Efficient Computation of Minimal Polynomials in
Algebraic Extensions of Finite Fields*

Victor Shoup
IBM Zurich Research Lab, Siumerstr. 4, 8803 Riischlikon, Switzerland

sho@zurich.ibm. com

March 11, 1999

Abstract

New algorithms are presented for computing the minimal polyno-
mial over a finite field K of a given element in an algebraic extension
of K of the form K[a] or K[a][8]. The new algorithms are explicit
and can be implemented rather easily in terms of polynomial multi-
plication, and are much more efficient than other algorithms in the
literature.

1 Introduction

In this paper, we consider the problem of computing the minimal polynomial
over a finite field K of a given element o in an algebraic extension of K
of the form K[a] or K[a][8]. The minimal polynomial of ¢ is defined to
be the unique monic polynomial ¢,/ x € Klz] of least degree such that
¢U/K(U) =0.

In the first case, we assume that the ring K[a] is given as K[z]/(f) where
f € K[z] is a monic polynomial of degree n, and that elements in K[a] are
represented in the natural way as elements of K[z]<, (the set of polynomials
of degree less than n).

Similarly, in the second case, we assume that K[«a] is given as above,
and that K[ca][g] is given as (K|[a][y])/(F), where F' € K[a][y] is a monic
polynomial of degree m.

*This is a corrected revision of the November 3, 1998 version, and will appear in ISSAC
’99

We give new algorithms for both cases. To simplify the presentation, we
let R = K[a] in the first case, and R = K[a][f] in the second case, and we
let d = dimg R in either case.

In both cases, our new algorithms have a running time of O(M (d)d'/? +
d?) arithmetic operations in K. Here, M(d) is a bound on the number
of arithmetic operations in K used by an algorithm to multiply elements
in K[z]<q. In stating this running-time bound, we make the (justifiable)
assumption that multiplication in R takes O(M(d)) operations in K.

The space requirement of our algorithms is O(d®/?) elements of K.

We stress that these algorithms are quite practical, and easily beat all
competing algorithms in terms of running times for inputs of modest size.
Moreover, they can be easily implemented using existing algorithms for poly-
nomial multiplication. Indeed, we have implemented these algorithms, and
have verified hat our running-time analysis is an accurate predictor of the
actual behavior. Also, our algorithms do not require that K[a] or K[a][]
are fields.

1.1 Applications

Of course, computation of minimal polynomials is a fundamental operation,
interesting in its own right.

Additionally, computing minimal polynomials in K[a] is an important
step in efficient algorithms for factoring univariate polynomials over K (see
[9] for details). This particular example illustrates the need for considering
the case where R = K|qa] is not a field, since K[a] = K[z]/(f), where f is
the polynomial we are trying to factor.

Also, an algorithm for computing minimal polynomials in K[a] or
K[a][8] can be used as a subroutine in a modular algorithm for comput-
ing minimal polynomials over Z of integral extensions of Z of an analogous
form: Z[u] and Z[u][v]. This example also illustrates the need for treating
non-fields R, since even if we start with an integral domain Z[u] or Z[u][v],
after reduction modulo a prime, we may not end up with a field; moreover,
just testing for that condition is more expensive than our algorithms for
computing minimal polynomials.

1.2 Relation to Other Algorithms

Of course, the simplest algorithm to use is Gaussian elimination: given
o € R, compute the sequence

and find a linear relation over K using Gaussian elimination. Using standard
algorithms, this results in a running time of O(d?) operations in K, and
space for O(d?) elements in K. We do not consider asymptotically fast
matrix methods here, as these are of no practical significance. Clearly, our
new algorithms are substantially less costly in terms of both time and space.

Special algorithms can be used when and R = K[q] is also a field. Sup-
pose K has cardinality g. Then an algorithm of Gordon [3] runs as follows.
Given o € R, we compute the sequence

o0, .. ,Uql_l,
where [is the smallest positive integer such that ol = o,s0l|d,andl=d
in the worst case. The algorithm then computes

(a—o)(a—0d?) - (a— Uql_l) €R,

from which ¢,k is easily obtained.
Using standard exponentiation algorithms, the running time of this al-
gorithm is
O(log gM (d)d)

operations in K, and the space requirement is O(d) elements in K.

Although this algorithm has a lower space requirement than ours, its
running time is significantly higher than ours. Moreover, this algorithm
does not work in the case where R is not a field, nor does it work in the case
where R = K|a][f].

Our new algorithm is based on Wiedemann’s projection method: given
o € R, we choose a random projection 7 € homg (R, K), and compute the
sequence

co =7(1),¢1 = w(0),...,cq-1 = (o247 L).

We then feed this projected sequence to an implementation of the
Berlekamp/Massey algorithm to compute its minimal polynomial over K
(as a linearly generated sequence). In general, this procedure will yield a
divisor of ¢, , and some extra work is required to obtain ¢, x itself.

A straightforward implementation of this approach takes O(dM(d)) op-
erations in K, the bottleneck being the computation of the successive powers
of 0. However, we do not really need to explicitly compute these powers—
we only need to compute the projections of these powers under the given 7.
We call this the power projection problem.

It was observed in [8] that this problem was related to the polynomial
evaluation problem: given g € K|[z] of degree less than 2d and ¢ € R, com-
pute g(o) € R. More precisely, if the power projection is viewed as a linear
operation on the coordinate vector of 7, and polynomial evaluation is viewed
as a linear operation on the coordinate vector of g, then under the natural
choice of basis, the matrices representing these linear transformations are
the transpose of one another. An algorithmic theorem, which we call the
transposition principle, states that any bi-linear algorithm for computing a
matrix/vector product can be transformed into one of the same complexity
that computes the transposed matrix/vector product. One simply reverses
the flow of the linear circuit representing the algorithm (see, e.g., [5]). Fur-
thermore, it was noted that an algorithm of Brent and Kung [2] solved the
polynomial evaluation problem using O(M(d)d/? + d?) operations in K.
All of these observations together implied the existence of an algorithm for
the minimal polynomial problem whose running time is O(M(d)d"/? + d?)
operations in K.

So in theory, at least, the problem we set out to solve has already been
solved in [8]. However, none of the algorithms in [8] can be directly imple-
mented in any practical way. A straightforward application of that theory
would have required the explicit construction of an arithmetic circuit solv-
ing the polynomial evaluation problem, followed by a “reverse evaluation”
of that circuit to solve the power projection problem. This would hardly be
practical for a number of reasons, not the least important of which is that
the most practical implementations of polynomial multiplication algorithms
often stray outside the model of arithmetic circuits over K.

So the work in [8] left a significant gap between theory and practice.
This gap was partially closed in [9] where explicit algorithms for the power
projection problem were given in the case that R = K[a| and K = Z/(p),
and also assuming a specific FFT-based implementation of multiplication in

Our new algorithms for R = K[a] and R = K|[a][d] are fairly simple, and
are described in terms of multiplication in K[z] or K|[a][y]. This means that
they should be quite easy to implement in any computer algebra software
environment.

In the case R = KJa], our solution amounts to essentially an explicit
algorithm for the power projection problem. Our solution in the case R =
K[a][g] is a bit different—we do not solve the power projection problem for
an explicitly given 7, but rather for a random, implicitly defined =, which
is good enough.

We remark that Kaltofen [4] also observed that the transposition princi-
ple can be brought to bear on the minimal polynomial problem in K|a][3].

2 Polynomial Evaluation and Power Projection

In this section, we recall algorithms from the literature for polynomial eval-
uation and power projection, and extend them to satisfy our particular re-
quirements.

2.1 Polynomial Evaluation

We first consider the polynomial evaluation problem in K[a] over K. That
is, given o € K[a] and g = Y.'7(giz* € K[z], compute g(o).

This can be done efficiently using an algorithm of Brent and Kung [2]
using O(M (n)I'/? + In)) operations in K, as follows. We set k = [I'/2] and
k' = [1/k]. The algorithm first computes the powers 1,0,...,0%. Then the
following is executed:

7+ 0€ Kla]
fori <+ k'—1,...,0do

T4 T 0" +E§;3 Gik+j07
output 7

It is easy to verify that this algorithm is correct and can be implemented
using O(M (n)I'/? + In) operations in K.

2.1.1 A generalization

We will also need an algorithm for the polynomial evaluation problem in
K[a][B] over K. That is, given o € K[a][(] and g € K[z].;, compute g(o).
It is straightforward to check that the above algorithm extends to this case,
obtaining an algorithm that uses O(M(d)I'/? 4 1d) operations in K.

2.2 Power Projection

We first consider the power projection problem in K[a] over K: for a given
integer [, and a given o € KJa], and a given vector v € K™, compute the
sequence

co=(v,1), c1 =(v,0), ..., -1 = <fu,0l_1)

of [values in K.

Here, (-,-) denotes inner product, and where there can be no confusion,
we allow one of the arguments to come from a vector space isomorphic to
K™ under a natural isomorphism.

This can be done using an algorithm described in [9] using O (M (n)I'/? +
In) operations in K.

To describe that algorithm, for 7 € K[a] and v € K", we define T ov €
K™ to be the unique vector satisfying (7 ov,7') = (v,77") for all 7’ € K|a].
This operation makes K" into a module over K|[a].

We call this operation transposed multiplication in K[a| over K; indeed,
for fixed 7, the matrix representing the K-linear map v — 7 o v is just the
transpose of the matrix representing the “multiplication by 7”7 map. By the
transposition principle, then, the complexity of transposed multiplication is
the same as that of multiplication. In the next section, however, we give
an explicit algorithm for transposed multiplication in terms of polynomial
multiplications.

Note that it makes perfect sense to define transposed multiplication over
K when K is replaced by an arbitrary commutative ring with unity, and
our algorithms work in this case as well.

The algorithm for power projection runs as follows. We set k = [I/2]
and k' = [1/k]. We first compute 1,0,...,0*. Then we execute the following
algorithm:

for i ¢ 0,...,k' =1 do
Ciktj < (v,07) (0< 5 <k)
'U(_O'kO'U

It is readily verified that this procedure will compute the desired se-
quence. The running time is O(I'/?) multiplications in K[a], O(I/?) trans-
posed multiplications in K[a], plus O(In) operations in K. Thus the total
cost is O(M(n)I'/? + In) operations in K.

2.2.1 A generalization

Besides an algorithm for power projection in K|[a] over K, we will also need
an analogous algorithm for K[a][f] over K. In this case, we formulate the
problem as follows. We are given a positive integer [, o € K[a], v € K[a]™,
and w € K™. Our goal is to compute the sequence

CO:<wa<'Ual>>a (w,(v,a)), REE) <w,<’U,0‘l_1)>

of [values in K.

We present here an algorithm that requires O(M (d)I'/? + Id) operations
in K. For a vector v € K[a]", we let v[t] denote its ¢-th component, indexing
from 0. We also extend this notation to R, expressing elements in R on the
natural polynomial basis over K|a].

This algorithm makes use of transposed multiplications in R over K|/,
as well as transposed multiplications in K[a] over K.

Let k = [I'/2], and k' = [I/k]. We first compute 1,0,...,06%. Then we
execute the following:

for i<+ 0,...,k'—1do
fort<0,...,m—1do
w) — v[t] o w
for j«0,...,k—1do
Cikyj — L (w®,o7t])
v okfouw

The correctness and running-time bound are easily verified. Note that
we cannot simply compute

Cik+j < (w,(v,oj)) (0 <J< k)

by direct application of these formulas, since then we would get a term of
O(lmM(n)) in the running time.

3 Transposed Multiplication

To complete the algorithm for power projection described in the previous
section, we have to specify an algorithm for transposed multiplication in
Kla] over K: given 7 € K[a] and v € K™, compute T ov € K".

By the transposition principle, the complexity of this problem is the
same as that of the ordinary modular multiplication problem. But we want
a specific algorithm.

Let b = Y04 biz® € K[z], where b(a) = 7. Let v = (vg,...,v5-1)".
Recall that f € KJz] is the monic polynomial of degree n defining the
extension K[a] over K. Let f = 2" + Y7 fiz®.

The algorithm is based on the following lemma.

Lemma 1 We have

Vo V1 ottt Up—i bo
U1 (% B Un b1
TOov = . . bl (1)
Un—1 Up "' V2p—2 br—1
where vy, ..., von—o are defined by

fovien + fivicppi +- -+ facivici +0; =0 (n<i<2n-2). (2)
Proof. For 0 <1 < n, we have
(row)[i] = (Tow,a’) = (a' owv,T).
So to prove the lemma, it suffices to show that for 0 <1i,5 < n,
(o 0 v)[j] = vis-

But _ . ' o

(o 0 v)[j] = (o 0 v,09) = (v, ai*).
So it suffices to show that (v,a’) = v; for 0 <i<2n—2. For 0 <i <n
this is trivial, and for 1 > n, this follows from the fact that the sequence of

powers o’ and the sequence of values v; satisfy the same linear recurrence.
O

An algorithm for computing vy, ...,ve,_2 as above was presented in [7]
(see also [10]). Define

n—1) n—2)
a= Z viz' and @ = Z VignZ'.
=0 =0

Letf be the “reverse” of f; that is, f = 2™ f (z~1). Also, let h be the inverse
of f modulo 2™ !. Then from [7] we can compute & as

a = —h(fa div z") mod z" L.

Once we have G, we can compute 7 o v via (1) as the coefficient vector
of the polynomial

(ba div 2" ') 4+ z - (ba mod z™ 1),

where b = 2" 1b(z).
Assuming we have pre-computed h, we can put all this together in the
following algorithm:

t1 « f-a div 2"
t2<—5-adivxn_
t3(—h'5't1 mod z" !
output to — - 3

1

In a straightforward implementation, this will require four multiplica-
tions in K[z]<y. However, if either 7 or v is fixed for several computations
of T owv, we can pre-condition to reduce the cost. In fact, both of these cases
arise in our algorithms for computing minimal polynomials.

3.1 Pre-conditioning on 7

In this case, we can pre-compute bh mod 2™ ! taking one multiplication in
K|z]<p, and then the above algorithm for transposed multiplication takes
just three additional multiplications in K[z]|<,,.

3.2 Pre-conditioning on v

In this case, we can pre-compute ¢; and ht; mod z" !, taking two multiplica-
tions in K[z]<y, and then the above algorithm for transposed multiplication
takes just two additional multiplications in K[z],.

3.3 An implementation note

In a given implementation, it may be more convenient to compute ¢-h mod
"L, for a given ¢ € K[z]<p, as éz" ! div f, where ¢ = 2" ¢(z7!). In a
good implementation of polynomial arithmetic, computing ¢ - A mod z"~!
in this way should cost one multiplication in KJ[z]<p, assuming pre-
conditioning on f.

3.4 An open question

We remark that our algorithm for transposed multiplication is not quite as
efficient as that implied by the transposition principle. Indeed, an ordinary
multiplication in K [a] can be implemented using 3 multiplications in K[z,
(assuming pre-conditioning on f), whereas our transposed algorithm takes 4
(without pre-conditioning on 7 or v). This lack of “optimality” comes from
the way we compute the matrix-vector product (1). The matrix here is a
Hankel matrix, and we have presented a fairly standard algorithm that com-
putes a Hankel matrix/vector product using two polynomial multiplications
in K[z]<p. Interestingly, however, the transposition principle implies that
one can compute a Hankel matrix/vector product in the same time as one
multiplication in K[z]<y. This suggests the following question: can a Han-
kel matriz/vector product calculation be reduced to a single multiplication in
K[z])<n via an efficient transformation?

3.5 A generalization

The above algorithm for transposed multiplication in K[«a] over K also works
for transposed multiplication in K[c][f] over K[a]. Indeed, nothing about
the above algorithm requires that the base ring is a field, just that the
leading coefficient of the polynomial defining the extension is a unit.

4 The case R = K|q]

In the algorithms in this section and the next, we shall need as a subroutine
the Berlekamp/Massey algorithm [6]. Let ¢g, c1, . . . be a sequence of elements
in K that is linearly generated with minimal polynomial of degree at most
l. Then this algorithm takes as input the first 2/ elements in this sequence,
and outputs its minimal polynomial. The running time is O(I2). One can

10

also use an asymptotically fast version [1] that runs in time O(M(l)logl),
but this is not critical in our application.
We shall denote the output of this algorithm as BerMass(cg, ..., ¢ 1)

Now we present and analyze an algorithm for computing the minimal
polynomial of an element o € K[a| over K. The algorithm can be viewed
as an instance of a more general algorithm of Wiedemann [11], but it turns
out that the transposed multiplication algorithm plays a critical role.

Recall that n = [K[o] : K].

Let o € K[a] be the polynomial whose minimal polynomial we want to
compute. Let [be a bound on the degree of the minimal polynomial of o.
By default, we can always set [= n.

The algorithm then runs as follows.

g+ 1€ K|z]
T+ 1€R

while 7 # 0 do
choose v € K" at random
V4 TOW
ci + (v,0t) fori =0,...,2(l —degg) — 1
g' « BerMass(co, - - - , Co(1—deg g)—1)

g+ g9
T+ 74 (0)

output g

We claim that
(1) upon termination, this algorithm outputs ¢, x;

(2) using the algorithms described above for power projection, poly-
nomial evaluation, and transposed multiplication, along with the
Berlekamp/Massey algorithm, the algorithm has an expected running
time of

O(M(n)I*? + In)

operations in K.

11

The first claim follows easily by induction. The induction hypothesis is
that at the beginning of each loop iteration, g divides ¢,/ x, and T = g(o).
Now, the polynomial ¢’ computed in the loop body is a divisor of the minimal
polynomial of the linearly generated sequence

T,70,T0,. ...
Moreover, the minimal polynomial of this sequence is precisely ¢,k /g-
From this, it immediately follows that the loop invariant indeed holds from
one iteration to the next.
As for the second claim, it is easily verified that a single loop iteration

costs at most
O(M (n)I*/? + In)

operations in K. Moreover, more general results of Wiedemann [11] imply
that the expected number of loop iterations of this algorithm is O(1), from
which the second claim is immediate.

The above algorithm can be easily “optimized” in several ways to im-
prove its performance somewhat. For example, we can always quit as soon
as degg = [, perhaps avoiding the computation of ¢g’'(c) at the bottom of
the loop. Also, in the first iteration of the loop, the instruction v < 7 ow
can be skipped.

Another simplification can be made when it is known in advance that
¢o/K is irreducible; for example, when KJa] is a field. In this case, exactly

one iteration of the loop suffices, setting v = (1,0,...,0)7.

5 The case R = K|ao][(]

Now we present and analyze an algorithm for computing the minimal poly-
nomial of an element o € K[a][8] over K. We assume K[a| = K[z]/(f),
where f € K[z] is monic, and of degree n, and that K[a][8] = K[a][y]/(F),
where F' € K[a|[y] is monic, and of degree m. Let d = dimg R = nm.

First, our algorithm needs to construct a vector w € K" that satisfies
the following property:

for all non-zero pu € Kla| there ezists a v € K[a| such that

(w, pv) # 0.
For this purpose, we can always take w = (0,...,0,1)7. If the constant
term of f is nonzero, we can take w = (1,0,...,0)7.

12

Now, for v € K[a|™, define m,, : R — K be the K-linear map that
sends 7 € R to (w, (v,T)).

Lemma 2 The map

Ko™ — homg(R,K)

Vo My
is a K-isomorphism.

Proof. Considering dimensions, it suffices to show that the map is injective.
Let v € K[a]™ be nonzero. It suffices to show that m, ,, is not the zero map.
Let v[i] = p # 0 for some 0 < ¢ < m. Then the defining condition of
w guarantees that there exists v € K[a] such that (w,ur) # 0. Thus,

71'v,w(’/ﬁi) 7é 0. O

The lemma implies that if v € K[a]™ is chosen at random, then 7, ,, is
a random element of homg (R, K).

Now we have everything we need to present our algorithm. Let o0 € R
be the element whose minimal polynomial over K we wish to compute. Let
1 <1 < d be a bound on the degree of this polynomial.

g 1€ Klz]

T+ 1eER

while 7 # 0 do
choose v € K[a]™ at random
V- TOW

c; — (w,{v,0")) fori =0,...,2(I —degg) — 1
g’ — BerMass(co, -+ Co(l—deg g)—l)

g+ g9’
T+ 7¢'(0)

output g

The following claims are easy to verify:

13

(1) upon termination, this algorithm outputs ¢, /K

(2) using the algorithms described above for power projection, poly-

nomial evaluation, and transposed multiplication, along with the
Berlekamp/Massey algorithm, the algorithm has an expected running
time of

OM (d)I'? +1d)
operations in K.

Also, as for the case R = K|[a/, several optimizations are possible, and

if ¢5/x is known to be irreducible, a single iteration with v = (1,0,... ,0)7
and w = (1,0,...,0)7 suffices.

References

[1]

[2]

3]

[4]

[5]

[6]

[7]

(8]

R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun. Fast solution of
Toeplitz systems of equations and computation of Padé approximants.
J. Algorithms, 1:259-295, 1980.

R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal
power series. J. Assoc. Comput. Mach., 25:581-595, 1978.

J. Gordon. Very simple method to find the minimal polynomial of an
arbitrary non-zero element of a finite field. Electronic Letters, 12:663—
664, 1976.

E. Kaltofen. Challenges of symbolic computation: my favorite open
problems. Preprint, 1998.

M. Kaminski, D. G. Kirkpatrick, and N. H. Bshouty. Addition re-
quirements for matrix and transposed matrix products. Journal of

Algorithms, 9:354-364, 1988.

J. Massey. Shift-register synthesis and BCH coding. IEEE Trans. Inf.
Theory, 1T-15:122-127, 1969.

V. Shoup. A fast deterministic algorithm for factoring polynomials over
finite fields of small characteristic. In Proc. Int. Symp. on Symbolic and
Algebraic Comp., pages 14-21, 1991.

V. Shoup. Fast construction of irreducible polynomials over finite fields.
J. Symbolic Comp., 17(5):371-391, 1994.

14

[9] V. Shoup. A new polynomial factorization algorithm and its implemen-
tation. J. Symbolic Comp., 20(4):363-397, 1995.

[10] J. von zur Gathen and V. Shoup. Computing Frobenius maps and
factoring polynomials. Computational Complezity, 2:187-224, 1992.

[11] D. Wiedemann. Solving sparse linear systems over finite fields. IEEE
Trans. Inf. Theory, IT-32:54-62, 1986.

15

