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The Solana whitepaper [Yak18b| describes, among other things, the notion of a proof
of history, and claims that this notion may be used as a trusted source of time in order to
improve the performance of proof-of-stake consensus protocols. The purpose of this note
is to question this claim. More specifically, we shall argue that we see little evidence that
using proof of history as a trusted source of time improves the performance of proof-of-stake
consensus protocols in any substantive way. It is our hope that this note can serve as the
starting point for an intellectually honest discussion on the potential merits of proof of
history and to spur further research on the topic.

1 What is consensus?

Generally speaking, a consensus protocol enables a collection of networked nodes (comput-
ers) to agree on a collection of values (transactions), even if some nodes are faulty. In the
blockchain space, the collection of values is typically a dynamically growing sequence of
values (an append-only ledger). The essential security properties that any good consensus
protocol should provide are safety and liveness:

e Safety means (roughly speaking) that all nodes agree on the same sequence of values
(although at any instant in time, some nodes may only see a prefix of the sequence
seen by other nodes).

e Liveness means (roughly speaking) that all honest (i.e., non-faulty) nodes make steady
progress (to the extent that the network delivers messages sent between them).

Consensus protocols are designed to provide these properties under various assumptions,
including communication assumptions (e.g, synchronous, partially synchronous, or asyn-
chronous communication) failure assumptions (the number and type of faulty nodes, e.g.,
crash or Byzantine), and set-up assumptions (e.g., permissioned, permissionless, or proof of
stake).

The consensus problem has a long history (see [PSL80, [LSP82, Ben83, [DLS8S,
BKR94, [CL99l, [CKPS01, [KS01l, [CKS05, RCO5, MXCT16, DRZI1S, [PS18, BKMIS, [YMRT18,
GAG™19, [SDVT9, IGLTT20, ICDH"21], to name just a few relevant papers).
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Much of the early work on consensus worked exclusively in the permissioned model,
where the access structure for the protocol (the nodes in the network, their public keys, and
their voting power) is typically established by a centralized authority.

Bitcoin [Nak08] was the first truly permissionless consensus protocol, and is based on a
proof of work. In a permissionless protocol, there really is no access structure — nodes are
free to join the network and participate in the protocol without precondition or permission.
At least in theory, such permissionless protocols attain the highest degree of decentralization
possible. However, Bitcoin and other proof-of-work-based protocols suffer from certain
disadvantages, such as their enormous energy waste and poor performance.

In recent years, a compromise approach, called proof of stake, has emerged (e.g.,
Ethereum “2.0” [EthPOS], Cardano [Card], Algorand [GHM™17], Solana [Yak18b], Internet
Computer [DFI22]). In this approach, the access structure of the protocol is dynamically
determined by a decentralized mechanism based on staking cryptocurrency in the network.
A proof-of-stake consensus protocol allows the access structure of the protocol to change
over time; however, at distinct intervals in time, it typically employs what is essentially a
permissioned consensus protocol, with the access structure for the protocol at each interval
determined by a decentralized staking mechanism. Conversely, a permissioned consensus
protocol can typically be converted to one based on proof of stake, simply by using a de-
centralized staking mechanism to define the access structure for the protocol at different
intervals in time.

There is some inconsistency in the literature with regard to the terms permissioned,
permissionless, and proof of stake. While some authors treat proof of stake as a special case
of permissionless, for our purposes here, we treat permissionless and proof of stake as very
distinct types of set-up assumptions. In our opinion, proof of stake is more closely related
to permissioned than it is to permissionless. Indeed, a proof-of-stake protocol enjoys many
of the benefits, in terms of efficiency, of permissioned protocols; moreover, while it is less
centralized than a traditional permissioned protocol, it is not nearly as decentralized as a
truly permissionless protocol, such as Bitcoin.

Solana’s consensus protocol is a proof-of-stake protocol, and at its core is based on a
permissioned protocol; hence, the characteristics of this core protocol may be legitimately
compared to other permissioned protocols in the literature.

2 What is proof of history?

The basic idea is this. Let H be a cryptographically strong hash function, such as SHA-256
INIST15]. Starting from an initial value sy, one party P, called the “prover”, can compute
a sequence of values sq,...,sy (a so-called “hash chain”) as follows:

si=H(s;—1) (i=1,...,N).

Let 1 < k < N be a parameter (discussed below), and assume that NV is of the form N = ¢k.
Suppose now that P sends the values

Sk>S2k; - -, Sqk = SN

to another party V, called the “verifier”.



We assume that V' already knows the value sg. The verifier V' can then verify the values
Sk 82k, - - - » Sqk sent by P by running the following algorithm:

forj«1,...,qdo
§ € S(-1k
repeat k times: s <— H(s)
if s # sj;, return reject
return accept

This algorithm returns accept if and only if the values sent by P were computed correctly.
The essential properties of this simple protocol are the following:

(1) The verification algorithm is trivially parallelizable: each of the ¢ iterations of the
outer loop may be run concurrently with one another.

(2) Because of the cryptographic strength of the hash function, it is fairly safe to assume
that the computation of the prover cannot be parallelized, and requires N sequential
computations of the hash function H.

Because of the (apparently) inherently sequential nature of the prover’s computation, a
proof of history seems to provide a somewhat reliable proof of the passage of time. However,
the amount of time that has passed implied by such a proof depends on the speed of the
hardware available to the prover. We may therefore identify two weaknesses with using
proof of history as a way of proving the passage of time:

(1) The amount of time that has “provably passed” seems very inexact — that is, a proof
of history is inherently a very imprecise clock.

(2) The amount of computation required to verify such a proof of history is very high
(even though this work can be parallelized).

The above mechanism is described in the Solana whitepaper [Yak18b|; however, the
idea has been around a while — see, for example, Section 3.1 of [LW15], where the identical
mechanism is described.

2.1 Augmented proof of history

As described in [Yak18b], the basic proof of history mechanism may be augmented so that
it may also be used to commit to a sequence of transactions. Suppose that for some set
I C{1,...,N}, the prover has a collection {¢;};c; of transactions t;. Typically, the number
|7| of such transactions will be much smaller than N. The prover may fold these transactions
into its proof of history, so that for ¢« € I, it computes

S; = H(Si_l, ti).

The prover will also transmit the collection of transactions {¢;};c; as a part of its proof of
history so that the verifier may also perform the corresponding hash computations. Such an
augmented proof of history acts as a proof of the passage of time, as well as a commitment
to the collection of transactions {¢;}cy.

Note that the use of hash chains to commit to a sequence of transactions is a concept
that is used by essentially all blockchains.



2.2 Proof of History vs Verifiable Delay Function

The basic notion of proof of history is related to, but not the same as, the notion of a
verifiable delay function (VDF). What are called VDFs in the literature (see [BBBEF1S8,
Wes18, [Piel8, BBF18]) require that the verification algorithm takes much less computation
than that of the prover, without relying on parallelization. Indeed, [BBBE18| characterizes
mechanisms such as proof of history as “pseudo-VDFs”.

The paper [BBBF18] describes a number of applications of VDFs in decentralized sys-
tems. One application of VDFs to proof-of-stake consensus is as a trusted source of ran-
domness, which, among other things, can be used to randomly select a small validation
committee from a larger set of nodes. Another application of VDFs to proof-of-stake con-
sensus is as a “computational timestamp” to defend against “long range attacks”. However,
as pointed out in [BBBF18], this use of VDFs is a very fragile defense, because of the in-
herent imprecision of a VDF as a clock. VDFs have also been shown to be useful in the
construction of truly permissionless consensus protocols — for example, the Chia blockchain
[CP19] makes essential use of VDF's to build a permissionless consensus protocol similar to
Bitcoin, with no staking, but based on proof of space rather than proof of work.

3 What is proof of history good for?

3.1 The Solana whitepaper
The Solana whitepaper [Yak18b] states that:

PoH [proof of history] is used to encode trustless passage of time into a ledger —
an append only data structure. When used alongside a consensus algorithm such
as Proof of Work (PoW) or Proof of Stake (PoS), PoH can reduce messaging
overhead in a Byzantine Fault Tolerant replicated state machine, resulting inn
[sic] sub-second finality times.

Thus, it is claimed that proof of history can be used as a trusted source of time to improve
the performance of proof-of-stake consensus. The whitepaper goes on to say that:

In depth description of the proposed Proof of Stake consensus algorithm is de-
scribed in Section 5.

Section 5 of [Yak18b|] sketches a few elements of a protocol, which we can summarize as
follows:

e At any point in time, one node, acting as a leader (a “generator”) is producing a proof
of history, augmented with a sequence transactions as described above in Section

e This augmented proof of history is transmitted to validators, who verify the proof.

e At regular intervals, the leader and the validators each publish a signature on the
proof of history up to that point — the leader’s signature is used to authenticate the
origin of the proof of history, and each validator’s signature represents a vote on its
validity.



— Validators have stake and their votes are weighted according to their stake.

— If a super-majority of validators (according to their stake-based weight) vote for
a given proof within a certain amount of time, that proof and the corresponding
sequence of transactions up to that point are considered finalized.

e If the validators detect that the leader is nonresponsive or misbehaving, an election
is triggered and the validators vote for a new leader (again, with votes weighted by
stake).

e Slashing (confiscation of stake) is used to punish validators who vote inconsistently.

The above summary is obviously lacking in many important details. However, in our opin-
ion, the “in depth description” in Section 5 of [Yak18b] is hardly any more informative; in
particular, it is lacking:

e a clear and concise formulation of a consensus protocol,
— rather than just a very vague, high-level sketch of some ideas for a protocol;
e a precise statement of its properties,

— such as, for example, standard security properties such as safety and liveness, as
well as standard performance metrics such as communication complexity, latency,
throughput, and computational complexity;

e an explicit statement of underlying assumptions,

— such as, for example, standard communication and failure assumptions, and per-
haps some assumption specifically related to proof of history, like an assumption
on relative hashing power;

e a precise statement as to which assumptions imply which properties, let alone a proof
of any such statement;

— for example, even though it is stated that “this algorithm depends on messages
eventually arriving to all participating nodes within a certain timeout”, it is

unclear as to whether such an assumption is needed for safety or liveness or
both.

Because of this lack of detail, we are unable to properly assess Solana’s consensus pro-
tocol. We shall therefore explore other online resources (below in Sections to try
to ascertain how using proof of history as a trusted source of time might be helpful in
improving the performance of Solana’s consensus protocol or of proof-of-stake consensus
protocols more generally. However, we do note that at a few points in [YakI8b], it is briefly
suggested (again, with no real details) that in addition to improving its performance, proof
of history may be useful in defending against “long range attacks”. As mentioned above in
Section VDFs (and pseudo-VDFs such as proof of history) are at best a fragile defense
against such attacks. In any case, this is not germane to our question of how using proof
of history as a trusted source of time helps in improving the performance of proof-of-stake
consensus protocols.



3.2 The blog post “Proof of history: A clock for blockchain”

The blog post [Yakl8al attempts to give some intuition as to why using proof of history as
a trusted source of time is helpful in improving the performance of proof-of-stake consensus
protocols. It begins by stating that

One of the most difficult problems in distributed systems is agreement on time.

While there may be some areas in distributed computing where this is true, there is no
evidence, in our opinion, that “agreement on time” is a problem that has in any way hin-
dered the development of efficient consensus protocols (at least those that are permissioned
or based on proof of stake). We invite the reader to pick up almost any published pa-
per on the consensus problem (see again [PSL80, [LSP82 Ben83, [DLS8Y, BKRI4, [CL99,
CKPS01, [KS01l, [CKS05, [RC05, MXC™T16, [DRZIS, [PSIR8, BKMIS, [YMR18, IGAG™19,
SDVT9, IGLT ™20, (CDH™21]) to find any hint that “agreement on time” is a problem whose
solution would in anyway lead to more efficient consensus protocols.

Note that while many practical consensus protocols that work in the partially syn-
chronous model [DLS8§| (such as the classical PBFT protocol [CL99], HotStuff [YMR18],
SBFT |GAG™19], ICC |[CDH™21|, and many others) do require a clock, they do not need
highly-synchronized clocks: they only required that all correct nodes in the system have
clocks that are running at roughly similar rates. The blog post [Yak18a] seems to suggest
that something much more is required. In reference to the “agreement on time” problem,
they say:

Decentralized networks have solved this problem with trusted, centralized timing
solutions. For example, Google’s Spanner uses synchronized atomic clocks be-
tween its data centers. Google’s engineers synchronize these clocks to a very
high precision and constantly maintain them.

However, in our opinion, this is a red herring. Spanner [CDET12] is a database that
shards data across many sets of PAXOS [Lam98] state machines in data centers distributed
around the world. (PAXOS is a consensus algorithm that assumes crash-failures only.) The
reference to “synchronized atomic clocks” in [Yak18a] is a reference to Google’s TrueTime
technology. As described very clearly in [BrelT):

Many assume that Spanner somehow gets around CAP via its use of TrueTime,
which is a service that enables the use of globally synchronized clocks. Although
remarkable, TrueTime does not significantly help achieve CA ...

One subtle thing about Spanner is that it gets serializability from locks, but it
gets external consistency (similar to linearizability) from TrueTime.

Here, the ‘C’ in ‘CA’ stands for consistency, which [Brel7] says “we can think of as serializ-
ability for this discussion”. In database terminology, a schedule of operations is serializable
if it is equivalent to a serial order, which is a schedule of non-overlapping transactions (each
transaction consisting of a sequence of operations). This notion is also called serial consis-
tency in [Gif81], where the notion of external consistency is defined as an even stronger type
of consistency. Roughly speaking, an externally consistent schedule is equivalent to a serial



order that is consistent with the order in which transactions can be observed to commit. As
characterized in [Lis93]:

A wviolation of external consistency occurs when the ordering of operations inside
a system does not agree with the order a user expects.

In relation to Spanner (and the corresponding cloud service Cloud Spanner), an easy to
digest explanation of serializability and external consistency can be found in [Cloud1]:

Cloud Spanner provides ‘serializability’, which means that all transactions ap-
pear as if they executed in a serial order, even if some of the reads, writes,
and other operations of distinct transactions actually occurred in parallel. Cloud
Spanner assigns commit timestamps that reflect the order of committed trans-
actions to implement this property. In fact, Cloud Spanner offers a stronger
guarantee than serializability called external comsistency: transactions commit
in an order that is reflected in their commit timestamps, and these commit
timestamps reflect real time so you can compare them to your watch. Reads
in a transaction see everything that has been committed before the transaction
commits, and writes are seen by everything that starts after the transaction is
committed.

More details on Spanner, TrueTime, and external consistency can be found in [Cloud2].

Thus, we see that, in this context, the “agreement on time” problem and Google’s
use of “synchronized atomic clocks” is all about solving the problem of providing external
consistency in o distributed database, which, in our opinion, is a problem that has little
or nothing to do with that of achieving consensus on a blockchain: for consensus, we just
need safety and liveness, while external consistency imposes extra constraints related to the
timestamps associated with transactions and their relation to time as measured by external
observers. Moreover, because of its inherent imprecision as a clock, it seems highly unlikely
that proof of history could be used as a replacement for highly synchronized clocks to achieve
external consistency in any application (blockchain-related or otherwise).

The blog post [Yak18a] gives as further “evidence” for the importance of the “agreement
on time” problem a quote from Barbara Liskov [Lis93]:

Synchronized clocks are interesting because they can be used to improve the per-
formance of distributed algorithms. They make it possible to replace communi-
cation with local computation.

The blog post [Yak18al] then goes on to say that solving the “agreement on time” problem
would unlock an “enormous wealth of distributed systems optimizations” leading to “a high
throughput, high performance blockchain”. Again, in our opinion, this is a red herring.
While [Lis93] discusses the “agreement on time” problem with various applications, such as
message delivery protocols and session key exchange protocols, there is nothing in [Lis93]
to suggest that there is any relationship between the “agreement on time” problem and the
consensus problem. The closest it comes to that is the section on Commit Windows, which
discusses the use of synchronized clocks within replicated systems; however, just as with



the Spanner example above, synchronized clocks are only used in this application to achieve
external consistency.

The blog post [Yakl8al] also claims that proof of history is a verifiable delay function
(VDF):

The Proof of History is a high frequency Verifiable Delay Function. A Verifiable
Delay Function requires a specific number of sequential steps to evaluate, yet
produces a unique output that can be efficiently and publicly verified.

However, as we noted above in Section proof of history is not really a VDF, in the
sense that proofs cannot be efficiently verified: to verify a proof of history, the verifier must
perform the same computations as the prover, the only difference being that the verifier’s
computations can be parallelized. If we have somehow overlooked the real benefit of proof
of history in Solana’s consensus protocol, this raises the question: could Solana’s consensus
protocol be improved by using a true VDF in place of its notion of proof of history?

In the prologue to the blog post [YaklI8al, as well as several other related blog posts, it
is claimed that

Solana is the most performant permissionless blockchain in the world. On cur-
rent iterations of the Solana Testnet, a network of 200 physically distinct nodes
supports a sustained throughput of more than 50,000 transactions per second
when running with GPUs.

This claim is not backed up by any comparisons to other protocols. For example, one
might compare the above claimed throughput performance to that of the MirBF'T protocol
[SDV19], which obtains a throughput of over 60,000 transactions per second on a 100-node
network, without relying on any special-purpose hardware (experiments were run on the
IBM Cloud service). Moreover, by design and as demonstrated in [SDV19], MirBFT’s
throughput degrades very slowly as more nodes are added. Even though MirBFT is a
permissioned protocol, it may also be deployed (as indicated in [SDV19]) as part of a proof-
of-stake system, and so the comparison is a fair one.

3.3 The blog post “8 innovations that make Solana the first web-scale
blockchain”

In the blog post [Yak19al, it is claimed that there is a so-called “clock problem” that has
apparently bedeviled the blockchain industry and that proof of history is a solution to this
problem. To quote from [Yak19al:

Today’s blockchain-based networks have a clock problem . ..

POH [proof of history] is a solution to the clock problem ...

Whereas other blockchains require validators to talk to one another in order to
agree that time has passed, each Solana validator maintains its own clock by
encoding the passage of time in a simple SHA-256, sequential-hashing verifiable
delay function (VDF).



It is indeed true that some consensus protocols do communicate with one another in order
agree that time has passed. For example, this is done in the classic PBFT protocol [CL99| as
well as more recent consensus protocols such as HotStuff [YMR™18|. In such leader-based
consensus protocols, this is typically done to detect when a leader is nonresponsive and to
take appropriate action to elect a new leader. However, these protocols communicate with
each other for a number of different reasons, and in terms of communication bandwidth
and latency, the fraction of communication performed in service of “agreeing that time has
passed” is typically a negligible part of the whole. We therefore conclude that, in terms of
consensus protocols, there simply is no “clock problem” that needs to be solved — in our
opinion, this is yet another red herring.

Not only does it seem unlikely that proof of history can improve the communication
complexity of consensus protocols in general, we do not see any evidence that it improves
the communication complexity of Solana’s own consensus protocol in particular. Indeed, it
is not clear to us that the communication complexity of Solana’s consensus protocol is any
better than that of any of the existing consensus protocols in the literature, simply because
we are not aware of any concrete and verifiable claims made in any available documentation
relating to the communication complexity of this protocol. Moreover, we speculate that to
the extent that Solana’s consensus protocol does exhibit good communication complexity,
this is more likely a consequence of other techniques, such as their use of erasure-coded
broadcast [Yak19d], which is a standard technique (see, for example, [CT05]). One reason
erasure-coded broadcast can improve the practical performance of a leader-based consensus
protocol is that it helps to alleviate the bandwidth bottleneck at the leader, who has to
disseminate blocks to all nodes. This bottleneck-at-the-leader phenomenon was observed
in [MXC™16] and [SDV19], and both papers address it in somewhat different ways, with
IMXCT™16] making use of erasure-coded broadcast (among other tools). Both [MXC™16]
and [SDV19] back up all of their claims with both detailed theoretical analysis and extensive
empirical results, neither of which appears to be available for Solana’s protocol.

3.4 The blog post “A new architecture for a high performance
blockchain”

In the blog post [Yakl9b], a claim that is made that is certainly more germane to the
relationship between clocks and consensus:

In general, there are two ways that classical distributed systems have dealt with
clocks. Messages are time stamped by the sender and the timestamp is signed.
Nodes drop messages that are either too old or too new. This calculation is
based on the difference between the timestamp and the local clock. The second
approach is that every state transition has a local timeout before it expires. On
Tendermint, for example, a precommit state has a one second timeout. The next
block producer can try to propose the next block, but all the nodes in the network
will wait for at least 1 second from the start of the precommit state transition
before considering the new proposal.

And a bit later in [Yak19b]:



The Solana protocol has no dependencies on local computer clocks or local time-
outs between state transitions beyond the Verifiable Delay Function. Instead,
the VDF ensures that each block producer proves they have waited a sufficient
amount of time, and the network moves forward. Unlike Tendermint, the next
block producer has to locally generate a portion of the VDF until the scheduled
slot.

This means that receiving nodes can begin state transition as soon as the message
is received, because they have a cryptographic proof that the producer obeyed the
protocol delays.

In our opinion, the criticism here of Tendermint [BKM18] is a strawman. The issue here
is that of optimistic responsiveness, a notion introduced in [PS18§], that, roughly speaking,
says that the protocol will run as fast as the network will allow, at least under appropriate
“optimistic” conditions (such as when the leader in a leader-based protocol is honest and
the network is well behaved). While it is well known that Tendermint is not optimisti-
cally responsive, other protocols are, including classical PBFT [CL99], HotStuff [YMRT18],
SBFT |GAG™19], and ICC [CDH™21]. These optimistically responsive protocols solve per-
fectly well the problem of avoiding unnecessary delays without the need for performing all
of the intensive computations required for proof of history. Indeed, it is hard to see how any
consensus protocol based on proof of history can possibly run as fast as the network will
allow, since — by definition — the nodes in the protocol are busily wasting a significant
amount of time computing hash chains.

3.5 The blog post “Tower BFT: Solana’s high performance implementa-
tion of PBFT”

The blog post [Yak19¢| states that:

Solana implements a derivation of PBFT, but with one fundamental difference.
Proof of History (PoH) provides a global source of time before consensus. Our
implementation of PBFT uses the PoH as the network clock of time, and the
exponentially-increasing timeouts that replicas use in PBFT can be computed
and enforced in the PoH itself.

The exponentially-increasing timeouts in PBFT referred to here are the timeouts used to
trigger a view change when a leader appears to be unresponsive. The purpose of increasing
the timeouts in this way is essentially to ensure that the protocol makes progress, even if
its initial estimate for maximum network delay is too small.

The blog post [Yak19c] claims that Solana’s consensus protocol is a “derivation of
PBFT”, and sketches some basic ideas of Solana’s consensus protocol and how it differs
from PBFT. First, unlike PBFT, but similar to, for example, HotStuff [YMR™18], it ro-
tates the leader frequently at regular intervals. Second, it uses a voting strategy to finalize
transactions that is based on exponentially increasing lockout periods, during which time
a node cannot vote on a different branch. These lockout periods are measured in terms
of rounds, each of which is supposed to take a certain amount of time based on proof of
history.
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This idea of exponentially increasing lockout periods (which, by the way, is never men-
tioned in the Solana whitepaper [Yak18b]) is a potentially interesting idea, but its motivation
and benefits remain unclear, and it raises a number of questions, such as: under precisely
what conditions is liveness guaranteed to hold? Another question, more relevant to our dis-
cussion here, is: why not simply use ordinary (unsynchronized) clocks to mark the passage
of time? This could presumably be done by standard techniques, whereby each node casts
a vote to indicate that a certain amount of time, encompassing one “epoch”, has passed
(according to its local clock), and moves to the next “epoch” after seeing quorum of such
votes (as just one recent example of this, see [CPS18]). Casting these votes would obviously
cost a bit more in communication; however, it is not at all clear to us if the communication
cost of these votes would be any more than the communication cost of all of the other voting
going on in Solana’s consensus protocol.

3.6 Other online documentation

Some aspects of Solana’s consensus protocol are also hinted at in the online documentation
at https://docs.solana.com, specifically:

https://docs.solana.com/cluster/overview
https://docs.solana.com/cluster/synchronization
https://docs.solana.com/cluster/leader-rotation
https://docs.solana.com/cluster/fork-generation
https://docs.solana.com/cluster/managing-forks
https://docs.solana.com/cluster/turbine-block-propagation
https://docs.solana.com/cluster/vote-signing
https://docs.solana.com/cluster/stake-delegation-and-rewards

This documentation (specifically, https://docs.solana.com/cluster/managing-forks)
does say a few words about exponentially increasing lockout periods, which, as discussed
above in Section is not mentioned in the Solana whitepaper [Yakl18b]. However, just
like that whitepaper, this documentation is horribly lacking in details, suffering from the
same lack of specificity that the whitepaper suffers from, as discussed above in Section
(namely, an underspecified protocol, no statement of its properties, no statement of under-
lying assumptions, no analysis or proofs).

4 Conclusion

We have observed that if one uses proof of history as a way of proving the passage of time,
the amount of time that has “provably passed” seems very inexact, and the amount of
computation required to verify such a proof of history is very high. We argued that we see
little evidence that using proof of history as a trusted source of time is helpful in improving
the performance of proof-of-stake consensus protocols.

e We examined the possibility that using proof of history as a trusted source of time
could somehow dramatically reduce the communication complexity of proof-of-stake
consensus protocols. We observed, however, that the communication complexity that
other protocols devote to marking the passage of time is typically insignificant. More-
over, there is no clear evidence to suggest that proof of history plays any significant
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role in improving the communication complexity of Solana’s own consensus protocol,
or that the communication complexity of this protocol is any better than that of any
of the existing consensus protocols in the literature. Indeed, we speculate that to the
extent that Solana’s consensus protocol does exhibit good communication complexity,
this is more likely a consequence of other techniques.

e We also examined the possibility that using proof of history as a trusted source of
time could somehow avoid the delays introduced by consensus protocols, such as
Tendermint, that do not enjoy the property of optimistic responsiveness (i.e., run as
fast as the network will allow). We observed, however, that there are a number of
other protocols that are optimistically responsive, including classic PBFT and several
other protocols — these protocols avoid unnecessary delays without relying on proof
of history. Moreover, it is hard to see how any consensus protocol based on proof of
history can possibly run as fast as the network will allow, since — by definition —
the nodes in the protocol are busily wasting a significant amount of time computing
hash chains.

We observed that proof of history is not really a verifiable delay function (VDF), as
proof-of-history verification is computationally expensive, unlike verification in a true VDF.
If we have somehow overlooked the real benefit of proof of history in Solana’s consensus
protocol, a natural question to ask is whether their consensus protocol could be improved
by using a true VDF in place of proof of history. We also observed that while VDFs do
have legitimate uses in the design of proof-of-stake consensus protocols, those uses mainly
derive from using VDFs as a trusted source of randomness (rather than time), and as a
(fragile) defense against “long range attacks”. VDFs also have been shown to be useful
in the construction of truly permissionless consensus protocols — for example, the Chia
blockchain [CP19] makes essential use of VDFs to build a permissionless consensus protocol
similar to Bitcoin, with no staking, but based on proof of space rather than proof of work.

We observed that one interesting and perhaps novel idea in Solana’s consensus protocol
is that of using exponentially increasing lockout periods, during which time a node cannot
vote on a different branch. This idea seems worthwhile to explore; however, its motivation,
benefits, and security properties remain unclear; moreover, it is also unclear why using
ordinary (unsynchronized) clocks together with standard techniques to agree on the passage
of time would not be sufficient to implement this idea.

Final thoughts. We freely admit that our critique of proof of history and its use as a
trusted source of time to improve the performance of proof-of-stake consensus is limited by
a lack of information, even though we did our best to understand this issue by examining
all of the available online articles and documentation for Solana (but not the source code).
If the use of proof of history as a trusted source of time can indeed be used to significantly
improve the performance of proof-of-stake consensus protocols, then the consensus research
community would undoubtedly welcome a scientific paper that includes a clear and concise
formulation of such a consensus protocol, a precise statement of its properties, an explicit
statement of underlying assumptions, and a precise statement as to which assumptions
imply which properties (and hopefully a proof of such a statement). Moreover, a review by
the research community of such a paper would only serve to increase the broader blockchain
community’s confidence in the security of the protocol. Indeed, given the current lack of
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published details and analysis, the lack of any meaningful peer review, and the inherent
subtlety of designing secure consensus protocols, in our opinion, there currently seems to
be little reason to have much confidence in the security of Solana’s consensus protocol (see,
for example, Section 2 of [CV17] for more on this general principle). It would also be
immensely helpful to the research community to have a well-designed experimental analysis
of the performance of such a protocol, relative to other proof-of-stake consensus protocols,
in order to gain a better appreciation of any of its potential performance benefits.
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