Factoring Polynomials over Finite Fields:

Asymptotic Complexity vs. Reality

Victor Shoup
Dept. of Computer Science
University of Toronto

Toronto, Canada M5S 1A4

Abstract

Several algorithms for factoring polynomials over finite fields are compared from the point of view
of asymptotic complexity, and from a more realistic point of view: how well actual implementations
perform on “moderately” sized inputs.

1 Introduction

The purpose of this paper is to examine several algorithms for factoring polynomials over finite
fields, from both the point of view of asymptotic complexity, and from a more realistic point of
view: how well actual implementations perform on “moderately” sized inputs.

We restrict our attention to factoring in Z,[z], where p is prime. The algorithms we consider
are the algorithms of Berlekamp [B], Cantor & Zassenhaus [CZ], and von zur Gathen & Shoup

[GS].

2 Asymptotic Complexity

Let n be the degree of the polynomial f € Z,[z] to be factored. It is natural to measure the running
times of factorization algorithms in terms of the number of operations in Z, (additions, subtractions,
multiplications, divisions, and zero-tests). All of the algorithms we consider are probabilistic, and
so the operation count is a random variable—it is the expected value of this random variable that
we are most interested in.

Berlekamp’s algorithm can be implemented so as to use an expected number of

O(n” 4 n(log n loglogn) log p)

operations in Z,. The constant w represents the exponent of some matrix multiplication algo-
rithm; that is, we assume that two k& x k matrices can be multiplied using O(k¥) arithmetic
operations, 2 < k < 3. Also, it is assumed that two polynomials of degree k£ can me multiplied
using O(k(log k loglog k)) arithmetic operations.

*Appeared in Proc. IMACS Symposium, Lille, France, 1993.

The Cantor/Zassenhaus algorithm can be implemented so as to use an expected number of
O(n*(log nloglogn) (logp + logn))

operations in Z,.
The von zur Gathen/Shoup algorithm can be implemented so as to use an expected number of

O(n*((log n)* loglog n) + n(logn loglog n) log p)

operations in Z,,.

The operation count for these algorithms depends on both n and p, and so it is a bit difficult
to compare the running times directly. If we let n and logp tend to infinity at the same rate,
then Berlekamp’s algorithm uses O(n*) operations, Cantor/Zassenhaus uses O(n®logn loglogn),
and von zur Gathen/Shoup uses O(n%(logn)?loglogn). So in this case, von zur Gathen/Shoup
is asymptotically fastest. Moreover, for any choice of n and p, the operation count for von zur
Gathen/Shoup is no worse than a constant factor times the operation count of either of the other
two algorithms.

Another complexity consideration is space. A natural measure of space is the maximum number
of elements of Z, that must be stored at any given time.

Berlekamp’s algorithm uses space for O(n?) elements of Z,. A major advantage of the Can-
tor/Zassenhaus algorithm is that it uses space for only O(n) elements. The von zur Gathen/Shoup
algorithm can be implemented using space for O(n%/?) elements.

3 An Implementation Experiment

To assess these algorithms from a more realistic perspective, we discuss the results of an implemen-
tation experiment.

All of our code was written in C++, is relatively machine independent, and is available from the
author via e-mail (shoup@cs.toronto.edu).

An important limitation in this experiment is that we restricted the inputs to polynomials of
the form f = fi fo, where f; and f; are nonassociate irreducible polynomials of degree d = n/2.

We maintain that in the general factoring case, where no information about the factorization of f
is known a priori, neither the Cantor/Zassenhaus or von zur Gathen/Shoup algorithms can compete
with Berlekamp’s algorithm on moderately sized inputs (say, n < 1000) in terms of running time
(although space could be an important issue). Making the above restriction makes the competition
more sporting and more interesting.

We implemented all three algorithms in light of this restriction, and we did not hesitate to fine
tune the algorithms to take advantage of this restriction.

Our test suite of factorization problems consisted of various primes p, with roughly 50, 100,
and 200 bits, and polynomials (of the restricted form) of degrees roughly 25, 50, 100, 250, 500, and
1000.

The test data was generated randomly in the following way. Given n and p, irreducible poly-
nomials f; and f; were chosen uniformly at random from among all irreducibles in Z,[z] of degree
d. The selection of n and p is not entirely random—they are selected to facilitate the efficient
generation of f; and f;; however, no special properties of n and p are exploited by the factoring

algorithms under consideration. In particular, for example, it is not assumed that Z, supports the
FFT.

3.1 Polynomial Arithmetic

Multi-precision integer arithmetic was implemented using code available from Arjen Lenstra.

A critical component in all of these factoring algorithms is multiplication in the ring Z,[z]/(f).
This was done using a “modular” FFT algorithm. Suppose two polynomials g, h € Z[z] are given,
with each coefficient in the range 0...p — 1, and the degree of each polynomial bounded by n — 1.
To compute g - h € Z[z], we first compute the product modulo several single-precision primes ¢
such that Z, supports the FI'T. We then use Chinese remaindering to recover the coefficients of
the product over Z.

Once the product is obtained over Z, the coefficients are reduced mod p.

We also need to compute the remainder of degree 2(n — 1) polynomials modulo f. By pre-
conditioning on f, this can be done very efficiently—essentially at the cost of multiplying two
polynomials of degree at most n—1. Note that without pre-conditioning, the best-known algorithms
for division with remainder cost several polynomial multiplications. This pre-conditioning was
critical in our implementation.

If the number of machine words required to represent p is w, then multiplications in Z, take
O(w?) single-precision machine operations. Although w is related to logp by a constant factor,
to make our “O” estimates of single-precision operation counts more meaningful, we use either w
or log, p, whichever most accurately reflects the running time—for example, note that (log, p)? is
about 900 times as large as w? for the 30-bit radix used in our implementation.

Using the above FFT implementation, the cost of multiplication in Z,[z]/(f) is O(nlognw +
n w?) single-precision operations.

Polynomial GCD computations were implemented using the classical algorithm, which uses
O(n?w?) single-precision operations.

3.2 A Generic Factoring Algorithm

All three factoring algorithms that we implemented can be viewed as specializations of the following
“generic” algorithm.

1. Find h € Z,[z], such that A”? = h (mod f) and 0 < deg(h) < n.

2. Compute constants cg, c; € Z,, such that A2+ c1h +co =0 (mod f).
3. Compute a solution ¢ € Z,, to the equation 2 +cit+co=0.

4. Compute ged(h — ¢, f). This splits f.

The only difference in the three algorithms under consideration is how step 1 of this generic
algorithm is implemented. For each algorithm, the computation in step 1 overwhelmingly dominates
the running time.

Step 2 is trivial to implement. Step 3 is implemented using a probabilistic algorithm for com-
puting square roots modulo p.

The correctness of this algorithm follows from the fact that Z,[z]/(f) is isomorphic to F a ©F 4
and that (A mod f) lies in the subring isomorphic to F, & F,,.

Step 2 uses O(nw(logn + w)) single-precision operations. Step 3 uses an expected number of
O(log, p w?) single-precion operations. Step 4 uses O(n’w?) single-precision operations.

The space requirement for steps 2-4 is O(nw) machine words.

3.3 Berlekamp’s algorithm

We now describe how step 1 of the generic algorithm is implemented using Berlekamp’s method.
The basic idea is to build the n x n matrix representing the Z,-linear map ~ — h? — h mod f,
with respect to the basis 1,z,...,2""!, and then compute a nontrivial vector in the null space of
this matrix.
To build the matrix, we first compute g = 2P mod f. This is done using a repeated squaring
algorithm. A significant savings is obtained by using the left to right (i.e., high order to low order)

repeated squaring algorithm, since multiplication by =z mod f is essentially free.

Once we have g, we fill the matrix by computing g2, ¢°,...,¢" ! mod f. A significant savings
is obtained by pre-computing the point-wise F'IF'T representation of g once, and then using this
point-wise representation to compute ¢g*t! from ¢.

Once we have the matrix, we compute a nontrivial vector in its null space using Gaussian
elimination to put the matrix in row echelon form and then back-substitute. Curiously, the null-
space algorithm in Knuth [K, §4.6.2] computes the reduced row echelon form of the matrix, which
is significantly more expensive than computing the row echelon form and then back-substituting;:
(1/2)n?(1 + o(1)) multiplications in Z, vs. (1/3)n>(1 + o(1)).

A final implementation note: in performing Gaussian elimination over Z, for large p, a speed-up
factor of about two in the running time is obtained by taking a “lazy” approach to reducing mod
p—that is, we reduce integers mod p only occasionally.

The cost of computing A by this method is

O(n*w? + log, p nw(logn + w))

single-precision operations. The space requirement is O(n?w) machine words.

3.4 The Cantor/Zassenhaus Algorithm

The basic idea in the Cantor/Zassenhaus algorithm is to choose a polynomial ¢ € Z,[z] of degree
less than n at random, and then compute

The polynomial £ is computed using repeated squaring.

h will always satisfy h? = h mod p, and with probability 1 — 1/p it will not be a constant.

A significant computational savings (almost a factor of two) is obtained by choosing g = = + r,
where r € Z, is chosen at random. The reason for the savings is that in using a left to right
repeated squaring algorithm, multiplication by x + r mod f is essentially free.

With this modification, it turns out that the probability that & is constant is still quite small.
If f = fifs, then one sees that h = (—1)?f;(—r) (mod f;), for i = 1,2. Therefore, the probability
that h is constant is at most n/(2p), which for the large p that we are considering is quite negligible.

This second variant is the one we actually implemented. In the test cases we report on later, a
“good” h was always found on the first try (as is to be expected).

The cost of computing h by this method is

O(logy p n*w(logn + w))

single precision operations. The space requirement is O(nw) machine words.

3.5 The von zur Gathen/Shoup algorithm

Just like the Cantor/Zassenhaus algorithm, this algorithm chooses r € Z,, at random, sets g = =+,
and then computes

However, the method of raising ¢ to this power is entirely different. For £ > 1, let
N(k)= (@ =1)/(p—=1) =1+p+---+p"".
Then we have the following recursive formulation of N(k), for k > 1:

N(2k) = N(k)+N(k)-p",
N(k+1) = N(k)+p".

The algorithm for computing ¢™v (9) mod f scans the bits of d from left to right, maintain the
polynomials T} = 27" mod f and S, = ¢V mod f. The algorithms computes Sy by computing
Sk - Sk(Tx) mod f, and computes Ty by computing 7%(7%) mod f. The algorithm computes Si41
by computing Sy - (1% + r) mod f (this exploits the special form of ¢), and computes Tj41 by
computing 7%(77) mod f.

To get the process started, we have to compute 77 = 2 mod f by repeated squaring.

From this, we see that h can be computed using O(logn) multiplications mod f, and O(logn)
“modular composition” problems; i.e., computing S(7) mod f, where S and 7" are polynomials of
degree less than n.

The modular composition problems are solved using an adaptation of an algorithm of Brent
& Kung [BK, Algorithm 2.1]. One modular composition problem can be solved with this method
using O(n'/?) multiplications in Z,[z]/(f), plus O(n?) multiplications and additions in Z,. The
space required for Brent & Kung’s method is O(n%/?) elements of Z,.

The cost of computing h by this method is

O(logy p nw(log n + w) + n2w? + 0 *(log n)*w)

single-precision operations. Asymptotically, the third term is dominated by the second; however,
we include it here because in the range of n we are considering, the third term dominates the
second.

The space requirement is O(n*/?w) machine words.

3.6 Timing results

The code we developed was compiled using the Gnu C++ compiler and executed on a Silicon Graphics
4D /2408S. All running times given below are in CPU seconds, as measured by the getrusage UNIX
library routine.

Table 1 illustrates the effectiveness of our FFT-based polynomial multiplication, modulo a
100-bit prime. It shows the running time of the classical multiplication (CM) and division with
remainder algorithms (CD), as well as the FFT-based algorithms (FM) and (FD).

Table 2 shows the running times of Berlekamp’s algorithm (B), the Cantor/Zassenhaus algo-
rithm (C/Z) and the von zur Gathen/Shoup (G/S) algorithm for a 50-bit prime modulus p.

Tables 3 and 4 give the same information for 100-bit, and 200-bit primes p, respectively.

In Table 3, the Cantor/Zassenhaus algorithm was not attempted for n = 1004. Table 3 also
shows the running time of the factorizer implemented in Maple V (M) for n = 24, 56, and 104.
This algorithm is a Cantor/Zassenhaus-type algorithm. To be fair, we ran only the final part of
Maple’s factorizer, which assumes that all irreducible factors of f have the same degree.

In Table 4, the Cantor/Zassenhaus algorithm was not attempted for n = 500 or n = 1004.

The largest polynomial that was factored by any of these algorithms was of degree 1500, modulo
a 200-bit prime. The von zur Gathen/Shoup algorithm finished in 27,978 seconds. Berlekamp’s
algorithm was attempted, but failed as the process attempted to allocate more memory than the
standard limits imposed by the operating system. The Cantor/Zassenhaus algorithm was not
attempted at all.

We attempted to factor a polynomial of degree about 2000 modulo a 200-bit prime, but in this
case, even the von zur Gathen/Shoup algorithm exceeded the memory limits, and the factorization
failed.

Finally, we report that all of these algorithms typically spent more than 98% of their time in
step 1 of the “generic” algorithm.

4 Discussion
We now attempt to draw some conclusions from the results of this experiment.

1. It is clear that for polynomial multiplication and pre-conditioned division with remainder
over Z,, FFT-based algorithms are far superior to the classical algorithms, and the crossover
point is very low—mnear n = 25, depending on the size of p. Table 1 clearly illustrates this.

We would conjecture the main reason that Maple’s factoring algorithm does so poorly (see
Table 3) is the fact that no fast polynomial arithmetic is utilized in these routines. Other
reasons for the poor performance are the facts that the factoring code is interpreted rather
than compiled, and that a significant amount of time is spent on storage management (even
though only linear space is required!). However, we would speculate that these issues are of
secondary importance.

2. It is also clear that the Cantor/Zassenhaus algorithm is uniformly much slower than either
Berlekamp or von zur Gathen/Shoup, at least for the restricted form of the factoring problem
we are looking at.

However, from our data we can draw some more general conclusions about Berlekamp versus
Cantor/Zassenhaus. We would assert that the running time of a general purpose factor-
izer based on Berlekamp would not be considerably slower than the special one we imple-
mented here. On the other hand, a general purpose factorizer based on Cantor/Zassenhaus
would be at least as slow as the special purpose one we implemented here. If one accepts
these assertions, then our data strongly suggests that for large p, the general purpose Can-
tor/Zassenhaus algorithm is horrendously slow compared to Berlekamp. The only advantage
of Cantor/Zassenhaus is its more economical use of space.

3. The data suggest that for the special factoring problem we are considering, the von zur
Gathen/Shoup algorithm is at least competitive with Berlekamp’s algorithm for moderately

n| CM CD M FD
24 .033 037 | .054 | .052
56 183 1921 121 | 118
104 .628 657 | 246 | .240
252 | 3.74 3.85 BHBT | 556
500 | 14.9 15.4 1.16 | 1.16
1004 | 62.0 63.9 244 | 243

Table 1: polynomial multiplication and division

n B| C/z| G/S
24 2 18 3
56 12 132 14
104 43 512 42
252 | 326 | 2,837 | 172
500 | 2,048 | 11,897 | 589
1004 | 14,339 | 49,995 | 2,545

Table 2: factoring with 50-bit primes

n B| c/z] G/S M
24 8 68 10| 2,152
56 39 609 | 42| 4,770
104 115 | 2,311 | 114 | 58,216
252 716 | 13,013 | 438 -
500 | 4,030 | 53,736 | 1,399 —
1004 | 27,482 4,887 —

Table 3: factoring with 100-bit primes

n B C/7 G/S
24 30 301 37
56 141 | 2,854 151

104 366 | 10,685 367
252 | 1,863 | 60,872 | 1,254
500 | 9,504 3,700
1004 | 61,036 12,024

Table 4: factoring with 200-bit primes

sized inputs, and perhaps even faster. Indeed, in our implementation, the cross-over point
was near n = 100, and this was relatively insensitive to the size of p.

A possible objection to this conclusion is that the implementor of these algorithms (the
author) was biased in favor of the von zur Gathen/Shoup algorithm (for obvious reasons). To
this objection, we can only offer our assurances that great care was taken to ensure fairness.

A more substantive objection is that perhaps our diagonalization procedure is not the best
possible. First, perhaps the diagonalization could be made faster by utilizing a modu-
lar technique with single-precision primes, yielding a diagonalization algorithm that uses
O(n®w + n?w?) single-precision operations, instead of O(n?w?) as in the current implementa-
tion. Second, perhaps for the large matrices being diagonalized, Gaussian elimination should
not be used, and instead, a method based on asymptotically fast matrix multiplication should
be used. At present, we have not investigated the efficacy of either approach.

Even if one accepts our conclusion, it is still quite weak. The speed-up over Berlekamp ob-
tained by von zur Gathen/Shoup was quite modest (a factor of about 6, at most). This
speed-up could conceivably be eliminated with a faster diagonalization procedure, as men-
tioned above. Also, we would assert that the general purpose version of von zur Gathen/Shoup
is substantially slower than the special purpose one we implemented. Because of this, for the
general factoring problem, we do not believe the general purpose von zur Gathen/Shoup algo-
rithm is at all competitive with the general purpose version of Berlekamp’s algorithm in the
range of input sizes considered in our test suite. Indeed, devising a practical, general purpose
version of the von zur Gathen/Shoup algorithm is an interesting open problem.

. Finally, in light of our results, we attempt to answer the question: if one must implement a
general purpose factorizer, what algorithm should be used?

If this factorizer is only going to be used to factor polynomials of degree up to 12 modulo 8-bit
primes, then it does not matter too much which algorithm is used. In posing this question, we
are intending that this factorizer is expected to perform reasonably well on, say, polynomials
of degree up to 1000 or so, and for large primes with up to several hundred bits or so.

First, no matter what algorithm is used, if large polynomials are going to be factored, the
FFT should be used for polynomial multiplication and division.

Second, some variant of our “generic” algorithm should probably be used. If the number of
irreducible factors of f is very small (which is typical for random input polynomials) then
a reduction to root-finding via a minimal polynomial computation (generalizing steps 2-4 of
our “generic” algorithm) is especially effective.

Third, if nothing is known about the degrees of the factors of f, then Berlekamp seems like
the best choice, provided the space requirement of Berlekamp does not become a problem.

In situations where space is a problem for Berlekamp’s algorithm, some adaptation of the
techniques in [GS], perhaps in conjunction with a sparse linear system solver such as Wiede-
mann’s [W], may be a practical alternative.

Constructing a well-engineered general purpose factorizer is no easy task. Such a factorizer
would select a strategy based on several factors: the relative sizes of n and p, the size of p
relative to the machine word size, the space limitations of the machine, and the number of
irreducible factors (as discovered early on in the algorithm).

References

[B] E. R. Berlekamp. Factoring polynomials over large finite fields. Math. Comp. 24, 713-735
(1970).

[BK] R.P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series. .J. Assoc.
Comput. Mach. 25, 581-595 (1978).

[CZ] D. G. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials over finite fields.
Math. Comp. 36, 587-592 (1981).

[GS] J. von zur Gathen and V. Shoup. Computing Frobenius maps and factoring polynomials.
Comput. Complexity 2, 187-224 (1992).

[K] D. E. Knuth. The Art of Computer Programming, vol. 2, second edition. Addison-Wesley
(1981).

[W] D. Wiedemann. Solving sparse linear systems over finite fields. IFEE Trans. Inf. Theory
IT-32, 54-62 (1986).

