not
otherwise be proven secure.

Although we have not done so, we believe it should be straightforward to prove that our atomic
broadcast protocol is secure in a adaptive corruption model, assuming all underlying cryptographic
primitives are secure in this model (in particular, the common coin as used in [CKS00, CKPS01]).

Because we want to use cryptographic techniques, it does not make sense to consider “infinite
runs” of protocols, but rather, we only consider attacks that terminate after some bounded amount
of steps. The number of steps in the adversary’s attack, as well as the computational complexity
of the adversary, are assumed to be bounded by a polynomial in some security parameter.

Our protocols are defined such that they are only guaranteed to make progress to the extent to
which the adversary actually delivers messages. To ensure that such a protocol behaves well in prac-
tice, an implementation would have to resend messages until receiving (secure) acknowledgments
for them. We do not discuss any of these implementation details any further in this paper.

In our formal model, there is no notion of time. However, in making the transition from the
optimistic phase to the pessimistic phase of our protocol, we need a way to test if an unexpectedly
large amount of time has passed since some progress has been made by the protocol. That is,
we need a “time out” mechanism. This is a bit difficult to represent in a formal model in which
there is no notion of time. Nevertheless, we can effectively implement such a “time out” as follows:
to start a timer, a party simply sends a message to itself, and when this message is delivered to
that party, the clock “times out.” By representing time outs in this way, we effectively give the

3

adversary complete control of our “clock.”

2.2 Some Technicalities

As already mentioned above, there is a security parameter λ = 0, 1, 2 . . . that is used to instantiate
a protocol instance. All adversaries and protocols can be modeled as Turing machines that run in
time bounded by a polynomial in λ. We make the convention that the parameter n is bounded
by a fixed polynomial in λ, independent of the adversary. We make a similar assumption on the
sizes of all messages in the protocol: excessively large messages are simply never generated by or
delivered to honest parties.

We define the message complexity of a protocol as the number of messages generated by all
honest parties. This is a random variable that depends on the adversary and λ. We denote it by
MC (ID), where ID identifies a particular protocol instance.

We say that a function ε, mapping non-negative integers to non-negative reals, is negligible if
for all c > 0, there exists k0(c) ≥ 0, such that for all k ≥ k0(c): ε(k) ≤ k−c.

We say that some quantity is negligible, if it is bounded by a negligible function in λ.
For a given protocol, a protocol statistic X is a family of real-valued, non-negative random

variables {XA(λ)}, parameterized by adversary A and security parameter λ, where each XA(λ)
is a random variable on the probability space induce by A’s attack on the protocol with security
parameter λ. We call X a bounded protocol statistic if for all adversaries A, there exists a polynomial
pA, such that for all λ ≥ 0: XA(λ) ≤ pA(λ).

The message complexity MC (ID) is an example of a bounded protocol statistic.
A bounded protocol statistic X is called uniformly bounded (by p) if there exists a fixed poly-

nomial p, such that for all adversaries A, there is a negligible function εA, such that for all λ ≥ 0:

Pr[XA(λ) > p(λ)] ≤ εA(λ).

A bounded protocol statistic X is called probabilistically uniformly bounded (by p) if there exists
a fixed polynomial p and a fixed negligible function δ, such that for all adversaries A, there is a
negligible function εA, such that for all k ≥ 0 and λ ≥ 0:

Pr[XA(λ) ≥ kp(λ)] ≤ δ(k) + εA(λ).

If X is probabilistically uniformly bounded by p, then for all adversaries A, E[XA(λ)] = O(p(λ)),
where the big-‘O’ constant is independent of the adversary. Additionally, if Y is probabilistically
uniformly bounded by q, then X · Y is probabilistically uniformly bounded by p · q, and X + Y is
probabilistically uniformly bounded by p+ q. Thus, probabilistically uniformly bounded statistics
are closed under polynomial composition, which makes them useful for analyzing the composition
of several protocols. The same observations apply to uniformly bounded statistics as well.

2.3 Formal Definition of Atomic Broadcast

Our definition of atomic broadcast comes directly from [CKPS01], with some modification.
As we define it, an atomic broadcast primitive offers one or several broadcast channels, each

specified by some channel identifier ID . Before a party can use a channel, it must be explicitly
opened. Formally speaking, this is done by the adversary.

At any point, the adversary may deliver the message (ID , in, a-broadcast,m) to some honest
party, where m is an arbitrary bit string (of bounded size). We say the party a-broadcasts the
request m at this point.

4

At any point, an honest party may generate an output message (ID , out, a-deliver,m), which
is given to the adversary. We say the party a-delivers the request m at this point.

In the above two paragraphs, the “adversary” may very well represent a higher-level protocol
that the honest party is running, but since we want our atomic broadcast protocol to work in an
arbitrary environment, we simply absorb this higher-level protocol into the adversary.

As a matter of terminology, we adopt the following convention: a “request” is something that
is a-broadcast or a-delivered, while a “message” is something that is sent or delivered in the imple-
mentation of the protocol.

To give higher level protocols the option to block the atomic broadcast protocol, the delivering
party waits for an acknowledgment after every a-delivery of a request. That is, the number of
a-delivered requests is equal to either the number of acknowledgments or the number of acknowl-
edgments plus one. This is necessary so that higher-level protocols may satisfy a property analogous
to the efficiency property (see Definition 1 below). Without this ability to synchronize protocol
layers, a low-level atomic broadcast protocol could generate an arbitrary amount of network traffic
without a higher-level protocol ever doing anything useful.

At any point in time, for any honest party Pi, we define B(i) to be the set of requests that Pi
has a-broadcast, and we define D(i) to be the set of requests that Pi has a-delivered. At any point
in time, we also define D∗ = ∪honest PiD(i).

For an honest party Pi, we say that one request in B(i) is older than another if Pi a-broadcast
the first request before it a-broadcast the second request.

In discussing the values of the sets B(i), D(i), or D∗ at particular points in time, we consider the
sequence of events E1, . . . , Ek during the adversary’s attack, where each event but the last is either
an a-broadcast or a-delivery by an honest party, and the last event is a special “end of attack” event.
The phrase “at time τ ,” for 1 ≤ τ ≤ k, refers to the point in time just before event Eτ occurs.

Recall that MC (ID) is the message complexity of a protocol.

Definition 1 (Atomic Broadcast). A protocol for atomic broadcast satisfies the following con-
ditions, for all channels ID and all adversaries, with all but negligible probability.

Agreement: If some honest party has a-delivered m on channel ID , then all honest parties a-
deliver m on channel ID , provided the adversary opens channel ID for all honest parties,
delivers all associated messages, and generates acknowledgments for every party that has not
yet a-delivered m on channel ID .

Total Order: Suppose one honest party has a-delivered m1, . . . ,ms on channel ID , and another
honest party has a-delivered m′1, . . . ,m

′
s′ on channel ID with s ≤ s′. Then ml = m′l for

1 ≤ l ≤ s.

Validity: There are at most t honest parties Pj with B(j)\D∗ 6= ∅, provided the adversary opens
channel ID for all honest parties, delivers all associated messages, and generates all acknowl-
edgments.

Fairness: There exist a quantity ∆, which is bounded by a fixed polynomial in the security pa-
rameter (independent of the adversary), such that the following holds. Suppose that at some
time τ1, there is a set S of t + 1 honest parties, such that for all Pj ∈ S, the set B(j)\D∗ is
non-empty. Suppose that there is a later point in time τ2 such that the size of D∗ increases
by more than ∆ between times τ1 and τ2. Then there is some Pj ∈ S, such that the oldest
request in B(j)\D∗ at time τ1 is in D∗ at τ2.

5

Efficiency: At any point in time, the quantity MC (ID)/(|D∗| + 1) is probabilistically uniformly
bounded.

Integrity: Every honest party a-delivers a request m at most once on channel ID . Moreover, if
all parties follow the protocol, then m was previously a-broadcast by some party on channel
ID .

We stress that the above properties are to be interpreted as properties of a complete run of
the adversary’s attack. That is, the adversary’s attack is a probabilistic experiment defined on
the probability space consisting of the random choices of the dealer, the honest parties, and the
adversary. The outcome of this experiment is a complete history of this attack, and the above
properties are events in the above probability space that should occur with all but negligible
probability.

Validity and fairness complement one another: validity ensures that a request that is a-broadcast
by t+ 1 honest parties is a-delivered provided all messages and acknowledgments are delivered, and
fairness implies that such a request is a-delivered reasonably quickly (relative to other requests) if
it is a-delivered at all. One cannot expect to achieve a stronger notion of fairness, since if only t or
fewer honest parties a-broadcast a request, an adversary can schedule messages so that the system
runs an arbitrary amount of time while keeping these parties completely cut off from the rest of
the system.

3 Multivalued Validated Byzantine Agreement

Our protocol builds on top of multivalued validated Byzantine agreement (i.e., the agreement is
not restricted to a binary value), as defined and implemented in [CKPS01]. Similarly to atomic
broadcast, every instance of such a protocol has a particular ID . As opposed to some protocols in
the literature [Rab83, TC84], the agreement protocol we need is not allowed to fall back on a default
value; the final agreement value must be legal according to some verification, which guarantees that
it is some “useful” value. To ensure this, multivalued validated Byzantine agreement has a global,
polynomial-time computable predicate QID known to all parties, which is determined by a higher-
level application (in this case, the atomic broadcast protocol). Each party may propose a value v
that satisfies QID .

Definition 2 (Multivalued Validated Byzantine Agreement). A protocol solves validated
Byzantine agreement if it satisfies the following conditions for all adversaries, except with negligible
probability:

External Validity: Any honest party that terminates for ID decides v such that QID(v) holds.

Agreement: If some honest party decides v for ID , then any honest party that terminates decides v
for ID .

Liveness: If all honest parties have been activated on ID and all associated messages have been
delivered, then all honest parties have decided for ID .

Efficiency: MC (ID) is probabilistically uniformly bounded.

Integrity: If all parties follow the protocol, and if some party decides v for ID , then v was proposed
by some party.

6

In the atomic broadcast protocol, we use the phrase

propose Xi for multivalued Byzantine agreement on X

to denote the invocation of a multivalued validated Byzantine agreement protocol, where Xi is
Pi’s initial proposal, and X the resulting agreement value. The definition of QID is clear from the
context.

4 Protocol conventions and notations

In this section, we give a brief description of a formal model of the internal structure of an honest
party, and introduce some notation for describing the behavior of an honest party.

Recall that with each step of an attack, the adversary delivers a message to an honest party; the
honest party then performs some computations, updating its internal state, and possibly generating
messages. Messages delivered to a party are appended to the rear of an incoming message queue.
When activated, the party may examine this queue, and remove any messages it wishes.

As a matter of notational convention in describing protocols, we shall not include either the
origin or destination addresses in the body of a message, nor shall we include any authentication
codes that may be used to ensure the authenticity of messages. However, we shall assume that
information regarding the origin of an incoming message is implicitly available to the receiving
party.

There may be several threads of execution for a given party, but at any point in time, at most
one is active.

When a party is activated, all threads are in wait states. A wait state specifies a condition
defined on the incoming message queue and other local state variables. If one or more threads are
in a wait state whose condition is satisfied, one such thread is scheduled (arbitrarily, if more than
one) to execute, and this thread runs until it reaches another wait state. This process continues
until no threads are in a wait state whose condition is satisfied, and then the activation of the
party is terminated, and control returns to the adversary. Of course, we restrict ourselves to
polynomial-time protocols that always relinquish control to the adversary.

That completes the brief description of our formal model of the internal structure of an honest
party. We now introduce the pseudo-code notation we will use to describe how a thread enters a
wait state.

To enter a wait state, a thread may execute a command of the form wait until condition. Here,
condition may be an ordinary predicate on state variables. Upon executing this command, a thread
enters a wait state with the given condition.

We also may specify a condition of the form receiving messages. In this case, messages describes
a set of of one or more messages satisfying a certain predicate, possibly involving other state
variables. Upon executing this command, a thread enters a wait state, waiting for the arrival
of messages satisfying the given predicate; moreover, when this predicate becomes satisfied, the
matching messages are moved out of the incoming message queue, and into local state variables. If
there is more than one set of matching messages, one is chosen arbitrarily.

We also may specify a condition of the form detecting messages. The semantics of this are the
same as for receiving messages, except that the matching messages are copied from the incoming
message queue into local state variables.

In addition to waiting on a single condition, a thread may wait on a number of conditions
simultaneously by executing the command:

7

case upon condition1 : action1 ; · · · upon conditionk : actionk ; end case

Here, each conditioni is a condition as above, and each actioni is an action to be executed when
the condition is satisfied. If more than one condition is satisfied, then an arbitrary choice is made.

We also define an abstract timeout mechanism. Each thread has a timer. One can view the
timer as a special state variable that takes on two values: stopped and running. Initially, the timer
is stopped. A thread may change this value by executing start timer or stop timer commands.
A thread may also simply inspect the value of the timer. A thread may also execute a wait until
or case command with the condition timeout. Additionally, when the adversary activates a party,
instead of delivering a message, it may deliver a timeout signal to a thread whose timer is running;
when this happens, the timer is stopped, and if that thread is waiting on a timeout, the thread is
activated.

This abstract timer can be implemented quite easily in our formal system model in §2.1, which
itself does not include a timer mechanism. A start timer command is implemented by sending a
unique message to oneself, and the adversary delivers a timeout signal by delivering this message.

Of course in a practical implementation, the timeout mechanism is implemented by using a
real clock. However, by giving the adversary complete control over the timeout mechanism in our
formal model, we effectively make no assumptions about the accuracy of the clock, or about how
well clocks belonging to different parties are synchronized.

5 Our New Protocol for Atomic Broadcast

The protocol operates in epochs, each epoch e = 0, 1, 2, etc., consisting of an optimistic and a
pessimistic phase. In the optimistic phase, a designated leader is responsible to order incoming
requests by assigning sequence numbers to them and initiating a Bracha broadcast [Bra84]; the
optimistic phase guarantees the agreement and total order properties, but not the validity or fairness
properties; however, the protocol can effectively determine if validity or fairness are potentially
threatened, and if so, switch to the pessimistic phase. The pessimistic phase cleans up any potential
“mess” left by the current leader, after which the optimistic phase starts again with a new leader.

5.1 Overview and optimistic phase

In the optimistic phase of epoch e, when a party a-broadcasts a request m, it initiates the re-
quest by sending a message of the form (ID , initiate, e,m) to the leader for epoch e. When the
leader receives such a message, it 0-binds a sequence number s to m by sending a message of the
form (ID , 0-bind, e,m, s) to all parties. Sequence numbers start at zero in each epoch. Upon
receiving a 0-binding of s to m, an honest party 1-binds s to m by sending a message of the form
(ID , 1-bind, e,m, s) to all parties. Upon receiving n− t such 1-bindings of s to m, an honest party
2-binds s to m by sending a message of the form (ID , 2-bind, e,m, s) to all parties. A party also 2-
binds s to m if it receives t+1 2-bindings of s to m — this has the effect of “amplifying” 2-bindings,
which is used to ensure agreement. Upon receiving n− t such 2-bindings of s to m, an honest party
a-delivers m, provided all messages with lower sequence numbers were already delivered, enough
acknowledgments have been received, and m was not already a-delivered.

A party only sends or reacts to 0-, 1-, or 2-bindings for sequence numbers s in a “sliding window”
{w, . . . , w+ WinSize− 1}, where w is the number of requests already a-delivered in this epoch, and
WinSize is a fixed system parameter. Keeping the “action” bounded in this way is necessary to
ensure efficiency and fairness.

8

The number of requests that any party initiates but has not yet a-delivered is bounded by a
parameter BufSize: a party will not initiate any more requests once this bound is reached. We
denote by I the set of requests that have been initiated but not a-delivered, and we call this the
initiation queue. If sufficient time passes without anything leaving the initiation queue, the party
“times out” and complains to all other parties. These complaints are “amplified” analogously to the
2-bindings. Upon receiving n − t complaints, a party enters the pessimistic phase of the protocol.
This strategy will ensure validity. Keeping the size of I bounded is necessary to ensure efficiency
and fairness.

Also to ensure fairness, a party keeps track of the “age” of the requests in its initiation queue,
and if it appears that the oldest request is being ignored, i.e., many other requests are being a-
delivered, but not this one, then the party simply refuses to generate 1-bindings until the problem
clears up. If t + 1 parties block in this way, they effectively prevent the remaining parties from
making any progress in the optimistic phase, and thus, the pessimistic phase will be entered, where
the fairness problem will ultimately be resolved.

We say that an honest party Pi commits s to m in epoch e, if m is the sth request (counting
from 0) that it a-delivered in this epoch, optimistically or pessimistically.

Now the details. The state variables for party Pi are as follows.

Epoch number e: The current epoch number, initially zero.

Delivered set D: All requests that have been a-delivered by Pi. It is required to ensure that requests
are not a-delivered more than once; in practice, however, other mechanisms may be employed for
this purpose. Initially, D is empty.

Initiation queue I: The queue of requests that Pi initiated but not yet a-delivered. Its size is
bounded by BufSize. Initially, I is empty.

Window pointer w: w is the number of requests that have been a-delivered in this epoch. Initially,
w = 0. The optimistic phase of the protocol only reacts to messages pertaining to requests whose
sequence number lies in the “sliding window” {w, . . . , w+WinSize−1}. Here, WinSize is a fixed
system parameter.

Echo index sets BIND1 and BIND2: The sets of sequence numbers which Pi has 1-bound or 2-
bound, respectively. Initially empty.

Acknowledgment count acnt: Counts the number of acknowledgments received for a-delivered re-
quests. Initially zero.

Complaint flag complained : Set if Pi has issued a complaint. Initially false.

Initiation time it(m): For each m ∈ I, it(m) is equal to the value of w at the point in time when m
was added to I. Reset to zero across epoch boundaries. These variables are used in combination
with a fixed parameter Thresh to ensure fairness.

Leader index l: The index of the leader in the current epoch; we simply set l = (e mod n) + 1.
Initially, l = 1.

Scheduled request set SR: Only maintained by the current leader. It contains the set of messages
which have been assigned sequence numbers in this epoch. Initially, it is empty.

Next available sequence number scnt: Only maintained by the leader. Value of the next available
sequence number. Initially, it is zero.

The protocol for party Pi consists of two threads. The first is a trivial thread that simply counts
acknowledgments:

9

loop forever
wait until receiving an acknowledgment
increment acnt .

end loop

The main thread is as follows:

loop forever
case MainSwitch end case

end loop

where the MainSwitch is a sequence of upon clauses described in Figure 1.

5.2 Fully Asynchronous Recovery

The recovery protocol tidies up all requests that were initiated under a (potentially) faulty leader.
We distinguish between three types of requests:

• Requests for which it can be guaranteed that they have been a-delivered by an honest party.

• Requests that potentially got a-delivered by an honest party.

• Requests for which it can be guaranteed that they have not been a-delivered by an honest
party.

For the first two kinds of requests, an order of delivery might already be defined, and has to
be preserved. The other requests have not been a-delivered at all, so the recovery protocol has
complete freedom on how to order them. They can not be left to the next leader, however, as
an adversary can always force this leader to be thrown out as well. To guarantee efficiency, the
recovery procedure has to ensure that some request is a-delivered in every epoch. This is precisely
the property that Castro and Liskov’s protocol fails to achieve: in their protocol, without imposing
additional timing assumptions, the adversary can cause the honest parties to generate an arbitrary
amount of messages before a single request is a-delivered.

According to the three types of requests, the recovery protocol consists of three parts.

Part 1. In the first part, a watermark ŝe is jointly computed. The watermark has the property that
at least one honest party optimistically committed the sequence number ŝe, and no honest party
optimistically committed a sequence number higher than ŝe + 2 ·WinSize.

The watermark is determined as follows. When Pi enters the pessimistic phase of the protocol,
it sends out a signed statement to all parties that indicates its highest 2-bound sequence number.
Then, Pi waits for t+ 1 signatures on sequence numbers s′ such that s′ is greater than or equal to
the highest sequence number s that Pi committed during the optimistic phase. Let us call such a set
of signatures a a strong consistent set of signatures for s. Since Pi already received n− t 2-bindings
for s, it is assured that at least t + 1 of these came from honest parties, and so it will eventually
receive a strong consistent set of signatures for s. Any party that is presented with such a set of
signatures can conclude the following: one of these signatures is from an honest party, therefore
some honest party sent a 2-binding for a sequence number at least s, and therefore, because of the
logic of the sliding window, that honest party committed sequence number (s −WinSize) in its
optimistic phase.

10

Figure 1: The optimistic phase
/* Initiate m. */
upon receiving a message (ID , in, a-broadcast,m) for some m such that m /∈ I ∪ D and
|I| < BufSize (note that we take the oldest such message first):

Send the message (ID , initiate, e,m) to the leader.
Add m to I.
Set it(m)← w.

/* 0-bind scnt to m. */
upon receiving a message (ID , initiate, e,m) for some m, such that i = l and w ≤ scnt <

w + WinSize and m /∈ D ∪ SR:
Send the message (ID , 0-bind, e,m, scnt) to all parties.
Increment scnt and add m to SR.

/* 1-bind s to m. */
upon receiving a message (ID , 0-bind, e,m, s) from the current leader for some m, s such that

w ≤ s < w+ WinSize and s /∈ BIND1 and ((I = ∅) or (w ≤ min{it(m) : m ∈ I}+ Thresh)):
Send the message (ID , 1-bind, e,m, s) to all parties.
Add s to BIND1.

/* 2-bind s to m. */
upon receiving n− t messages of the form (ID , 1-bind, e,m, s) from distinct parties that agree

on s and m, such that w ≤ s < w + WinSize and s /∈ BIND2:
Send the message (ID , 2-bind, e,m, s) to all parties.
Add s to BIND2.

/* Amplify a 2-binding of s to m. */
upon detecting t+ 1 messages of the form (ID , 2-bind, e,m, s) from distinct parties that agree

on s and m, such that w ≤ s < w + WinSize and s /∈ BIND2:
Send the message (ID , 2-bind, e,m, s) to all parties.
Add s to BIND2.

/* Commit s to m. */
upon receiving n− t messages of the form (ID , 2-bind, e,m, s) from distinct parties that agree

on s and m, such that s = w and acnt ≥ |D| and m /∈ D and s ∈ BIND2:
Output (ID , out, a-deliver,m); increment w.
Add m to D, and remove it from I (if present).
stop timer.

/* Start timer. */
upon (timer not running) and (not complained) and (I 6= ∅) and (acnt ≥ |D|):

start timer.
/* Complain. */
upon timeout:

if not complained then:
Send the message (ID , complain, e) to all parties.
Set complained ← true.

/* Amplify complaint. */
upon detecting t+1 messages (ID , complain, e) from distinct parties, such that not complained :

Send the message (ID , complain, e) to all parties.
Set complained ← true.
stop timer.

/* Go pessimistic. */
upon receiving n− t messages (ID , complain, e) from distinct parties, such that complained :

Execute the procedure Recover below.

11

Once Pi has obtained its own strong consistent set for s, it signs it and sends this signed
strong consistent set to all parties, and collects a set Mi of n − t signed strong consistent sets
from other parties. Then Pi runs a multivalued Byzantine agreement protocol with input Mi,
obtaining a common set M of n− t signed strong consistent sets. The watermark is computed as
ŝe = (s̃ −WinSize), where s̃ is the maximum sequence number s̃ for which M contains a strong
consistent set for s̃. We will show that no honest party commits a sequence number higher than
ŝe + (2 ·WinSize) in its optimistic phase. And as already argued above, at least one honest party
commits ŝe in its optimistic phase.

After computing the watermark, all parties “catch up” to the watermark, i.e., commit all
sequence numbers up to ŝe, by simply waiting for t + 1 consistent 2-bindings for each sequence
number up to the watermark. By the logic of the protocol, since one of these 2-bindings must
come from an honest party, the correct request is a-delivered. Since one honest party has already
committed s in its optimistic phase, at least t + 1 honest parties have already sent corresponding
2-bindings, and these will eventually arrive.

Part 2. In the second part, we deal with the requests that might or might not have been a-delivered
by some honest party in the optimistic phase of this epoch. We have to ensure that if some honest
party has optimistically a-delivered a request, then all honest parties a-deliver this request as well.
The sequence numbers of requests with this property lie in the interval ŝe + 1 . . . ŝe + 2 ·WinSize.
Each party makes a proposal that indicates what action should be taken for all sequence numbers
in this critical interval. Again, multivalued Byzantine agreement will be used to determine which
of possibly several valid proposals should be accepted.

To construct such a proposal for sequence number s, each party Pi does the following. Party Pi
sends out a signed statement indicating if it sent a 2-binding for that s, and if so, the corresponding
request m. Then Pi waits for a set of n− t “consistent” signatures for s, where any two signatures
that bind s to a request bind it to the same request, but we allow that some (or even all) signatures
bind s to no request. By the logic of the protocol, an honest party will eventually obtain such a
consistent set, which we call a weak consistent set of signatures for s. If all signatures in this set
are on statements that indicate no 2-binding, then we say the set defines no request; otherwise, we
say it defines request m, where m is the unique request appearing among the signed statements in
the set. Pi’s proposal consists of a set of weak consistent sets of signatures for s. Any party that
is presented with such a set can conclude the following: if the set defines no request, then no party
optimistically commits s; if the set defines m, then if any honest party optimistically commits s to
some m′, then m = m′. Note that if the set defines some request m, this does not imply that s was
committed optimistically, and indeed, if s was not optimistically committed, then the adversary
can construct sets that define different requests.

Part 3. In the third part, we use a multivalued Byzantine agreement protocol to agree on a set
of additional requests that should be a-delivered this epoch. This set will include the (possibly
empty) initiation queues of at least n − t distinct parties. This property will be used to ensure
fairness. Also, this set is guaranteed to be non-empty if no requests were previously a-delivered
(optimistically or otherwise) in this epoch. This property will be used to ensure efficiency.

5.2.1 The recovery procedure

We begin with some terminology.
For any party Pi, and any message α, we denote by {α}i a signed version of the message, i.e.,

α concatenated with a valid signature under Pi’s public key on α, along with Pi’s identity.

12

For any s ≥ −1, a strong consistent set Σ for s is a set of t+ 1 correctly signed messages from
distinct parties, each of the form {(ID , s-2-bind, e, s′)}j for some j and s′ ≥ s.

A valid watermark proposalM is a set of n− t correctly signed messaged from distinct parties,
each of the form {(ID , watermark, e,Σj , sj)}j for some j, where Σj is a strong consistent set of
signatures for sj . The maximum value sj appearing in these watermark messages is called the
maximum sequence number of M.

For any s ≥ 0, a weak consistent set Σ′ for s is a set of n − t correctly signed messages from
distinct parties — each of the form {(ID , w-2-bind, e, s,mj)}j for some j — such that either all
mj = ⊥ (indicating no 2-binding for s), or there exists a request m and all mj are either m or ⊥.
In the former case, we say Σ′ defines ⊥, and in the latter case, we say Σ′ defines m.

A valid recover proposal P is a set of n−t correctly signed messages from distinct parties each of
the form {(ID , recover-request, e,Qj)}j for some j, where Qj is a set of at most BufSize requests.

The protocol for the pessimistic phase is presented in Figure 2.

6 Some Remarks on Implementation

The size limit BufSize on initiation queues and the window size WinSize may be arbitrarily chosen.
Larger sizes increase the amount of concurrent activity that is possible, and so will presumably
increase the typical performance of the system; however, a larger size may also decrease performance
and fairness in the worst cast.

When assigning sequence numbers, the leader should not process initiate requests on a first-
come/first-served basis, but rather, should treat requests from different parties in a fair man-
ner, using a “round robin” scheduling policy among parties, and a first-come/first-serve policy
for a given party. Also, the value of Thresh should be chosen large enough so that a party
does not inappropriately suspect a leader of being unfair. In particular, one should choose
Thresh = c1WinSize + c2n · BufSize for appropriate constants c1, c2 ≥ 1 (and best determined
experimentally).

Time-out thresholds should of course be chosen large enough so that normal network delays will
not cause a party to complain. At the beginning of a new epoch, the time-out threshold should
perhaps be fairly high, slowly dropping as the epoch progresses. The reason is that when one epoch
completes, it may take some time for all honest parties to effectively re-synchronize, and so it is
natural to expect some delays at the beginning of a new epoch. This strategy is best determined
experimentally, of course.

If the above strategies are implemented, then our protocol exhibits a certain stability prop-
erty. Informally, this means that the protocol will not transition from the optimistic phase to the
pessimistic phase of the current epoch, unless

• the current leader is corrupt,

• some messages between honest parties are significantly delayed, or

• some honest parties are significantly delayed waiting for acknowledgments.

In particular, unless the current leader is corrupted, the behavior of the corrupted parties alone is
not sufficient to make the protocol “go pessimistic.”

Stability is an important notion, since one would like to avoid entering the pessimistic phase
of the protocol. Although one could, we do not attempt to formalize the notion of stability any
further here.

13

Figure 2: The pessimistic phase

/* Part 1: Recover Potentially delivered Requests */
Send a the signed message {(ID , s-2-bind, e,max(BIND2 ∪ {−1}))}i to all parties.
wait until receiving a strong consistent set Σi for w − 1.
Send the signed message {(ID , watermark, e,Σi, w − 1)}i to all parties.
wait until receiving a valid watermark proposal Mi.
Propose Mi for multivalued Byzantine agreement on a valid watermark proposal M.
Set ŝe ← s̃−WinSize, where s̃ is the maximum sequence number of M.
while w ≤ ŝe do:

wait until receiving t + 1 messages of the form (ID , 2-bind, e,m,w) from distinct
parties that agree on m, such that acnt ≥ |D|.

Output (ID , out, a-deliver,m); increment w.
Add m to D, and remove it from I (if present).

/* Part 2: Recover potentially delivered Requests */
For s← ŝe + 1 to ŝe + (2 ·WinSize) do:

If Pi sent the message (ID , 2-bind, e,m) for some m, set m̃← m; otherwise, set m̃← ⊥.
Send the signed message (ID , w-2-bind, e, s, m̃) to all parties.
wait until receiving a weak consistent set Σ′i for s.
Propose Σ′i for multivalued Byzantine agreement on a weak consistent set Σ′ for s.
Let Σ′ define m.
If (s ≥ w and m ∈ D) or m = ⊥, exit the for loop and go to Part 3.
If m /∈ D then:

wait until acnt ≥ |D|.
Output (ID , out, a-deliver,m); increment w.
Add m to D, and remove it from I (if present).

/* Part 3: Recover undelivered Requests */
If w = 0 and I 6= ∅ then:

Send the message (ID , recover-help, e, I) to all parties.
If w = 0 and I = ∅ then:

wait until receiving a message (ID , recover-help, e,Q), such that Q is a non-empty
set of at most BufSize requests, and Q∩D = ∅.

If w 6= 0 or I 6= ∅, then set Q ← I.
Send the signed message {(ID , recover-request, e,Q)}i to all parties.
wait until receiving a valid recover proposal Pi.
Propose Pi for multivalued Byzantine agreement on a valid recover proposal P.
Sequence through the request set of P in some deterministic order, and for each such request

m /∈ D, do the following:
wait until acnt ≥ |D|.
Output (ID , out, a-deliver,m); increment w.
Add m to D, and remove it from I (if present).

/* Start New Epoch */
Set e← e+ 1; l← (e mod n) + 1; w ← scnt ← 0.
Set SR ← BIND1 ← BIND2 ← ∅.
Set complained ← false.
For each m ∈ I:

Send the message (ID , initiate, e,m) to the leader.
Set it(m)← 0.

14

7 Analysis

If honest party Pi enters epoch e, let D(i)
e denote the sequence of requests that honest party Pi

a-delivered at the point in time where it entered this epoch. We say consensus holds on entry to
epoch e if for any two honest parties Pi and Pj that enter epoch e, D(i)

e = D(j)
e . If consensus holds

on entry to epoch e, and any honest party does enter epoch e, we denote by De the common value
of the D(i)

e , and we denote by Ne the length of De.
Recall that we say that an honest party Pi commits s to m in epoch e, if m is the sth request

(counting from 0) that it a-delivered in this epoch, optimistically or pessimistically. If this occurs
in the optimistic phase, we say Pi optimistically commits s to m.

For s ≥ 0, we say an honest party is s-blocked if it has a-delivered s′ ≤ s requests, and has not
yet received s′ acknowledgments.

Lemma 1. In any epoch, if two honest parties 2-bind a sequence number s, then they 2-bind s to
the same request.

Moreover, if for some s,m,m′, one honest party receives a set of t+ 1 2-bindings of s to m and
one honest party (possible the same one) receives a set of t+ 1 2-bindings of s to m′, then m = m′.

Proof. This is a fairly standard argument. If some honest party 2-binds s to m, then some honest
party (not necessarily the same one) has received n − t 1-bindings of s to m. But since any two
sets of n− t parties must contain a common honest party, and no party 1-binds a sequence number
more than once, if one honest party receives n− t 1-bindings of s to m, and another receives n− t
1-bindings of s to m′, then m = m′. That proves the first statement.

The second statement follows from the first, and the fact that any set of t + 1 parties must
contain an honest party. 2

Lemma 2. If all honest parties have entered epoch e, and all messages and timeouts have been
delivered, and one honest party enters the pessimistic phase of the protocol in this epoch, then all
honest parties have gone pessimistic in epoch e.

Proof. An honest party enters the pessimistic phase of an epoch if it receives n − t complaint
messages. This implies that at least t+ 1 honest parties have sent a complaint message, thus every
honest party will eventually receive at least t + 1 complaint messages. This will cause all honest
parties to send out complaint messages, thus all honest parties eventually receive at least n − t
complaints and thus will go pessimistic. 2

Lemma 3. Suppose that consensus holds on entry to some epoch e, that some honest party has
entered this epoch, and that no honest party has gone pessimistic in this epoch. The following
conditions hold.

local consistency: If some honest party commits s to m, any honest party that also commits s,
also commits s to m.

local completeness: If some honest party commits s to m, and all messages and timeouts have
been delivered, and all honest parties have entered epoch e, and no honest party is (Ne + s)-
blocked, then all honest parties have committed s.

local deadlock-freeness: If all messages, timeouts, and acknowledgments have been delivered,
and all honest parties have entered epoch e, then at most t honest parties have non-empty
initiation queues.

15

local unique delivery: Any honest party a-delivers each request at most once in this epoch.

Proof. If some honest party commits s to m, then it has received n − t 2-bindings of s to m. At
least t + 1 of these are from honest parties. Moreover, by Lemma 1, any set of t + 1 consistent
2-bindings for s that an honest party receives are 2-bindings to s.

Local consistency is now immediate.

If local completeness does not hold, let us choose s to be the minimal s for which this it does
not hold.

Consider any honest party Pi. We want to show that in fact, Pi has committed s, yielding a
contradiction.

By the minimality of s, it is easy to verify that the local value of w for any honest party Pj is
at least s. Since t + 1 honest parties have 2-bound s to m, these 2-bindings will be received at a
point in time where s lies in Pj ’s window. So if Pj will itself 2-bind s to m. Therefore all honest
parties have 2-bound s to m, and Pi has received these 2-bindings while s was in its sliding window.
Because consensus holds on entry to epoch e, and by the consistency part of this lemma, and by
the minimality of s, it follows that all honest parties’ D sets are equal at the point in time when
w = s (locally), and in particular m /∈ D at this point in time, and so is not “filtered out” as a
duplicate. Also, Pi has received sufficient acknowledgments, and so commits s to m.

Suppose local deadlock-freeness does not hold. Then the t + 1 honest parties would certainly
have sent complaint messages, and it is easy to verify that this would eventually cause all parties
to complain, and hence go pessimistic. This contradicts our assumption that no party has gone
pessimistic.

Unique delivery is clear from inspection, as duplicates are explicitly “filtered” in the optimistic
phase. 2

Lemma 4. If all honest parties have entered the pessimistic phase of epoch e, and all messages
and timeouts have been delivered, then all honest parties have agreed on a watermark ŝe.

Proof. When an honest party Pi enters Part 1 of the pessimistic phase in some epoch, it will
eventually obtain a strong consistent set Σi for w − 1. To see this, observe that when Pi waits for
strong consistent set Σi, it has already a-delivered sequence number w− 1, and hence has received
n − t 2-bindings for w − 1. Of these, at least t + 1 came from honest parties who, when they
eventually enter the pessimistic phase for this epoch, will send an s-2-bind message with a sequence
number at least w − 1. These t+ 1 s-2-bind messages form a strong consistent set for w − 1.

Thus, all honest parties eventually obtain strong consistent sets, and send corresponding water-
mark messages. Thus, all honest parties eventually obtain valid watermark proposals, and enter the
multivalued Byzantine agreement with these proposals, and so by the liveness property of Byzan-
tine agreement, all parties eventually agree on a common watermark proposal M with maximum
sequence number s̃ = ŝe + WinSize. 2

Lemma 5. If some honest party has computed ŝe, then

(i) some honest party has optimistically committed sequence number ŝe, and

(ii) no honest party has optimistically committed sequence number ŝe + 2 ·WinSize + 1.

16

Proof. Let s̃ = ŝe + WinSize. To prove (i), note thatM contains a strong consistent set for s̃. The
existence of a strong consistent set for s̃ implies that at least one honest party 2-bound s̃, which
implies that this party has optimistically committed ŝe, because of the sliding window logic.

To prove (ii), suppose some honest party Pj optimistically commits ŝe + 2 ·WinSize + 1 =
s̃ + WinSize + 1. Then by the logic of the optimistic protocol, Pj must have received n − t 2-
bindings for s̃ + WinSize + 1, and so there must be a set S of t + 1 honest parties who sent these
2-bindings. By the logic of the sliding window, each party in S has optimistically committed s̃+ 1,
and so has sent out a strong consistent set for a sequence number greater than s̃. By a standard
counting argument, M must contain a contribution from some member of S, and therefore the
maximum sequence number of M is greater than s̃, which is a contradiction. 2

Lemma 6. Suppose ŝe has been computed by some honest party. Let s be in the range ŝe+1 . . . ŝe+
2 ·WinSize.

(i) If all honest parties generate w-2-bind messages for s, these messages form a weak consistent
set for s.

(ii) If one honest party optimistically commits s to m, then any weak consistent set for s defines
m.

Proof. Part (i) follows directly from Lemma 1.
To prove (ii), if an honest party optimistically committed s to m in epoch e, then he received

t+ 1 2-bindings of s to m from honest parties. Any set of n− t w-2-bind messages must contain a
contribution from one of these t+ 1 parties, and hence defines m. 2

Lemma 7. Suppose that consensus holds on entry to some epoch e, and that some honest party
has entered the pessimistic phase in this epoch.

local consistency: If some honest party commits s to m, any honest party that also commits s,
also commits s to m.

local completeness: If some honest party commits s to m, and all messages and timeouts have
been delivered, and all honest parties have entered epoch e, and no honest party is (Ne + s)-
blocked, then all honest parties have committed s.

local deadlock-freeness: If all messages, timeouts, and acknowledgments have been delivered,
and all honest parties have entered epoch e, then all parties have entered epoch e+ 1.

boundary consistency: If some honest party Pi commits s in epoch e, and some honest party Pj
has entered epoch e+ 1, then Pj commits s in epoch e.

e+ 1 consensus: Consensus holds on entry to epoch e+ 1.

at least one delivery: If some party enters epoch e + 1, then Ne+1 ≥ Ne + 1 (i.e., at least one
request is delivered in epoch e).

boundary completeness: If some honest party enters epoch e+1, and all messages and timeouts
have been delivered, and all honest parties have entered epoch e, and no honest party is
(Ne+1 − 1)-blocked, then all honest parties have entered epoch e+ 1.

local unique delivery: Any honest party a-delivers each request at most once in this epoch.

17

Proof (sketch). The same proof in the local consistency part of Lemma 3 implies in this case as
well that any two parties that optimistically commit s, commit s to the same request.

If one honest party goes pessimistic, then by Lemma 2, all honest parties eventually go pes-
simistic. By Lemma 4, all honest parties eventually compute a common watermark ŝe.

By Lemma 5, part (i), all parties will eventually move through the loop in Part 1 of the
pessimistic phase. To see this, note that since some honest party has optimistically committed s
for all s up to ŝe, t + 1 honest parties have 2-bound s to m, and so when these 2-bindings are
delivered to any honest party, that party can commit s. Note also that these commitments are
consistent, and no party a-delivers a request twice, since we are only delivering requests that have
been optimistically a-delivered, and these are guaranteed to be consistent and duplicate-free.

By Lemma 6, part (i), all parties will eventually move through the loop in Part 2 of the
pessimistic phase, since all of the weak consistent sets that they need will eventually be available.
Lemma 5, part (ii), and Lemma 6, part (ii), together imply that any request that is optimistically
a-delivered by some honest party will be a-delivered in Part 2 of the pessimistic phase in the same
order by all honest parties.

Note that on entry to Part 3, consensus holds: all honest parties have exactly the same value
D as they reach this point. If no requests were a-delivered either optimistically or in Parts 1 or 2,
then all honest parties will send out a non-empty recover request. This will ensure that at least
one request is a-delivered in this epoch. To implement this strategy, if an honest party’s initiation
queue is empty, it waits for an appropriate recover help message. To see that this wait eventually
terminates, note that one honest party, say Pi, must have timed out while holding a non-empty
initiation queue (otherwise, no party could have gone pessimistic). But since no requests were
a-delivered prior to Part 3, Pi sends out a recover help message. Thus, all honest parties move
through Part 3 of the pessimistic phase consistently and without obstruction.

All of the claims in the lemma can be easily verified, given the above discussion. 2

Theorem 8. Our protocol satisfies the agreement, total order, integrity, efficiency, and validity
properties of Definition 1 for atomic broadcast.

Proof. We first define some auxiliary notions.
Let us say that an honest party Pi globally commits a sequence number s to a request m, if m

is the sth request (counting from zero) a-delivered by Pi.
We then define consistency, completeness, deadlock-freeness, and unique delivery as follows.

consistency: If some honest party globally commits s to m, any honest party that also globally
commits s, also globally commits s to m.

completeness: If some honest party globally commits s to m, and all messages and timeouts
have been delivered, and no honest party is s-blocked, then all honest parties have globally
committed s.

deadlock-freeness: If all messages, timeouts, and acknowledgments have been delivered, then all
honest parties are in the optimistic phase of the same epoch, and at most t honest parties
have non-empty initiation queues.

unique delivery: Any honest party a-delivers each request at most.

One can prove by a completely routine induction argument, using Lemmas 7 and 3, that con-
sistency, completeness, deadlock-freeness, and unique delivery hold.

18

It is clear that consistency, completeness, and deadlock-freeness imply the total order, agreement,
and validity properties in Definition 1.

The integrity property trivially follows from unique delivery, and by simple inspection of the
protocol along with the fact that the multivalued validated Byzantine agreement protocol also
satisfies a corresponding integrity property.

Efficiency is also follows from the at least one delivery property in Lemma 7, and by simple
inspection of the protocol. 2

Theorem 9. The fairness condition of Definition 1 holds with ∆ = WinSize +Thresh +2 ·PBound,
where PBound = 2 ·WinSize + (n− t) · BufSize.

Proof. Observe that PBound is an upper bound on the number of requests that can be a-delivered
by any honest party in Parts 2 and 3 of the pessimistic phase of the protocol.

We refer the reader to §2.3 for definitions of the values B(i), D(i), and D∗ that are relevant to
the fairness definition.

Let us recall here the meaning of the phrase “at time τ .” We consider the sequence of events
E1, . . . , Ek during the adversary’s attack, where each event but the last is either an a-broadcast or
a-delivery by an honest party, and the last event is a special “end of attack” event. The phrase “at
time τ ,” for 1 ≤ τ ≤ k, refers to the point in time just before event Eτ occurs.

In our analysis, we need to consider the values of several state variables at time τ besides B(i),
D(i), and D∗. For these purposes, we simply take the above interpretation of time quite literally,
so that the value of any state variable at time τ is the value it has at the point in time just prior
to event Eτ .

At any time τ , let us define D∗(τ) to be the value of D∗ at time τ . Also, define emax (τ) to be
the maximum value of the epoch number e for any honest party at time τ .

Suppose that at some time τ0, there is a set S of t+ 1 honest parties such that for all Pj ∈ S,
the sets B(j)\D∗ are non-empty at time τ0. For each Pj in S, let mj denote the oldest request in
B(j)\D∗ at time τ0.

Clearly, either mj lies in Pj ’s initiation queue at time τ1, or Pj is currently in the pessimistic
phase of some epoch, its initiation queue is empty, and mj will enter its initiation queue as soon
as Pj enters its next epoch.

Consider any point in time τ1 > τ0 such that |D∗(τ1)−D∗(τ0)| = PBound . (If there is no such
time τ1, we are done.) If some mj is in D∗(τ1), we are done; so we assume from now on that no mj

is in D∗(τ1).
If some honest party is in the pessimistic phase of epoch emax (τ0) at time τ0, then since |D∗(τ1)−

D∗(τ0)| = PBound , we must have emax (τ1) > emax (τ0). Therefore, for all parties Pj ∈ S that are
in epoch emax (τ1) at time τ1, it must hold that mj is in Pj ’s initiation queue at time τ1.

At any point in time after τ1, if mj lies in Pj ’s initiation queue, the value of it(mj) is the
minimum among all requests in its initiation queue.

We define the quantity itmax as follows: if no party in S is in epoch emax (τ1) at time τ1, then
itmax is 0; otherwise, itmax is the maximum value of it(mj) for any party Pj in S that is in epoch
emax (τ1) at time τ1.

An honest party that a-delivers “too many” requests, none of which lie in its initiation queue,
will refuse to send 1-bindings. The precise statement of this is as follows.

Consider any point in time τ2 > τ1. For any party Pj ∈ S, if Pj has not a-delivered mj

at time τ2, then Pj has not generated any 1-bindings in epoch emax (τ1) for sequence numbers
itmax + WinSize + Thresh or above at time τ2.

19

Further suppose that at time τ2, no mj is in D∗(τ2). Then we claim that no party has entered
epoch emax (τ) + 1. To see this, note that in Part 3 of the pessimistic phase, since a valid recover
proposal must contain contributions from n − t parties, one of these must come from a party Pj
in S, who would have contributed a recover request containing mj . Also, since no party Pj in
S issued 1-bindings for sequence numbers itmax + WinSize + Thresh or above, no honest party
could have optimistically committed such a sequence number. Therefore, |D∗(τ2) − D∗(τ1)| ≤
WinSize + Thresh + PBound . 2

References

[ACBMT95] E. Anceaume, B. Charron-Bost, P. Minet, and S. Toueg. On the formal specifica-
tion of group membership services. Technical Report TR95-1534, Cornell University,
Computer Science Department, August 25, 1995.

[Ben83] M. Ben-Or. Another advantage of free choice: completely asynchronous agreement
protocols. In Proc. 2nd ACM Symp. on Principles of Distributed Computing, pages
27–30, 1983.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In Proc. 1st ACM Conf. on Computer and Communications
Security, pages 62–73, 1993.

[Bra84] G. Bracha. An asynchronous [(n − 1)/3]-resilient consensus protocol. In Proc. 3rd
ACM Symp. on Principles of Distributed Computing, pages 154–162, 1984.

[Cas00] M. Castro. Practical Byzantine Fault Tolerance. PhD thesis, Massachusetts Institute
of Technology, November 2000.

[CKPS01] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient asynchronous
broadcast protocols. Cryptology ePrint Archive, Report 2001/006, 2001. http://
eprint.iacr.org.

[CKS00] C. Cachin, K. Kursawe, and V. Shoup. Random Oracles in Constantinople: Practical
Asynchronous Byzantine Agreement using Cryptography. In Proc. 19th ACM Symp.
on Principles of Distributed Computing, pages 123–132, 2000.

[CL99a] M. Castro and B. Liskov. Authenticated Byzantine fault tolerance without public-key
cryptography. Technical Memo MIT/LCS/TM-589, MIT Laboratory for Computer
Science, June 1999.

[CL99b] M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Proc. 3rd Symp.
Operating Systems Design and Implementation, 1999.

[CR93] R. Canetti and T. Rabin. Fast asynchronous Byzantine agreement with optimal
resilience. In Proc. 25th ACM Symp. on Theory of Computing, pages 42 – 51, 1993.

[DGG00] A. Doudou, R. Guerraoui, and B. Garbinato. Abstractions for devising Byzantine-
resilient state machine replication. In Proc. 19th IEEE Symp. on Reliable Distributed
Systems, 2000.

20

[FLP85] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374–382, 1985.

[KMMS98] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. The SecureRing protocols for
securing group communication. In Proc. 31st IEEE International Conf. on System
Sciences, pages 317–326, 1998.

[Rab83] M. O. Rabin. Randomized Byzantine generals. In Proc. 24th Symp. on Foundations
of Computer Science, pages 403–409, 1983.

[Rei94] M. K. Reiter. Secure agreement protocols: Reliable and atomic group multicast in
Rampart. In Proc. 2nd ACM Conf. on Computer and Communication Security, pages
68–80, 1994.

[TC84] R. Turpin and B. A. Coan. Extending binary Byzantine Agreement to multivalued
Byzantine Agreement. Information Processing Letters, 18(2):73–76, 1984.

21

