
OAEP Reconsidered∗

Victor Shoup
IBM Zurich Research Lab, Säumerstr. 4, 8803 Rüschlikon, Switzerland

sho@zurich.ibm.com

September 18, 2001

Abstract

The OAEP encryption scheme was introduced by Bellare and Rogaway at Euro-
crypt ’94. It converts any trapdoor permutation scheme into a public-key encryption
scheme. OAEP is widely believed to provide resistance against adaptive chosen cipher-
text attack. The main justification for this belief is a supposed proof of security in the
random oracle model, assuming the underlying trapdoor permutation scheme is one
way.

This paper shows conclusively that this justification is invalid. First, it observes
that there appears to be a non-trivial gap in the OAEP security proof. Second, it
proves that this gap cannot be filled, in the sense that there can be no standard “black
box” security reduction for OAEP. This is done by proving that there exists an oracle
relative to which the general OAEP scheme is insecure.

The paper also presents a new scheme OAEP+, along with a complete proof of
security in the random oracle model. OAEP+ is essentially just as efficient as OAEP,
and even has a tighter security reduction.

It should be stressed that these results do not imply that a particular instantia-
tion of OAEP, such as RSA-OAEP, is insecure. They simply undermine the original
justification for its security. In fact, it turns out—essentially by accident, rather than
by design—that RSA-OAEP is secure in the random oracle model; however, this fact
relies on special algebraic properties of the RSA function, and not on the security of
the general OAEP scheme.

∗This is a revision, with corrections and improvements, of the original November 16, 2000 version. An
extended abstract of this paper appeared in Crypto 2001.

1

1 Introduction

It is generally agreed that the “right” definition of security for a public key encryption scheme
is security against adaptive chosen ciphertext attack, as defined in [RS91]. This notion of
security is equivalent to other useful notions, such as the notion of non-malleability, as defined
in [DDN91, DDN00].

[DDN91] proposed a scheme that is provably secure in this sense, based on standard
intractability assumptions. While this scheme is useful as a proof of concept, it is quite
impractical. [RS91] also propose a scheme that is also provably secure; however, it too is
also quite impractical, and moreover, it has special “public key infrastructure” requirements.

In 1993, Bellare and Rogaway proposed a method for converting any trapdoor permu-
tation scheme into an encryption scheme [BR93]. They proved that this scheme is secure
against adaptive chosen ciphertext attack in the random oracle model, provided the under-
lying trapdoor permutation scheme is one way.

In the random oracle model, one analyzes the security of the scheme by pretending that
a cryptographic hash function is really a random oracle.

The encryption scheme in [BR93] is very efficient from the point of view of computa-
tion time. However, it has a “message expansion rate” that is not as good as some other
encryption schemes.

In 1994, Bellare and Rogaway proposed another method for converting any trapdoor
permutation scheme into an encryption scheme [BR94]. This scheme goes by the name
OAEP. The scheme when instantiated with the RSA function [RSA78] goes by the name
RSA-OAEP, and is the industry-wide standard for RSA encryption (PKCS#1 version 2,
IEEE P1363). It is just as efficient computationally as the scheme in [BR93], but it has
a better message expansion rate. With RSA-OAEP, one can encrypt messages whose bit-
length is up to just a few hundred bits less than the number of bits in the RSA modulus,
yielding a ciphertext whose size is the same as that of the RSA modulus.

Besides its efficiency in terms of both time and message expansion, and its compatibility
with more traditional implementations of RSA encryption, perhaps one of the reasons that
OAEP is so popular is the widespread belief that the scheme is provably secure in the random
oracle model, provided the underlying trapdoor permutation scheme is one way.

In this paper we argue that this belief is unjustified. Specifically, we argue that in fact, no
complete proof of the general OAEP method has ever appeared in the literature. Moreover,
we prove that no proof is attainable using standard “black box” reductions (even in the
random oracle model). Specifically, we show that there exists an oracle relative to which the
general OAEP scheme is insecure. We then present a variation, OAEP+, and a complete
proof of security in the random oracle model. OAEP+ is essentially just as efficient as OAEP.

There is one more twist to this story: we observe that RSA-OAEP with encryption
exponent 3 actually is provably secure in the random oracle model; the proof, of course, is not
a “black box” reduction, but exploits special algebraic properties of the RSA function. These
observations have been subsequently extended in [FOPS01] to RSA-OAEP with arbitrary
encryption exponent.

Note that although the precise specification of standards (PKCS#1 version 2, IEEE
P1363) differ in a few minor points from the scheme described in [BR94], none of these

2

minor changes affect the arguments we make here.

1.1 A missing proof of security

[BR94] contains a valid proof that OAEP satisfies a certain technical property which they call
“plaintext awareness.” Let us call this property PA1. However, it is claimed without proof
that PA1 implies security against chosen ciphertext attack and non-malleability. Moreover,
it is not even clear if the authors mean adaptive chosen ciphertext attack (as in [RS91]) or
indifferent (a.k.a. lunchtime) chosen ciphertext attack (as in [NY90]).

Later, in [BDPR98], a new definition of “plaintext awareness” is given. Let us call this
property PA2. It is claimed in [BDPR98] that OAEP is “plaintext aware.” It is not clear
if the authors mean to say that OAEP is PA1 or PA2; in any event, they certainly do not
prove anything new about OAEP in [BDPR98]. Furthermore, [BDPR98] contains a valid
proof that PA2 implies security against adaptive chosen ciphertext attack.

Notice that nowhere in this chain of reasoning is a proof that OAEP is secure against
adaptive chosen ciphertext attack. What is missing is a proof that either OAEP is PA2, or
that PA1 implies security against adaptive chosen ciphertext attack.

We should point out, however, that PA1 is trivially seen to imply security against indiffer-
ent chosen ciphertext attack, and thus OAEP is secure against indifferent chosen ciphertext
attack. However, this is a strictly weaker and much less useful notion of security than security
against adaptive chosen ciphertext attack.

1.2 Our contributions

In §4, we give a rather informal argument that there is a non-trivial obstruction to obtaining
a complete proof of security for OAEP against adaptive chosen ciphertext attack (in the
random oracle model).

In §5, we give more formal and compelling evidence for this. Specifically, we prove
that if one-way trapdoor permutation schemes with an additional special property exist,
then OAEP when instantiated with such a one-way trapdoor permutation scheme is in fact
insecure. We do not know how to prove the existence of such special one-way trapdoor
permutation schemes (assuming, say, that one-way trapdoor permutation schemes exist at
all). However, we prove that there exists an oracle, relative to which such special one-
way trapdoor permutation schemes exists. It follows that relative to an oracle, the OAEP
construction is not secure.

Actually, our proofs imply something slightly stronger: relative to an oracle, OAEP is
malleable with respect to a chosen plaintext attack.

Of course, such relativized results do not necessarily imply anything about the ordinary,
unrelativized security of OAEP. But they do imply that standard proof techniques, in which
the adversary and the trapdoor permutation are treated as “black boxes,” cannot possibly
yield a proof of security, since they would relativize. Certainly, all of the arguments in [BR94]
and [BDPR98] involve only “black box” reductions, and so they cannot possibly be modified
to yield a proof of security.

3

In §6, we present a new scheme, called OAEP+. This is a variation of OAEP that is
essentially just as efficient in all respects as OAEP, but for which we provide a complete,
detailed proof of security against adaptive chosen ciphertext attack. Moreover, the security
reduction for OAEP+ is somewhat tighter than for OAEP.

We conclude the paper in §7 on a rather ironic note. After considering other variations of
OAEP, we sketch a proof that RSA-OAEP with encryption exponent 3 actually is secure in
the random oracle model. This fact, however, makes essential use of Coppersmith’s algorithm
[Cop96] for solving low-degree modular equations. This proof of security does not generalize
to large encryption exponents, and in particular, it does not cover the popular encryption
exponent 216 + 1.

Part of the irony of this observation is that Coppersmith viewed his own result as a reason
not to use exponent 3, while here, it ostensibly gives one reason why one perhaps should use
exponent 3.

It is also worth noting here that by using Coppersmith’s algorithm, one gets a fairly tight
security reduction for exponent-3 RSA-OAEP, and an even tighter reduction for exponent-3
RSA-OAEP+. These reductions are much more efficient than either the (incorrect) reduction
for OAEP in [BR94], or our general reduction for OAEP+. Indeed, these general reductions
are so inefficient that they fail to provide any truly meaningful security guarantees for, say,
1024-bit RSA, whereas with the use of Coppersmith’s algorithm, the security guarantees are
much more meaningful.

Subsequent to the distribution of the original version of this paper1, it was shown in
[FOPS01] that RSA-OAEP with an arbitrary encryption exponent is indeed secure against
adaptive chosen ciphertext attack in the random oracle model. We remark, however, that the
reduction in [FOPS01] is significantly less efficient than our general reduction for OAEP+,
and so it provides a less meaningful security guarantee for typical choices of security param-
eters. This may be a reason to consider using RSA-OAEP+ instead of RSA-OAEP.

Let us be clear about the implications of our results. They do not imply an attack
on RSA-OAEP. They only imply that the original justification for the belief that OAEP
in general—and hence RSA-OAEP in particular—is resistant against adaptive chosen ci-
phertext attack was invalid. As it turns out, our observations on exponent-3 RSA-OAEP,
and the more general results of [FOPS01] on arbitrary-exponent RSA-OAEP, imply that
RSA-OAEP is indeed secure against adaptive chosen ciphertext attack in the random oracle
model. However, the security of RSA-OAEP does not follow from the security of OAEP in
general, but rather, relies on specific algebraic properties of the RSA function.

Before moving ahead, we recall some definitions in §2, and the OAEP scheme itself in §3.

2 Preliminaries

2.1 Security against chosen ciphertext attack

We recall the definition of security against adaptive chosen ciphertext attack.
We begin by describing the attack scenario.

1Cryptology ePrint Archive, Report 2000/060, http://eprint.iacr.org.

4

Stage 1 The key generation algorithm is run, generating the public key and private key for
the cryptosystem. The adversary, of course, obtains the public key, but not the private
key.

Stage 2 The adversary makes a series of arbitrary queries to a decryption oracle. Each
query is a ciphertext y that is decrypted by the decryption oracle, making use of the
private key of the cryptosystem. The resulting decryption is given to the adversary.
The adversary is free to construct the ciphertexts in an arbitrary way—it is certainly
not required to compute them using the encryption algorithm.

Stage 3 The adversary prepares two messages x0, x1, and gives these to an encryption
oracle. The encryption oracle chooses b ∈ {0, 1} at random, encrypts xb, and gives
the resulting “target” ciphertext y∗ to the adversary. The adversary is free to choose
x0 and x1 in an arbitrary way, except that if message lengths are not fixed by the
cryptosystem, then these two messages must nevertheless be of the same length.

Stage 4 The adversary continues to submit ciphertexts y to the decryption oracle, subject
only to the restriction that y 6= y∗.

Stage 5 The adversary outputs b̂ ∈ {0, 1}, representing its “guess” of b.

That completes the description of the attack scenario.

The adversary’s advantage in this attack scenario is defined to be |Pr[b̂ = b]− 1/2|.
A cryptosystem is defined to be secure against adaptive chosen ciphertext attack if for

any efficient adversary, its advantage is negligible.
Of course, this is a complexity-theoretic definition, and the above description suppresses

many details, e.g., there is an implicit security parameter which tends to infinity, and the
terms “efficient” and “negligible” are technical terms, defined in the usual way. Also, we
shall work in a uniform model of computation (i.e., Turing machines).

The definition of security we have presented here is from [RS91]. It is called IND-
CCA2 in [BDPR98]. It is known to be equivalent to other notions, such as non-malleability
[DDN91, BDPR98, DDN00], which is called NM-CCA2 in [BDPR98].

It is fairly well understood and accepted that this notion of security is the “right” one,
in the sense that a general-purpose cryptosystem that is to be deployed in a wide range
of applications should satisfy this property. Indeed, with this property, one can typically
establish the security of larger systems that use such a cryptosystem as a component.

There are other, weaker notions of security against chosen ciphertext attack. For example,
[NY90] define a notion that is sometimes called security against indifferent chosen ciphertext
attack, or security against lunchtime attack. This definition of security is exactly the same
as the one above, except that Stage 4 is omitted—that is, the adversary does not have access
to the decryption oracle after it obtains the target ciphertext. While this notion of security
may seem natural, it is actually not sufficient in many applications. This notion is called
IND-CCA1 in [BDPR98].

5

2.2 One-way trapdoor permutations

We recall the notion of a trapdoor permutation scheme. This consists of a probabilistic
permutation generator algorithm that outputs (descriptions of) two algorithms f and g,
such that the function computed by f is a permutation on the set of k-bit strings, and the
function computed by g is its inverse.

An attack on a trapdoor permutation scheme proceeds as follows. First the generator is
run, yielding f and g. The adversary is given f , but not g. Additionally, the adversary is
given a random y ∈ {0, 1}k. The adversary then computes and outputs a string w ∈ {0, 1}k.

The adversary’s success probability is defined to Pr[f(w) = y].
The scheme is called a one-way trapdoor permutation scheme if for any efficient adversary,

its success probability is negligible. As above, this is a complexity theoretic definition, and
we have suppressed a number of details, including a security parameter, which is input to
the permutation generator; the parameter k, as well as the running times of f and g, should
be bounded by a polynomial in this security parameter.

2.3 The random oracle model

The random oracle model was introduced in [BR93] as a means of heuristically analyzing
a cryptographic primitive or protocol. In this approach, one equips all of the algorithms
associated with the primitive or protocol (including the adversary’s algorithms) with oracle
access to one or more functions. Each of these functions is a map from {0, 1}a to {0, 1}b,
for some specified values a and b. One then reformulates the definition of security so that
in the attack game, each of these functions is chosen at random from the set of all functions
mapping {0, 1}a to {0, 1}b.

In an actual implementation, one typically instantiates these random oracles as crypto-
graphic hash functions.

Now, a proof of security in the random oracle model does not necessarily imply anything
about security in the “real world” where actual computation takes place (see [CGH98]).
Nevertheless, it seems that designing a scheme so that it is provably secure in the random
oracle model is a good engineering principle, at least when all known schemes that are
provably secure without the random oracle heuristic are too impractical. Subsequent to
[BR93], many other papers have proposed and analyzed cryptographic schemes in the random
oracle model.

3 OAEP

We now describe the OAEP encryption scheme, as described in §6 of [BR94].
The general scheme makes use of a one-way trapdoor permutation. Let f be the permuta-

tion, acting on k-bit strings, and g its inverse. The scheme also makes use of two parameters
k0 and k1, which should satisfy k0 + k1 < k. It should also be the case that 2−k0 and 2−k1

are negligible quantities. The scheme encrypts messages x ∈ {0, 1}n, where n = k− k0− k1.
The scheme also makes use of two functions, G : {0, 1}k0 → {0, 1}n+k1 , and H :

6

{0, 1}n+k1 → {0, 1}k0 . These two functions will be modeled as random oracles in the se-
curity analysis.

We describe the key generation, encryption, and decryption algorithms of the scheme.

Key generation This simply runs the generator for the one-way trapdoor permutation
scheme, obtaining f and g. The public key is f , and the private key is g.

Encryption Given a plaintext x, the encryption algorithm randomly chooses r ∈ {0, 1}k0 ,
and then computes

s ∈ {0, 1}n+k1 , t ∈ {0, 1}k0 , w ∈ {0, 1}k, y ∈ {0, 1}k

as follows:

s = G(r)⊕ (x ‖ 0k1), (1)

t = H(s)⊕ r, (2)

w = s ‖ t, (3)

y = f(w). (4)

The ciphertext is y.

Decryption Given a ciphertext y, the decryption algorithm computes

w ∈ {0, 1}k, s ∈ {0, 1}n+k1 , t ∈ {0, 1}k0 , r ∈ {0, 1}k0 ,
z ∈ {0, 1}n+k1 , x ∈ {0, 1}n, c ∈ {0, 1}k1

as follows:

w = g(y), (5)

s = w[0 . . . n+ k1 − 1], (6)

t = w[n+ k1 . . . k], (7)

r = H(s)⊕ t, (8)

z = G(r)⊕ s, (9)

x = z[0 . . . n− 1], (10)

c = z[n . . . n+ k1 − 1]. (11)

If c = 0k1 , then the algorithm outputs the cleartext x; otherwise, the algorithm rejects
the ciphertext, and does not output a cleartext.

4 An informal argument that OAEP cannot be proven

secure

In this section, we discuss the gap in the proof in [BR94]. The reader may safely choose to
skip this section upon first reading.

7

We first recall the main ideas of the proof in [BR94] that OAEP is “plaintext aware” in
the random oracle model, where G and H are modeled as random oracles.

The argument shows how a simulator that has access to a table of input/output values
for the points at which G and H were queried can simulate the decryption oracle without
knowing the private key. As we shall see, one must distinguish between random oracle queries
made by the adversary and random oracle queries made by the encryption oracle. This is
a subtle point, but the failure to make this distinction is really at the heart of the flawed
reasoning in [BR94].

To make our arguments clearer, we introduce some notational conventions. First, any ci-
phertext y implicitly defines values w, s, t, r, z, x, c via the decryption equations (5)-(11). Let
y∗ denote the target ciphertext, and let w∗, s∗, t∗, r∗, z∗, x∗, c∗ be the corresponding implicitly
defined values for y∗. Note that x∗ = xb and c∗ = 0k1 .

Let SG the set of values r at which G was queried by the adversary. Also, let SH be the
set of values s at which H was queried by the adversary. Further, let S∗G = SG ∪ {r∗} and
S∗H = SH ∪{s∗}, where r∗, s∗ are the values implicitly defined by y∗, as described above. We
view these sets as growing incrementally as the adversary’s attack proceeds—elements are
added to these only when a random oracle is queried by the adversary or by the encryption
oracle.

Suppose the simulator is given a ciphertext y to decrypt. One can show that if r /∈ S∗G,
then with overwhelming probability the actual decryption algorithm would reject y; this is
because in this case, s and G(r) are independent, and so the probability that c = 0k1 is 2−k1 .
Moreover, if s /∈ S∗H , then with overwhelming probability, r /∈ S∗G; this is because in this
case, t and H(s) are independent, and so r is independent of the adversary’s view. From this
argument, it follows that the actual decryption algorithm would reject with overwhelming
probability, unless r ∈ S∗G and s ∈ S∗H .

If the decryption oracle simulator (a.k.a., plaintext extractor) has access to S∗G and S∗H , as
well as the corresponding outputs of G and H, then it can effectively simulate the decryption
without knowing the secret key, as follows. It simply enumerates all r′ ∈ S∗G and s′ ∈ S∗H ,
and for each of these computes

t′ = H(s′)⊕ r′, w′ = s′ ‖ t′, y′ = f(w′).

If y′ is equal to y, then it computes the corresponding x′ and c′ values, via the equations (10)
and (11); if c′ = 0k1 , it outputs x′, and otherwise rejects. If no y′ equals y, then it simply
outputs reject.

Given the above arguments, it is easy to see that this simulated decryption oracle behaves
exactly like the actual decryption oracle, except with negligible probability. Certainly, if some
y′ = y, the simulator’s response is correct, and if no y′ = y, then the above arguments imply
that the real decryption oracle would have rejected y with overwhelming probability.

From this, one would like to conclude that the decryption oracle does not help the
adversary. But this reasoning is invalid. Indeed, the adversary in the actual attack has
access to SG and SH , along with the corresponding outputs of G and H, but does not
have direct access to r∗, G(r∗), s∗, H(s∗). Thus, the above decryption simulator has more
power than does the adversary. Moreover, if we give the decryption simulator access to
r∗, G(r∗), s∗, H(s∗), then the proof that x∗ is well hidden, unless the adversary can invert f ,

8

is doomed to failure: if the simulator needs to “know” r∗ and s∗, then it must already “know”
w∗, and so one can not hope use the adversary to compute something that the simulator did
not already know.

On closer observation, it is clear that the decryption simulator does not need to know
s∗, G(s∗): if s = s∗, then it must be the case that t 6= t∗, which implies that r 6= r∗, and
so c = 0k1 with negligible probability. Thus, it is safe to reject all ciphertexts y such that
s = s∗.

If one could make an analogous argument that the decryption simulator does not need
to know r∗, G(r∗), we would be done. This is unfortunately not the case, as the following
example illustrates.

The arguments in [BR94] simply do not take into account the random oracle queries
made by the decryption oracle. All these arguments really show is that OAEP is secure
against indifferent chosen ciphertext attack.

4.1 An example

Suppose that we have an algorithm that actually can invert f . Now of course, in this case,
we will not be able to construct a counter-example to the security of OAEP, but we will
argue that the proof technique fails. In particular, we show how to build an adversary that
uses the f -inverting algorithm to break the cryptosystem, but it does so in such a way that
no simulator given black box access to the adversary and its random oracle queries can use
our adversary to compute f−1(y∗) for a given value of y∗.

We now describe adversary. Upon obtaining the target ciphertext y∗, the adversary
computes w∗ using the algorithm for inverting f , and then extracts the corresponding values
s∗ and t∗. The adversary then chooses an arbitrary, non-zero ∆ ∈ {0, 1}n, and computes:

s = s∗ ⊕ (∆ ‖ 0k1),

t = t∗ ⊕H(s∗)⊕H(s),

w = s ‖ t,
y = f(w).

It is easily verified that y is a valid encryption of x = x∗ ⊕∆, and clearly y 6= y∗. So if the
adversary submits y to the decryption oracle, he obtains x, from which he can then easily
compute x∗.

This adversary clearly breaks the cryptosystem—in fact, its advantage is 1/2. However,
note in this attack, the adversary only queries the oracle H at the points s and s∗. It never
queries the oracle G at all. In fact r = r∗, and the attack succeeds just where the gap in the
proof was identified above.

What information has a simulator learned by interacting with the adversary as a black
box? It has only learned s∗ and s (and hence ∆). So it has learned the first n+k1 bits of the
pre-image of y∗, but the last k0 remain a complete mystery to the simulator, and in general,
they will not be easily computable from the first n + k1 bits. The simulator also has seen
the value y submitted to the decryption oracle, but it does not seem likely that this can be
used by the simulator to any useful effect.

9

5 Formal evidence that the OAEP construction is not

sound

In this section, we present strong evidence that the OAEP construction is not sound. First,
we show that if a special type of one-way trapdoor permutation f0 exists, then in fact, we
can construct another one-way trapdoor permutation f such that OAEP using f is insecure.
Although we do not know how to explicitly construct such a special f0, we can show that
there is an oracle relative to which one exists. Thus, there is an oracle relative to which
OAEP is insecure. This in turn implies that there is no standard “black box” security
reduction for OAEP.

Definition 1 We call a permutation generator XOR-malleable if the following property
holds. There exists an efficient algorithm U , such that for infinitely many values of the
security parameter, U(f0, f0(t), δ) = f0(t⊕ δ) with nonnegligible probability. Here, the prob-
ability is taken over the random bits of the permutation generator, and random bit strings t
and δ in the domain {0, 1}k0 of the generated permutation f0.

Theorem 1 If there exists an XOR-malleable one-way trapdoor permutation scheme, then
there exists a one-way trapdoor permutation scheme such that when OAEP is instantiated
with this scheme, the resulting encryption scheme is insecure (in the random oracle model).

We now prove this theorem, which is based on the example presented in §4.1.
Let f0 be the given XOR-malleable one-way trapdoor permutation on k0-bit strings. Let

U be the algorithm that computes f0(t ⊕ δ) from (f0, f0(t), δ). Choose n > 0, k1 > 0, and
set k = n + k0 + k1. Let f be the permutation on k-bit strings defined as follows: for
s ∈ {0, 1}n+k1 , t ∈ {0, 1}k0 , let f(s ‖ t) = s ‖ f0(t).

It is clear that f is a one-way trapdoor permutation.
Now consider the OAEP scheme that uses this f as its one-way trapdoor permutation,

and uses the parameters k, n, k0, k1 for the padding scheme.
Recall our notational conventions: any ciphertext y implicitly defines values

w, s, t, r, z, x, c, and the target ciphertext y∗ implicitly defines w∗, s∗, t∗, r∗, z∗, x∗, c∗.
We now describe the adversary. Upon obtaining the target ciphertext y∗, the adversary

decomposes y∗ as y∗ = s∗ ‖ f0(t∗). The adversary then chooses an arbitrary, non-zero ∆ ∈
{0, 1}n, and computes:

s = s∗ ⊕ (∆ ‖ 0k1),

v = U(f0, f0(t∗), H(s∗)⊕H(s)),

y = s ‖ v.

It is easily verified that y is a valid encryption of x = x∗ ⊕∆, provided v = f0(t∗ ⊕H(s∗)⊕
H(s)), which by our assumption of XOR-malleability occurs with non-negligible probability.
Indeed, we have

10

t = t∗ ⊕H(s∗)⊕H(s),

r = H(s)⊕ t
= H(s∗)⊕ t∗

= r∗,

z = G(r)⊕ s
= G(r∗)⊕ s∗ ⊕ (∆ ‖ 0k1)

= (x∗ ⊕∆) ‖ 0k1 .

So if the adversary submits y to the decryption oracle, he obtains x, from which he can then
easily compute x∗.

This adversary clearly breaks the cryptosystem. That completes the proof of the theorem.

Note that in the above attack, r = r∗ and the adversary never explicitly queried G at r,
but was able to “hijack” G(r) from the encryption oracle—this is the essence of the problem
with OAEP.

Note that this also attack shows that the scheme is malleable with respect to chosen
plaintext attack.

Of course, one might ask if it is at all reasonable to believe that XOR-malleable one-
way trapdoor permutations exist at all. First of all, note that the standard RSA function
is a one-way trapdoor permutation that is not XOR-malleable, but is still malleable in a
very similar way: given α = (ae mod N) and (b mod N), we can compute ((ab)e mod N) as
(α · (be mod N)). Thus, we can view the RSA function itself as a kind of malleable one-way
trapdoor permutation, but where XOR is replaced by multiplication mod N . In fact, one
could modify the OAEP scheme so that t,H(s) and r are numbers mod N , and instead of
the relation t = H(s) ⊕ r, we would use the relation t = H(s) · r mod N . It would seem
that if there were a proof of security for OAEP, then it should go through for this variant of
OAEP as well. But yet, this variant of OAEP is clearly insecure, even though the underlying
trapdoor permutation is presumably one way.

Another example is exponentiation in a finite abelian group. For a group element g, the
function mapping a to ga is malleable with respect to both addition and multiplication mod-
ulo the order of g. Although for appropriate choices of groups this function is a reasonable
candidate for a one-way permutation, it does not have a trapdoor.

Beyond this, we prove a relativized result. We recall the usual machinery.
A query machine M is a Turing machine with a special query tape, and two special

states call and return. An oracle O is a function mapping bit strings to bit strings. The
computation MO that machine M performs with oracle O proceeds as follows: whenever
the machine enters the call state, the function O is evaluated on the contents on the query
tape, the query tape is overwritten with the output of O, and the machine is replaced in the
return state. In defining notions of security in such a relativized setting, an “adversary” is
a probabilistic, polynomial time query machine; note that we assume that such a machine
always halts after a specific, polynomial number of steps.

11

Theorem 2 There exists an oracle, relative to which XOR-malleable one-way trapdoor per-
mutations exist.

This theorem provides some evidence that the notion of an XOR-malleable one-way
trapdoor permutation scheme is not a priori vacuous.

Also, Theorems 1 and 2 imply the following.

Corollary 1 There exists an oracle, relative to which the OAEP construction is insecure.

We should stress the implications of this corollary.
Normally, to prove the security of a cryptographic system, one proves this via a “black

box” security reduction from solving the underlying “hard” problem to breaking the cryp-
tographic system. Briefly, such a reduction for a cryptosystem based on a general trapdoor
permutation scheme would be an efficient, probabilistic algorithm that inverts a permutation
f on a random point, given oracle access to an adversary that successfully breaks cryptosys-
tem (instantiated with f) and the permutation f . It should work for all adversaries and
all permutations, even ones that are not efficiently computable, or even computable at all.
Whatever the adversary’s advantage is in breaking the cryptosystem, the success probability
of the inversion algorithm should not be too much smaller.

We do not attempt to make a more formal or precise definition of a black-box security
reduction, but it should be clear that any such reduction would imply security relative to
any oracle. So Corollary 1 implies that there is no black-box security reduction for OAEP.

We now prove Theorem 2.
We first begin by describing a probability space of oracles.
Let W be chosen at random from the set of all functions on {0, 1}∗ such that for any

n ≥ 0, W restricted to {0, 1}n acts as a permutation on {0, 1}n.
Let F be a family of permutations, such that for every positive integer k0, and for every

pk ∈ {0, 1}k0 , Fpk is a random permutation on {0, 1}k0 .
Our oracle O responds to four different types of queries:

O1: Given sk ∈ {0, 1}∗, return pk = W (sk).

O2: Given pk , δ ∈ {0, 1}∗ with |pk | = |δ|, return Fpk(δ).

O3: Given sk , v ∈ {0, 1}∗ with |sk | = |v|, return F−1
W (sk)(v).

O4: Given pk , v, δ ∈ {0, 1}∗ with |pk | = |v| = |δ|, return Fpk(F−1
pk (v)⊕ δ).

The idea here is that the function W can be used to generate public key/secret key
pairs for a random trapdoor permutation. If one chooses secret key sk ∗ at random, then
pk ∗ = W (sk ∗) is the corresponding public key. This can be accomplished using the O1

query.
The O2 query can be used to compute the permutation in the forward direction using

pk ∗. Using O3 with the trapdoor sk ∗, one can compute the inverse permutation.
Query O4 is what makes our trapdoor permutation XOR-malleable.

12

Note that the above is not really a well-defined probability probability space—at least,
in the sense of elementary probability theory—since the number of oracles is uncountable.
To make this technically precise, we define a sequence of finite probability spaces {Sm}m≥1,
where Sm defines a distribution of oracles defined on a finite domain Dm, such that for all
m ≥ 1, Dm+1 ⊇ Dm, and the distribution induced by sampling an oracle from Sm+1 and
restricting to Dm is the same as Sm. If we want to examine the probabilistic behavior of
a specific query machine M on a specific input size k0 with respect to a “random” oracle,
we simply choose an m large enough so that this machine on this input size restricts its
oracle queries to Dm, and then choose an oracle from Dm. The behavior is invariant of the
particular choice of m.

To make a rigorous and precise proof, we state and prove the following very simple, but
useful lemma, which we will also use for some other proofs in the paper.

Lemma 1 Let E, E ′, and F be events defined on a probability space such that Pr[E∧¬F] =
Pr[E ′ ∧ ¬F]. Then we have

|Pr[E]− Pr[E ′]| ≤ Pr[F].

Proof. We have
Pr[E] = Pr[E ∧ F] + Pr[E ∧ ¬F]

and
Pr[E ′] = Pr[E ′ ∧ F] + Pr[E ′ ∧ ¬F]

Subtracting these two equations, we have

|Pr[E]− Pr[E ′]| = |Pr[E ∧ F]− Pr[E ′ ∧ F]| ≤ Pr[F].

2

Theorem 2 will now follow from the following lemma.

Lemma 2 Any adversary that makes at most m oracle queries, succeeds in inverting a
permutation on k0 bits with probability O(m2/2k0). Here, the probability is taken over the
random choice of the oracle, the random choice of the secret key, the random choice of the
element to be inverted, and the random choices made by the adversary.

We can assume that whenever the adversary makes an O3 query with a given value of sk ,
he has previously made an O1 query with the same value. Any adversary can be modified
to conform to this convention, increasing m by a constant factor.

Let G0 be the original attack game. Let (sk ∗, pk ∗) be secret key/public key of the
generated trapdoor permutation. Let f0 = Fpk∗ denote this permutation, and assume that it
is a permutation on {0, 1}k0 . Let v∗ ∈ {0, 1}k0 be the string whose f0-inverse the adversary
is trying to compute, and let t∗ be this inverse. Let S0 denote the event that the adversary
succeeds.

We consider a modified attack game, G1, defined as follows. Game G1 is exactly the same
as G0, except that in game G1, if the adversary ever inputs sk ∗ to the O1 oracle, which can
be detected by testing if the output equals pk ∗, it politely halts. Conceptually, G0 and G1

13

are games that operate on the same probability space, but the rules of the game are different.
Let S1 be the event that the adversary succeeds in G1, and let F0 be the event that in game
G0 (or equivalently, G1), the adversary inputs sk ∗ to the O1 oracle. Then Lemma 1 applies
with (S0, S1, F0), and moreover, it is clear that Pr[F0] = O(m/2k0). Therefore,

|Pr[S0]− Pr[S1]| = O(m/2k0). (12)

By construction, the only information the adversary learns about f0 in game G1 is
through its initial input v∗, and calls to the oracles O2 and O4.

We now define a game G′1 that is completely equivalent to game G1, but formulated in a
slightly different way. In this game, we process O1 and O3 queries just as in game G1. Also,
we process O2 and O4 queries with pk 6= pk ∗ just as in game G1. However, we process O2

and O4 queries with pk = pk ∗ differently.
At the outset of the game, we generate a vector (v1, . . . , v2k0) that is a random permu-

tation of {0, 1}k0 . We also generate a sequence (s1, . . . , sm), where each si is uniformly and
independently drawn from {0, 1}k0 .

Now, we shall also define sequences (t0, t1, t2, . . .) and (D1, D2, . . .) incrementally as the
game proceeds. Each ti is a bit string of length k0. Each Di is a pair (j, δ), where j is an
integer and δ is a bit string of length k0. We will maintain two counters, a and b, and it will
always be the case that Di is defined for 1 ≤ i ≤ a, and that tj is defined for 0 ≤ j ≤ b.

Conceptually, the permutation f0 is implicitly defined by f0(tj⊕δ) = vi, whereDi = (j, δ),
1 ≤ i ≤ a, and 0 ≤ j ≤ b.

At the outset of the game, we set a = 1, b = 1, t0 = 0k0 , t1 = s1, and D1 = (1, 0k0). We
also set v∗ = v1 and t∗ = t1. We give v∗ to the adversary—this is the element whose inverse
the adversary is supposed to compute. At the end of the game, the adversary succeeds if its
output is equal to t∗.

Now consider an O2 query with input (pk ∗, δ). We first test if there is an i with 1 ≤ i ≤ a,
such that Di = (0, δ). If so, we let the oracle output the corresponding vi. Otherwise, we
test if there exists an i with 1 ≤ i ≤ a, Di = (j, δ̃), and 1 ≤ j ≤ b, such that

δ = tj ⊕ δ̃, (13)

If so, we let the oracle output the corresponding vi. Otherwise, we increment a, and set
Da = (0, δ), and output va.

Now consider an O4 query with input (pk ∗, v, δ).
Case 1. v = vi for some 1 ≤ i ≤ a:

• If Di = (0, δ̃) for some δ̃, then we process this O4 query just like an O2 query with
input (pk ∗, δ ⊕ δ̃).

• Otherwise, Di = (j, δ̃) for some 1 ≤ j ≤ b and some δ̃. If there exists an i′, with
1 ≤ i′ ≤ a such that Di′ = (j, δ ⊕ δ̃), then we output vi′ .

• Otherwise, we test there exists an i′, with 1 ≤ i′ ≤ a, Di′ = (j′, δ̃′), 0 ≤ j′ ≤ b, and
j′ 6= j, such that

tj ⊕ δ̃ ⊕ δ = tj′ ⊕ δ̃′. (14)

(Note that we allow j′ = 0.) If so, we output vi′ .

14

• Otherwise, we increment a, set Da = (j, δ ⊕ δ̃), and output va.

Case 2. v 6= vi for all 1 ≤ i ≤ a:

• Let
T = {tj ⊕ δ̃ : Di = (j, δ̃), 1 ≤ i ≤ a}.

We increment b, and then we define tb as follows. First, we test if

sb ∈ T. (15)

If so, we choose tb at random from {0, 1}k0\T ; otherwise, we set tb = sb.

• Next, we increment a. Let a′ be such that va′ = v. By construction, we have a′ ≥ a.
We now swap va and v′a. Next, we define Da = (b, 0k0), and then perform the actions
in case 1.

Let S ′1 be the event that the adversary succeeds in game G′1. It is straightforward to
verify that

Pr[S1] = Pr[S ′1]. (16)

Now we define a game G2 that is just like G′1, except that we simply behave as if the
tests (13), (14), and (15) always fail. Conceptually, we view G′1 and G2 as operating on the
same probability space; in particular, the vectors (v1, . . . , v2k0) and (s1, . . . , sm) are the same
in both games. Note that in game G2 it no longer makes sense to speak of an implicitly
defined permutation f0; however, we can still define the event S2 that the adversary outputs
t∗. Let F2 be the event that in game G2, one of these tests (13), (14), and (15) passes (even
though this is ignored in game G2). Notice that in game G2, the values vi seen by the
adversary, and hence the inputs to the oracle, are independent of the values sj. So to bound
Pr[F2], it suffices to bound Pr[F2], conditioning on arbitrary, fixed values of (v1, . . . , v2k0)
and arbitrary, fixed values of the adversary’s coin tosses. In this conditional space, the event
F2 is equivalent to the event that one of O(m2) equations holds, where each equation is of
the form sj = δ, or of the form sj ⊕ sj′ = δ, where j 6= j′. In this conditional space, all the
values δ are constants, while the values sj are uniform and independent. Each equation is
satisfied with probability 1/2k0 , and hence Pr[F2] = O(m2/2k0).

One also sees that Pr[S2 ∧ ¬F2] = Pr[S ′1 ∧¬F2], since both games proceed identically up
until the first point where F2 occurs. So we apply Lemma 1 with (S ′1, S2, F2), and we obtain

|Pr[S ′1]− Pr[S2]| = O(m2/2k0). (17)

Finally, observe that
Pr[S2] = O(1/2k0), (18)

since in this game, the value t∗ is independent of the adversary’s view.
So finally, Lemma 2 follows from (12), (16), (17), and (18).

15

There are a few more details required to finish the proof of Theorem 2. The reason we are
not done is that we want to show that there exists a fixed oracle relative to which the implied
permutation is one way. These details are mostly straightforward, but slightly tedious.

Let {Mi}i≥1 be a complete enumeration of of probabilistic, polynomial time query ma-
chines. Fix numbers 0 < β < α < 1. Lemma 2 implies that for each i ≥ 1, there exists
an integer k(i) such that whenever k0 ≥ k(i), machine MO

i wins the inversion game on
k0-bit permutations with probability at most 2−αk0 . Here, the probability space includes
the random choice of oracle O; note that to be technically correct, O is sampled from an
appropriate space Sm, where m depends on i and k0.

Let c, d be positive numbers whose values will be determined below, and for i ≥ 1 define
k′(i) = max{k(i), dc log i+ de}.

For positive integers i and k0, let us say that oracle O is (i, k0)-good if machine MO
i

wins the inversion game on k0-bit permutations with probability at most 2−βk0 , where the
probability is conditioned on the choice of O; otherwise, we say that O is (i, k0)-bad. By
Markov’s inequality, for any i ≥ 1 and any k0 ≥ k′(i), the probability that a random O is
(i, k0)-bad is at most 2−γk0 , where γ = α− β.

Let us say that a globally defined oracle O is good if it is (i, k0)-good for all i ≥ 1 and
k0 ≥ k′(i); otherwise, we say that O is bad. Note that we cannot talk about the probability
that a random oracle is bad, since we have not defined a probability space over all globally
defined oracles.

For a positive integer B, consider all integers i, k0 with 1 ≤ i ≤ B and 1 ≤ k0 ≤ B. For
this B, there is a domain Dm(B) which is sufficiently large so that all the oracle queries made
by all machines Mi running on k0-bit permutations for i, k0 bounded by B lie in Dm(B). We
can assume that m(B) ≤ m(B + 1) for all B ≥ 1. We then say that an oracle defined on
Dm(B) is B-good if it is (i, k0)-good for all 1 ≤ i ≤ B and k′(i) ≤ k0 ≤ B; otherwise, we say
that it is B-bad. Let p(B) be the probability that a random oracle O chosen from Sm(B) is
B-bad. Then we have:

p(B) ≤
∑
i≥1

∑
k0≥k′(i)

2−γk0 ≤ (1/(1− 2−γ))
∑
i≥1

2−γ(c log i+d).

From this, one sees that p(B) < 1 for appropriate choices of c and d, and for all B ≥ 1.
So we know that for all B ≥ 1, there exist B-good oracles. From this, we want to

show there exists a globally defined good oracle. To do this, we need the following technical
lemma.

Lemma 3 Let {Gi}i≥1 be a sequence of non-empty, finite collections of sets with the following
property: for all i ≥ 1, all S ∈ Gi, and all 1 ≤ j ≤ i, there exists a unique S(j) ∈ Gj such
that S ⊇ S(j).

Then there exists an increasing chain

S1 ⊆ S2 ⊆ S3 ⊆ · · · ,

with Si ∈ Gi for each i ≥ 1.

Proof. We begin by proving the following claim:

16

There exists S ∈ G1 such that for all i > 1, there exists S ′ ∈ Gi with S ′ ⊇ S.

To prove this claim, assume that it is false. Then for all S ∈ G1, there exists i(S) such that
Gi(S) does not contain a superset of S. Since G1 is finite, we can set imax = max{i(S) : S ∈
G1}. Now, Gimax is non-empty, so let S ′ be an element of Gimax . We have a decreasing chain

S ′ = S ′(imax) ⊇ S ′(imax − 1) ⊇ · · · ⊇ S ′(1) = S,

with S ′(j) ∈ Gj for 1 ≤ j ≤ imax . But then it follows that Gi(S) contains a superset, namely
S ′(i(S)), of S. That proves the claim.

We now prove the lemma using this claim. Choose an S1 ∈ G1 whose existence is
guaranteed by the claim. Now consider the sequence {G ′i}i≥2 of collections of sets, where for
all i ≥ 2, G ′i consists of those elements of Gi that contain S1. By the claim, G ′i is non-empty
for all i ≥ 2. Moreover, it is easily verified that {G ′i}i≥2 satisfies the other hypotheses of the
lemma (this relies on the uniqueness of the restriction map sending S ∈ Gi to S(j) ∈ Gj for
all 1 ≤ j ≤ i). So we can apply the claim to {G ′i}i≥2, obtaining an S2 ∈ G ′2. Iterating this
procedure, we can build up an increasing chain

S1 ⊆ S2 ⊆ S3 ⊆ · · · ,

with Si ∈ Gi for each i ≥ 1. 2

Now, for B ≥ 1, let GB be the set of B-good oracles defined on Dm(B). It is easy to
verify that that the sequence {GB}B≥1 satisfies the hypothesis of Lemma 3, and so there is a
sequence of oracles {O(B)}B≥1, where for each B ≥ 1, O(B) ∈ GB and O(B+1) is an extension
of O(B). We then set O =

⋃
B≥1O(B), and it is easy to see that this is a globally defined

good oracle.
Thus, there exists a good oracle O. Such a good oracle then satisfies the conditions

of Theorem 2; namely, for all i ≥ 1, for all k0 ≥ k′(i), the probability that MO
i wins the

inversion game on k0-bit permutations is at most 2−βk0 .
That completes the proof of Theorem 2.

Remark. The proof of Lemma 2 is quite similar to proofs of lower bounds for the discrete
logarithm problem presented in [Sho97] (in particular, Theorem 2 in that paper). There are
a few technical differences, and the proof we have presented here is much more complete.
We should also point out that Lemma 2 is fairly tight, in the sense that the well-known baby
step/giant step attack for the discrete logarithm problem (c.f., §3.6.2 of [MvOV97]) can be
easily adapted to inverting XOR-malleable permutations, provided the algorithm U is highly
reliable.

Remark. The argument showing that Lemma 2 implies Theorem 2 seems overly technical,
especially since one cannot use elementary probability theory to properly model the notion of
a “random” oracle in this context. We could have made a syntactically simpler argument if
we used more advanced notions of measure, but we chose to make a completely self-contained,
elementary argument.

17

6 OAEP+

We now describe the OAEP+ encryption scheme, which is just a slight modification of the
OAEP scheme.

The general scheme makes use of a one-way trapdoor permutation. Let f be the permuta-
tion, acting on k-bit strings, and g its inverse. The scheme also makes use of two parameters
k0 and k1, which should satisfy k0 + k1 < k. It should also be the case that 2−k0 and 2−k1

are negligible quantities. The scheme encrypts messages x ∈ {0, 1}n, where n = k− k0− k1.
The scheme also makes use of three functions:

G : {0, 1}k0 → {0, 1}n,
H ′ : {0, 1}n+k0 → {0, 1}k1 ,

H : {0, 1}n+k1 → {0, 1}k0 .

These three functions will be modeled as independent random oracles in the security analysis.
We describe the key generation, encryption, and decryption algorithms of the scheme.

Key generation This simply runs the generator for the one-way trapdoor permutation
scheme, obtaining f and g. The public key is f , and the private key is g.

Encryption Given a plaintext x, the encryption algorithm randomly chooses r ∈ {0, 1}k0 ,
and then computes

s ∈ {0, 1}n+k1 , t ∈ {0, 1}k0 , w ∈ {0, 1}k, y ∈ {0, 1}k

as follows:

s = (G(r)⊕ x) ‖H ′(r ‖x), (19)

t = H(s)⊕ r, (20)

w = s ‖ t, (21)

y = f(w). (22)

The ciphertext is y.

Decryption Given a ciphertext y, the decryption algorithm computes

w ∈ {0, 1}k, s ∈ {0, 1}n+k1 , t ∈ {0, 1}k0 ,
r ∈ {0, 1}k0 , x ∈ {0, 1}n, c ∈ {0, 1}k1

as follows:

w = g(y), (23)

s = w[0 . . . n+ k1 − 1], (24)

t = w[n+ k1 . . . k], (25)

r = H(s)⊕ t, (26)

x = G(r)⊕ s[0 . . . n− 1], (27)

c = s[n . . . n+ k1 − 1]. (28)

18

If c = H ′(r ‖x), then the algorithm outputs the cleartext x; otherwise, the algorithm
rejects the ciphertext, and does not output a cleartext.

Theorem 3 If the underlying trapdoor permutation scheme is one way, then OAEP+ is
secure against adaptive chosen ciphertext attack in the random oracle model.

We start with some notations and conventions.
Let A be an adversary, and let G0 be the original attack game. Let b and b̂ be as defined

in §2.1, and let S0 be the event that b = b̂.
Let qG, qH , and qH′ bound the number of queries made by A to the oracles G, H, and

H ′ respectively, and let qD bound the number of decryption oracle queries.
We assume without loss of generality that wheneverAmakes a query of the formH ′(r ‖x),

for any r ∈ {0, 1}k0 , x ∈ {0, 1}n, then A has previously made the query G(r).
We shall show that

|Pr[S0]− 1/2| ≤ InvAdv(A′) + (qH′ + qD)/2k1 + (qD + 1)qG/2
k0 , (29)

where InvAdv(A′) is the success probability that a particular adversary A′ has in breaking
the one-way trapdoor permutation scheme on k-bit inputs. The time and space requirements
of A′ are related to those of A as follows:

Time(A′) = O(Time(A) + qGqHTf + (qG + qH′ + qH + qD)k); (30)

Space(A′) = O(Space(A) + (qG + qH′ + qH)k). (31)

Here, Tf is the time required to compute f , and space is measured in bits of storage. These
complexity estimates assume a standard random-access model of computation.

Any ciphertext y implicitly defines values w, s, t, r, x, c via the decryption equations (23)-
(28). Let y∗ denote the target ciphertext, and let w∗, s∗, t∗, r∗, x∗, c∗ be the corresponding
implicitly defined values for y∗. Note that x∗ = xb and c∗ = H ′(r∗ ‖x∗).

We define sets SG and SH , as in §4, as follows. Let SG be the set of values r at which
G was queried by A. Also, let SH be the set of values s at which H was queried by A.
Additionally, define SH′ to be the set of pairs (r, x) such that H ′ was queried at r ‖x by A.
We view these sets as growing incrementally as A’s attack proceeds—elements are added to
these only when a random oracle is queried by A.

We also define A’s view as the sequence of random variables

View = 〈X0, X1, . . . , XqG+qH′+qH+qD+1 〉,

where X0 consists of A’s coin tosses and the public key of the encryption scheme, and where
each Xi for i ≥ 1 consists of a response to either a random oracle query, a decryption oracle
query, or the encryption oracle query. The ith such query is a function of 〈X0, . . . , Xi−1 〉.
The adversary’s final output b̂ is a function of View . At any fixed point in time, A has made
some number, say m, queries, and we define

CurrentView = 〈X0, . . . , Xm 〉.

19

Our overall strategy for the proof is as follows. We shall define a sequence G1,G2, . . . ,G5

of modified attack games. Each of the games G0,G1, . . . ,G5 operate on the same underlying
probability space. In particular, the public key and private key of the cryptosystem, the coin
tosses of A, the values of the random oracles G,H ′, H, and the hidden bit b take on identical
values across all games. Only some of the rules defining how the view is computed differ
from game to game. For any 1 ≤ i ≤ 5, we let Si be the event that b = b̂ in game Gi. Our
strategy is to show that for 1 ≤ i ≤ 5, the quantity |Pr[Si−1] − Pr[Si]| is negligible. Also,
it will be evident from the definition of game G5 that Pr[S5] = 1/2, which will imply that
|Pr[S0]− 1/2| is negligible.

In games G1, G2, and G3, we incrementally modify the decryption oracle, so that in
game G3, the modified decryption oracle operates without using the trapdoor for f at all.
In games G4 and G5, we modify the encryption oracle, so that in game G5, the hidden bit
b is completely independent of View .

Game G1. Now we modify game G0 to define a new game G1.
We modify the decryption oracle as follows. Given a ciphertext y, the new decryption

oracle computes w, s, t, r, x, c as usual. If the old decryption oracle rejects, so does the new
one. But the new decryption oracle also rejects if (r, x) /∈ SH′ . More precisely, if the new
decryption oracle computes r via equation (26), and finds that r /∈ SG, then it rejects right
away, without ever querying G(r); if r ∈ SG, then x is computed, but if (r, x) /∈ SH′ , it
rejects without querying H ′(r ‖x). Recall that by convention, if A queried H ′(r ‖x), it
already queried G(r). One sees that in game G1, the decryption oracle never queries G or
H ′ at points other than those at which A did.

Let F1 be the event that a ciphertext is rejected in G1 that would not have been rejected
under the rules of game G0.

Consider a ciphertext y submitted to the decryption oracle. Suppose that the encryption
oracle has already been queried before this decryption oracle query (and y 6= y∗, of course).
If r = r∗ and x = x∗, then we must have c 6= c∗; in this case, however, we will surely reject
under the rules of game G0. So we assume that r 6= r∗ or x 6= x∗. Now, the encryption
oracle has made the query H ′(r∗ ‖x∗), but not H ′(r ‖x), since (r, x) 6= (r∗, x∗).

From the above considerations, we conclude that regardless of whether the encryption
oracle has already been queried or not, if A has not made the query H ′(r ‖x), the value of
H ′(r ‖x) is independent of CurrentView , and hence, is independent of c, which is a function
of CurrentView and H. Therefore, the probability that c = H ′(r ‖x) is 1/2k1 .

It follows that Pr[F1] ≤ qD/2
k1 . Moreover, it is clear by construction that Pr[S0∧¬F1] =

Pr[S1∧¬F1], since the two games proceed identically unless the event F1 occurs; that is, the
value of View is the same in both games, provided F1 does not occur. So applying Lemma 1
with (S0, S1, F1), we have

|Pr[S0]− Pr[S1]| ≤ qD/2
k1 . (32)

Game G2. Now we modify game G1 to obtain a new game G2. In this new game, we modify
the decryption oracle yet again. Given a ciphertext y, the new decryption oracle computes
w, s, t, r, x, c as usual. If the old decryption oracle rejects, so does the new one. But the
new decryption oracle also rejects if s /∈ SH . More precisely, if the new decryption oracle
computes s via equation (24), and finds that s /∈ SH , then it rejects right away, without ever

20

querying H(s). Thus, in game G2, the decryption oracle never queries G, H ′, or H at points
other than those at which A did.

Let F2 be the event that a ciphertext is rejected in G2 that would not have been rejected
under the rules of game G1.

Consider a ciphertext y with s /∈ SH submitted to the decryption oracle. We consider
two cases.

Case 1: The encryption oracle has already been queried and s = s∗. Now, s = s∗ and
y 6= y∗ implies t 6= t∗. Moreover, s = s∗ and t 6= t∗ implies that r 6= r∗. If this ciphertext is
rejected in game G2 but would not be under the rules in game G1, it must be the case that
H ′(r∗ ‖x∗) = H ′(r ‖x). The probability that such a collision can be found over the course
of the attack is qH′/2

k1 . Note that r∗ is fixed by the encryption oracle, and so “birthday
attacks” are not possible.

Case 2: The encryption oracle has not already been queried, or it has and s 6= s∗. In
this case, the oracle H was never queried at s by either A, the encryption oracle, or the
decryption oracle. Since t = H(s)⊕ r, the value r is independent of CurrentView . It follows
that the probability that r ∈ SG is at most qG/2

k0 . Over the course of the entire attack,
these probabilities sum to qDqG/2

k0 .

It follows that Pr[F2] ≤ qH′/2
k1 + qDqG/2

k0 . Moreover, it is clear by construction that
Pr[S1 ∧ ¬F2] = Pr[S2 ∧ ¬F2], since the two games proceed identically unless F2 occurs. So
applying Lemma 1 with (S1, S2, F2), we have

|Pr[S1]− Pr[S2]| ≤ qH′/2
k1 + qDqG/2

k0 . (33)

Game G3. Now we modify game G2 to obtain an equivalent game G3. We modify the
decryption oracle so that it does not make use of the trapdoor for f at all.

Conceptually, this new decryption oracle iterates through all pairs (r′, x′) ∈ SH′ . For
each of these, it does the following. First, it sets s′ = (G(r′) ⊕ x′) ‖H ′(r′ ‖x′). Note that
both G and H ′ have already been queried at the given points. Second, if s′ ∈ SH , it then
computes

t′ = H(s′)⊕ r′, w′ = s′ ‖ t′, y′ = f(w′).

If y′ is equal to y, it stops and outputs x′.
If the above iteration terminates without having found some y′ = y, then the new de-

cryption oracle simply rejects.
It is clear that games G3 and G2 are identical, and so

Pr[S3] = Pr[S2]. (34)

To actually implement this idea, one would build up a table, with one entry for each
(r′, x′) ∈ SH′ . Each entry in the table would contain the corresponding value s′, along with
y′ if s′ is currently in SH . If s′ is currently not in SH , we place y′ in the table entry if
and when A eventually queries H(s′). When a ciphertext y is submitted to the decryption
oracle, we simply perform a table lookup to see if there is a y′ in the table that is equal
to y. These tables can all be implemented using standard data structures and algorithms.

21

Using search tries to implement the table lookup, the total running time of the simulated
decryption oracle over the course of game G3 is

O(min(qH′ , qH)Tf + (qG + qH′ + qH + qD)k).

Note also that the space needed is essentially linear: O((qG + qH′ + qH)k) bits.

Remark. Let us summarize the modifications made so far. We have modified the decryp-
tion oracle so that it does not make use of the trapdoor for f at all; moreover, the decryption
oracle never queries G, H ′, or H at points other than those at which A did.

Game G4. In this game, we modify the random oracles and slightly modify the encryption
oracle. The resulting game G4 is equivalent to game G3; however, this rather technical
“bridging” step will facilitate the analysis of more drastic modifications of the encryption
oracle in games G5 and G′5 below.

We introduce random bit strings r+ ∈ {0, 1}k0 and g+ ∈ {0, 1}n. We also introduce a
new random oracle

h+ : {0, 1}n → {0, 1}k1 .

Game G4 is the same as game G3, except that we apply the following special rules.

R1: In the encryption oracle, we compute

y∗ = f(s∗ ‖ (H(s∗)⊕ r∗)),

where
r∗ = r+ and s∗ = (g+ ⊕ xb) ‖h+(xb).

R2: Whenever the random oracle G is queried at r+, we respond with the value g+, instead
of G(r+).

R3: Whenever the random oracle H ′ is queried at a point r+ ‖x for some x ∈ {0, 1}n, we
respond with the value h+(x), instead of H ′(r+ ‖x).

That completes the description of game G4. It is a simple matter to verify that the the
random variable 〈View , b〉 has the same distribution in both games G3 and G4, since we
have simply replaced one set of random variables by a different, but identically distributed,
set of random variables. In particular,

Pr[S4] = Pr[S3]. (35)

In this and the following game, we can consider r∗ to be defined from the very beginning
of the game.

Game G5. This game is identical to game G4, except that we drop rules R2 and R3, while
retaining rule R1.

In game G5, it will not in general hold that x∗ = xb or that H(r∗ ‖x∗) = c∗. Moreover,
since the values g+ and h+(xb) are not used anywhere else in game G5 other than in the
encryption oracle, we have

Pr[S5] = 1/2. (36)

22

Despite the above differences, games G4 and G5 proceed identically unless A queries G
at r∗ or H ′ at r∗ ‖x for some x ∈ {0, 1}n. Recall that by our convention, whenever A queries
H ′ at r∗ ‖x for some x ∈ {0, 1}n, then G has already been queried at r∗. Let F5 be the
event that in game G5, A queries G at r∗. We have Pr[S4 ∧ ¬F5] = Pr[S5 ∧ ¬F5], and so by
Lemma 1 applied to (S4, S5, F5),

|Pr[S4]− Pr[S5]| ≤ Pr[F5]. (37)

Game G′5. We introduce an auxiliary game G′5 in order to bound Pr[F5]. In game G′5, we
modify the encryption oracle once again. Let y+ ∈ {0, 1}k be a random bit string. Then in
the encryption oracle, we simply set y∗ = y+, ignoring the encryption algorithm altogether.

In this game, we can consider the value y∗, and the associated values y∗, w∗, s∗, t∗, r∗,
etc., as being defined from the very start of attack game.

It is not too hard to see that the random variable 〈View , r∗ 〉 has the same distribution in
both games G5 and G′5. Indeed, the distribution of 〈View , r∗ 〉 in game G5 clearly remains the
same if we instead choose r∗ and s∗ at random, and compute y∗ = f(s∗ ‖ (H(s∗)⊕r∗)). Simply
choosing y∗ at random clearly induces the same distribution on 〈View , r∗ 〉. In particular, if
we define F ′5 to be the event that in game G′5 A queries G at r∗, then

Pr[F5] = Pr[F ′5]. (38)

So our goal now is to bound Pr[F ′5]. To this end, let F ′′5 be the event that A queries H
at s∗ in game G′5. Then we have

Pr[F ′5] = Pr[F ′5 ∧ F ′′5] + Pr[F ′5 ∧ ¬F ′′5]. (39)

First, we claim that
Pr[F ′5 ∧ F ′′5] ≤ InvAdv(A′), (40)

where InvAdv(A′) is the success probability of an inverting algorithm A′ whose time and
space requirements are bounded as in (30) and (31). To see this, observe that if A queries G
at r∗ and H at s∗, then we can easily convert the attack into an algorithm A′ that computes
f−1(y+) on input y+. A′ simply runs A against game G′5. When A terminates, A′ enumerates
all r′ ∈ SG and s′ ∈ SH , and for each of these computes

t′ = H(s′)⊕ r′, w′ = s′ ‖ t′, y′ = f(w′).

If y′ is equal to y+, then A′ outputs w′ and terminates.
Although game G′5 is defined with respect to random oracles, there are no random oracles

in A′. To implement A′, one simulates the random oracles that appear in game G′5 in the
“natural” way. That is, whenever A queries a random oracle at a new point, A′ generates an
output for the oracle at random and puts this into a lookup table keyed by the input to the
oracle. If A has previously queried the oracle at a point, A′ takes the output value from the
lookup table. Again, using standard algorithms and data structures, such as search tries,
the running time and space complexity of A′ are easily seen to be bounded as claimed in
(30) and (31).

Unfortunately, the running time of A′ is much worse than that of the simulated decryption
oracle described in game G3. But at least the space remains essentially linear in the total
number of oracle queries.

23

We also claim that
Pr[F ′5 ∧ ¬F ′′5] ≤ qG/2

k0 . (41)

To see this, consider a query of G at r, prior to which H has not been queried at s∗. Since
t∗ = H(s∗)⊕ r∗, the value r∗ is independent of CurrentView , and so Pr[r = r∗] = 1/2k0 . The
bound (41) now follows.

Equations (39)-(41) together imply

Pr[F ′5] ≤ InvAdv(A′) + qG/2
k0 . (42)

Equations (32), (33), (34), (35), (36), (37), (38), and (42) together imply (29).
That completes the proof of Theorem 3.

Remark. Our reduction from inverting f to breaking OAEP+ is tighter than the corre-
sponding reduction for OAEP in [BR94]. In particular, the OAEP+ construction facilitates
a much more efficient “plaintext extractor” than the OAEP construction. The latter appar-
ently requires either

• time proportional to qDqGqH and space linear in the number of oracle queries, or

• time proportional to qD+qGqH and space proportional to qGqH (if one builds a look-up
table).

For OAEP+, the total time and space complexity of the plaintext extractor in game G3 is
linear in the number of oracle queries. Unfortunately, our inversion algorithm for OAEP+ in
game G′5 still requires time proportional to qGqH , although its space complexity is linear in
the number of oracle queries. We should remark that as things now stand, the reductions for
OAEP+ are not tight enough to actually imply that an algorithm that breaks, say, 1024-bit
RSA-OAEP+ in a “reasonable” amount of time implies an algorithm that solves the RSA
problem in time faster than the best known factoring algorithms. However, as we shall see in
§7.2, for exponent-3 RSA-OAEP+, one can in fact get a very tight reduction. An interesting
open problem is to get a tighter reduction for OAEP+ or a variant thereof.

7 Further Observations

7.1 Other variations of OAEP

Instead of modifying OAEP as we did, one could also modify OAEP so that instead of adding
the data-independent redundancy 0k1 in (1), one added the data-dependent redundancy
H ′′(x), where H ′′ is a hash function mapping n-bit strings to k1-bit strings. This variant of
OAEP—call it OAEP′—suffers from the same problem from which OAEP suffers. Indeed,
Theorem 1 holds also for OAEP′.

24

7.2 RSA-OAEP with exponent 3 is provably secure

Consider RSA-OAEP. Let N be the modulus and e the encryption exponent. Then this
scheme actually is secure in the random oracle model, provided k0 ≤ log2 N/e. This condition
is satisfied by typical implementations of RSA-OAEP with e = 3.

We sketch very briefly why this is so.
We first remind the reader of the attempted proof of security of OAEP in §4, and we

adopt all the notation specified there.
Suppose an adversary submits a ciphertext y to the decryption oracle. We observed in

§4 that if the adversary never explicitly queried H(s), then with overwhelming probability,
the actual decryption oracle would reject. The only problem was, we could not always say
the same thing about G(r) (specifically, when r = r∗).

For a bit string v, let I(v) denote the unique integer such that v is a binary representation
of I(v).

If a simulated decryption oracle knows s (it will be one of the adversary’s H-queries),
then X = I(t) is a solution to the equation

(X + 2k0I(s))e ≡ y (mod N).

To find I(t), we can apply Coppersmith’s algorithm [Cop96]. This algorithm works provided
I(t) < N1/e, which is guaranteed by our assumption that k0 ≤ log2 N/e.

More precisely, for all s′ ∈ SH , the simulated decryption oracle tries to find a corre-
sponding solution t′ using Coppersmith’s algorithm. If all of these attempts fail, then the
simulator rejects y. Otherwise, knowing s and t, it decrypts y in the usual way.

We can also apply Coppersmith’s algorithm in the step of the proof where we use the
adversary to help us to extract a challenge instance of the RSA problem.

Not only does this prove security, but we get a more efficient reduction—the implied in-
verting algorithm has a running time roughly equal to that of the adversary, plus O(qDqHTC),
where TC is the running time of Coppersmith’s algorithm.

We can also use the same observation to speed up the reduction for exponent-3 RSA-
OAEP+. The total running time of the implied inversion algorithm would be roughly equal
to that of the adversary, plus O(qHTC); that is, a factor of qD faster than the inversion
algorithm implied by RSA-OAEP. Unlike the generic security reduction for OAEP+, this
security reduction is essentially tight, and so it has much more meaningful implications for
the security of the scheme when used with a typical, say, 1024-bit RSA modulus.

7.3 RSA-OAEP with large exponent

In our example in §4.1, as well as in our proof of Theorem 1, the adversary is able to create
a valid ciphertext y without ever querying G(r). However, this adversary queries both H(s)
and H(s∗). As we already noted, the adversary must query H(s). But it turns out that
if the adversary avoids querying G(r), he must query H(s∗). This observation was made
by [FOPS01], who then further observed that this implies the security of RSA-OAEP with
arbitrary encryption exponent in the random oracle model. We remark, however, that the
reduction in [FOPS01] is significantly less efficient than our general reduction for OAEP+. In

25

particular, their reduction only implies that if an adversary has advantage ε in breaking RSA-
OAEP, then there is an algorithm that solves the RSA inversion problem with probability
about ε2. Moreover, their inversion algorithm is even somewhat slower than that of the
(incorrect) inversion algorithm for OAEP in [BR94]. There is still the possibility, however,
that a more efficient reduction for RSA-OAEP can be found.

Acknowledgments

Thanks to Jean-Sebastien Coron for pointing out an error in a previous draft. Namely, it
was claimed that the the variant OAEP′ briefly discussed in §7.1 could also be proven secure,
but this is not so.

References

[BDPR98] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions
of security for public-key encryption schemes. In Advances in Cryptology–Crypto
’98, pages 26–45, 1998.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for de-
signing efficient protocols. In First ACM Conference on Computer and Commu-
nications Security, pages 62–73, 1993.

[BR94] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Advances in
Cryptology—Eurocrypt ’94, pages 92–111, 1994.

[CGH98] R. Canetti, O. Goldreich, and S. Halevi. The random oracle model, revisted. In
30th Annual ACM Symposium on Theory of Computing, 1998.

[Cop96] D. Coppersmith. Finding a small root of a univariate modular equation. In
Advances in Cryptology–Eurocrypt ’96, pages 155–165, 1996.

[DDN91] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In 23rd Annual
ACM Symposium on Theory of Computing, pages 542–552, 1991.

[DDN00] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM J. Com-
put., 30(2):391–437, 2000.

[FOPS01] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure
under the RSA assumption. In Advances in Cryptology–Crypto 2001, 2001. An
earlier version appeared as Cryptology ePrint Archive, Report 2000/061, http:
//eprint.iacr.org.

[MvOV97] A. Menesez, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptogra-
phy. CRC Press, 1997.

26

[NY90] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In 22nd Annual ACM Symposium on Theory of Computing,
pages 427–437, 1990.

[RS91] C. Rackoff and D. Simon. Noninteractive zero-knowledge proof of knowledge and
chosen ciphertext attack. In Advances in Cryptology–Crypto ’91, pages 433–444,
1991.

[RSA78] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, pages
120–126, 1978.

[Sho97] V. Shoup. Lower bounds for discrete logarithms and related problems. In Ad-
vances in Cryptology–Eurocrypt ’97, 1997.

27

