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Abstract

In the usual formulations of the Miller-Rabin and Solovay-Strassen primality testing algorithms,
to test a number n for primality, the algorithm chooses “candidates” zq,zg,...,z} uniformly and
independently at random from Z,, and tests if any are a “witness” to the compositeness of n. For
either algorithm, the probability that it errs is at most 275,

In this paper, we study the error probabilities of these algorithms when the candidates are
instead chosen as x,z+4+1,...,2+k — 1, where z is chosen uniformly at random from Z,,. We prove
that for k& = [% log, n], the error probability of the Miller-Rabin test is no more than p~1/2+o(1),
which improves on the n='/4+°(1) bound previously obtained by Bach. We prove similar bounds for
the Solovay-Strassen test, but they are not quite as strong; in particular, we only obtain a bound

of n=1/2+°(1) if the number of distinct prime factors of n is o(log n/loglog n).

1. Introduction

Main Results

Two very well-known primality tests are the Miller-Rabin test (Miller 1976, Rabin 1980) and the
Solovay-Strassen test (Solovay & Strassen 1977). Both of these tests have the following structure.
For each (odd) positive integer n, a set W(n) C Z, is defined with the property that if n is
composite, then #W(n) > n/2, and if n is prime, then W (n) = 0. For composite n, the set W(n)
is called the set of witnessesto the compositeness of n, and the complementary set L(n) = Z,,\W(n)
is called the set of liars.

For both of these tests, the problem of testing whether a given z € Z,, is in W(n) has an efficient
(deterministic, polynomial-time) algorithm.

To actually use these tests, a probabilistic procedure such as the following is usually employed.
Suppose n is to be tested for primality. Choose z1,...,z; independently and uniformly at random
from Z,. If any of these z;’s is in W(n), the algorithm says “composite”; otherwise, the algorithm
says “prime”.

If n is prime, then this probabilistic procedure will say “prime” with certainty. However, if n is

composite, the algorithm could erroneously say “prime” with some small probability, bounded by
27k,
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Our goal in this paper is to analyze the performance of the Miller-Rabin and Solovay-Strassen
tests when the above random sequence z1,...,z is replaced by the sequence

e+ 1l,r4+2,...,0+k—1,

where the starting value z is chosen at random from Z,,.

For the Miller-Rabin test, we use the notation Wasr(n) and Lasr(n); likewise, for the Solovay-
Strassen test, we use the notation Wgg(n) and Lgs(n).

We can now state our main results. For the Miller-Rabin test, we obtain the following result.

Theorem 1.1. Let n be an odd composite integer and let k = [% logy, n]. For a randomly chosen
x € Zy, the probability that {x,z+1,...,2+k — 1} C Lyr(n) is bounded by

n—1/240(1).
We do not obtain such a nice result for the Solovay-Strassen test. We can obtain the following
probability bound that depends on the number w(n) of distinct prime factors in n.

Theorem 1.2. Let n be an odd composite integer and let k = f% logy n]. For a randomly chosen
x € Zy, the probability that {x,z+1,...,2+k — 1} C Lss(n) is bounded by

In the worst-case, w(n) may be asymptotic to log n/ loglogn, in which case this bound is useless
(logn denotes the natural logarithm). However, if w(n) = o(logn/loglogn), then this bound

becomes n~1/2+o(1),
We can obtain a uniform bound (independent of w(n)) by considering shorter sequences.

Theorem 1.3. Let n be an odd composite integer and let k = [(log n)w , where 0 < A < 1/2 is any

fized constant. For a randomly chosen x € Z,,, the probability that {z,z+1,...,2+k—1} C Lss(n)
is bounded by
2-(osm)™ (1 4 o(1)).

We can also obtain a uniform bound by considering much longer sequences. If we set k =
[(log n)¢] for constant ¢ > 2, then we obtain an error probability for the Solovay-Strassen test of

n—1/2—|—1/c—|—o(1)'

Indeed, if n is divisible by a prime less than (logn)¢, then the algorithm will fail to find a witness
with probability O((logn)°/n); otherwise, w(n) < logn/cloglogn and the bound follows from
Theorem 1.2.

Related Work

Bach (1991) examined the error probability of the Miller-Rabin test using the sequence
z,e+1,...,e+k—1,

where = € Z,, is chosen at random and k = [% log, n]. Bach proved that the error probability is at
most n~1/4+°(1) in this case.



Our Theorem 1.1 is a quantitative improvement of Bach’s result, and the techniques we use are
closely related to those used by Bach. However, the methods in Bach’s paper do not appear to
directly yield a similar result for the Solovay-Strassen test, and our results here appear to be the
first of their kind in the literature.

Other related results include the work of Bach & Shoup (1990) on factoring polynomials over
finite fields, and the work of Karloff & Raghavan (1988) on sorting.

One can view all of these results as solutions to special instances of the problem of “recycling
random bits.” Along these lines, we mention the general results of Cohen & Wigderson (1989)
and Impagliazzo & Zuckermann (1989) which essentially state that the error probability of any
probabilistic algorithm can be made exponentially small at the cost of only a constant factor
increase in the number of random bits used.

While these general results on recycling random bits are very powerful, we point out that they
do not subsume our results, as our algorithms are extremely simple in comparison, and moreover,
our results show that the error probability of these primality tests can be significantly reduced
without using any extra random bits.

2. Jacobi Symbol Sequences

The main tool from number-theory that we shall use is the following lemma concerning the Jacobi
symbol.

Lemma 2.1. Let n be an odd squarefree integer and let k be a positive integer. Let ¢; € {—1,+1}
for 0 < j < k. Then for randomly chosen x € Z,, the probability that

(“H)=¢ 0<i<h

n

is at most

2—]{7 _I_ n—1/2 . (k _ 1)&)(71)

In particular, if k > %log2 n, then this probability is at most
n~?(log, n)*".

Proof. Let @) be the probability in question. If & > p for some prime p dividing n, then ¢ = 0, so
we can assume that & < p for all primes p dividing n.
We have

k-1
270 > [T +e(z+j]n)

rmodn ;=0

= 27" ) X4 (@)

rmodn f

nQ

IA

where the sum on f ranges over all 2% polynomials f(t) dividing #(¢+1)---(t+k—1),and each é; is
+1. Rearranging terms, expanding the Jacobi symbol in terms of Legendre symbols, and applying



the Chinese Remainder Theorem, one finds that

nQ <273 1

f pln

?
rmodp p
where the product is over all primes p dividing n.

The term corresponding to f(t) = 1 contributes 27*n to the right-hand side. For the terms
corresponding to f(t) # 1, the polynomial f(¢) is squarefree modulo each prime p dividing n, and

using well-known character sum estimates (see Lidl & Niederreiter 1983, Theorem 5.51), we can
bound the contribution from all of these terms by

[Ttk = 1D)yp = (k — 1)“nt/2,
pln

Therefore,
nQ <27 n + (k — 1)*Mp/2,

and dividing through by n, the first statement of the lemma follows. The second statement follows
from the first by a simple calculation. O

3. Analysis of the Miller-Rabin Test

In this section, we give a proof of Theorem 1.1.

For the reader’s convenience, we state here the witness set for the Miller-Rabin test.

Let n be an odd number, and let n — 1 = 2"m where m is odd. Then = € Z,, is in Warr(n) if
z # 0 and one of the following conditions hold:

1. z"=1 # 1 (mod n).
2. There exists an £, with 1 < £ < h, such that

"l = gn1)/2 (n-1)/27" = 1 (mod n),

=
and z("=1/2" 2 +1 (mod n).

Suppose now that n is an odd composite number for which a Miller-Rabin witness is sought.
Let £ be as in Theorem 1.1. Let

n=py-py
be the prime factorization of n, and, as above, let
n—1=2"m (modd).
For 1 <i<r,let
pi —1=2"m; (m; odd).

Let
h*=min ({h; : 1 <i<r}U{h}).

Lemma 3.1. Ifx € Z,, is a nonzero liar for the Miller-Rabin test, then the following conditions

hold.



1. For h* <1 < h,
22 =1 (mod n).

22T = 4 (mod n).

Proof. If h* = h, then the lemma is clear from the definition of the Miller-Rabin test.

Now suppose that h* < h, so that h* = h;, for some g € {1,...,r}. Since 22'm = (mod pfgo ),
the m-th power map must annihilate the image of z in the Sylow ¢-group of G' = (Zpéio )* for all

0

odd primes ¢ dividing the order of G. Furthermore, for A* < £ < h, the 2-th power map annihilates
the Sylow 2-group of GG. It therefore follows that 22¥m =1 (mod pfgo) for h* <L < h. Aszisa
Miller-Rabin liar, this same congruence must hold modulo n.

This proves the first assertion of the lemma. The second assertion follows from the first and

the definition of the Miller-Rabin test. O

Before continuing, we define three sets of indices A, B,C C {1,...,r}:
A = Hire; > 1}
B = {i:e;=1and h; >h"™};
C = {i:e;=1andh;, =h™}.

We will also use the following notation: for a subset S C {1,...,7}, define
n(s) = T ot
€S

Lemma 3.2. Suppose that forx € Z,,, v,x+1,...,x+k—1 are all nonzero liars for the Miller-Rabin
test. Then the following conditions hold.

MR-1:
Vic A:2P™! =1 (mod pf*).
MR-2:
VieB:(z+j|p)=1 (0<7<k).
MR-3: (a)

Vi € C i@t p) (et ilp) =1 (0<<h)
(b) Moreover, if AUB # 0, then

1

VieC:(e+j|p)=(e+5)? ™ (mod n(AUB)) (0<j<k).

Proof. To prove MR-1, let i € A. Then z"~! =1 (mod p{*). Since p;J/n — 1, the (n — 1)-st power
map is injective on the Sylow p;-group of (Z,,: )*. Therefore, the image of z in this group must be
1. This implies that i~ = 1 (mod p{*). This proves MR-1.



To prove MR-2, let i € B. By Lemma 3.1,
(2 +7)*" ™ =1 (mod pi) (0<j<k).
From the fact that i; > h*, and by considering the Sylow 2-group of Z7 , it follows that
(z+7lp)=1 (0<j<k)

This proves MR-2.
Now consider MR-3. By Lemma 3.1,

(z+ )2 7™ = 41 (mod n) (0 <j < k).
It follows that for any fixed value of j, with 0 < j < k, the Legendre symbols

(z+jlp) (i€C)

have the same value. Moreover, if AU B # (), then this common value must equal (z + j)2h ~im

modulo n(A U B). This proves MR-3. O

We are now ready to prove Theorem 1.1. For a randomly chosen = € Z,, the probability that
z,z+1,...,x +k — 1 are all nonzero liars is bounded by

Pr[MR-1 A MR-2 A MR-3].
The events MR-1 and MR-2 are independent, and so this probability is equal to
Pr[MR-1] - Pr[MR-2] - Pr[MR-3 | MR-1 A MR-2].

It is trivial to prove that

PrMR-1] < [] ——- (3.1)

icA P

A direct application of Lemma 2.1 to each of the individual moduli p;, where ¢ € B, yields

log, pi

Pr[MR-2] < . 3.2
1/2
i€eB P;
Finally, we shall prove that
2 log, pi
Pr[MR-3 | MR-1 A MR-2] < (logyn)® - [] R (3.3)
iec P;

Before proving (3.3), we note that (3.1), (3.2), and (3.3) imply that the probability estimate in
Theorem 1.1 is bounded by
n~'/? - (logyn)” - ] logs p.

pln



Now, it is proved in Bach (1991) that

Hlogp < n°W), (3.4)
pln
Thus, the probability that z,z 4+ 1,...,2 + k — 1 are all nonzero liars is at most n=1/2+°(1) Fur-

thermore, the probability that any of these are zero is O(logn/n), and Theorem 1.1 is proved.
We now prove (3.3). We can of course assume that C' # (. We break the proof into two cases.
First, suppose that #£C = 1, say C = {i1}. Then, as n is composite, A U B # (). Conditioning
on z modulo n(A U B), and applying Lemma 2.1 with the modulus p;,, we obtain

1Og2 Piy
1/2
1

Pr[MR-3(b) | MR-1 A MR-2] <

Second, suppose that #C > 2. Arbitrarily select i1,72 € C'. Then the events MR-3(a) and
(MR-1 A MR-2) are independent, and the probability Pr[MR-3(a)] is equal to the probability that
the following two events occur:

Eiv: (z+7|paps,)=1 (0<7<k),

and
Ey: Vie C\iv i} (z+j | p)=(z+7|py) (0<7<k).
Applying Lemma 2.1 to the composite modulus p;, p;,, we obtain
1 i Diy))?
PT[El] S (OgQ(p 1p122)) .
(pir iy )V

Conditioning on z modulo p;, p;,, and applying Lemma 2.1 to each individual modulus p;, for all
i € C\{i1,172}, one sees that

log, p;
Pr[Ey | Ea) < ] %f :
iec P;

1#41 12
The bound (3.3) then follows by multiplying together these bounds for Pr[£;] and Pr[E; | Eq].
As an aside, we mention another proof of (3.4). This is equivalent to proving that

Z loglog p = o(log n). (3.5)

pln

Partition the primes p dividing n into small ones—those with log p < (loglog n)?, and large ones—
those with logp > (loglogn)?. As there are at most O(logn/loglogn) distinct primes dividing n,
the total contribution of the small primes to (3.5) is O(log n log loglog n/ loglog n), which is o(log n).
As there can be at most log n/(loglogn)? large primes divising n, each contributing a term of at
most loglog n to (3.5), the total contribution of the large primes to (3.5) is O(log n/ loglog n), which
is o(logn).



4. Analysis of the Solovay-Strassen Test

In this section, we prove Theorems 1.2 and 1.3.
For the reader’s convenience, we state here the witness set for the Solovay-Strassen test. Let n
be an odd integer. Then z € Z,, is in Wgg(n) if

ged(z,n) > 1 or (f) £ z("V/2 (mod n).
n

We proceed now to prove Theorem 1.2. At the end of this section, we indicate the modifications
needed to prove Theorem 1.3.
Let n and k£ be as in Theorem 1.2. As in the previous section, let

n — pil . pi’"
be the factorization of n into primes, letting
n—1=2"m (m odd),

and for 1 <7 < r,
pi—1=2%m; (m;odd).

We define four sets of indices, A, B,C, D C {1,...,7}:
A = {ire; > 1}
{i:e; =1and h; > h};
{i:e; =1and h; = h};
= {i:e; =1and h; < h}.

o Q=

Recall the notation n(.5) defined just before Lemma 3.2.

Lemma 4.1. Ifz,z+1,...,x + k — 1 are all nonzero liars for the Solovay-Strassen test, then the
following conditions hold.

SS-1:
Vie A:2P™t =1 (mod pf*).
SS-2:
VieB:(z+j|p)=1 (0<7<k).
SS-3: (a)

Vi, e Ci(z+j5|pi)-(z+7|pe)=1 (0<j<k).
(b) Moreover, if AU B # 0, then

VieC:(z+j]|p)=2z""Y?2(mod n(AUB)) (0<j<k).



Proof. To prove this, one only needs to use the fact that if (z + j) is a nonzero liar, then
(z+7)"=D/2 = £1 (mod n). The proof of SS-1 is just the same as the proof of MR-1in Lemma 3.2.
Also, proofs of 55-2 and SS-3 are can be made along the same lines as the proofs MR-2 and MR-3
by considering the Sylow 2-groups of (Z,,)* for various values of i. We leave the deatils to the

reader. O

Lemma 4.2. Assume D # 0. Ifz,z+1,...,2+k—1 are all nonzero liars for the Solovay-Strassen
test, then the following conditions hold.

SS-3':

SS-4:
(z+j|nD)) (z+7|n(AUBUC))=1 (0<j<k).
Proof. Choose an arbitrary ig € D. If (z + j) is a nonzero liar, then it must be the case that
(z 4 7)"1/? = 1 (mod n).

As this congruence holds modulo p;,, and since h;, < h, we must have (z+3)"~1/2 = 1 (mod p;, ).
Therefore, D # () implies that

l=(z+j|n)=(x+7)"?% (modn) (0<j<k).
Conditions SS-3' and SS-4 follow immediately. O

We are now in a position to prove Theorem 1.2. We split the proof into two cases, depending
on whether D is empty or not.
First, suppose D is empty. By Lemma 4.1, the error probability is bounded by

Pr[SS-1 A SS-2 A $S-3],

plus the probability that one of z,2z + 1,...,2 + k — 1 is zero, which is negligible. One can now
make an argument that is essentially identical to the one used in the proof of Theorem 1.1 to show
that

Pr[SS-1 A §5-2 A §§-3] < p=1/2+o(1),

This completes the proof for this first case.
Second, suppose that D is not empty so that Lemma 4.2 applies. We need to bound the
probability
Pr[SS-1 A SS-2 A SS-3" A SS-4].

The events SS-1, SS-2 and SS-3’ are independent, and it is easy to show by analyzing each i €
(AU B U C) separately that

Pr[SS-1 A SS-2 A §5-3'] < ny '/ 2Ho(), (4.1)



where ny = n(AU BUC). Now, let ny = n(D). Conditioning on z modulo n;, and applying
Lemma 2.1 with modulus ng, one finds that

Pr[SS-4 | SS-1 A SS-2 A SS-3'] < ny /2 (log, ng)*("2). (4.2)

Multiplying together (4.1) and (4.2), one obtains the probability estimate in Theorem 1.2.

This proves Theorem 1.2.

To prove Theorem 1.3, one retraces the above proof with the smaller value [(logn)*] for k. The
proof for the case where D = () goes through in a straightforward fashion and we leave the details
to the reader. The interesting case is when D # (). Making use of Lemma 2.1 and the estimate
w(ng) < (logngy/loglogny)(1 + o(1)) (see Hardy & Wright 1984, p. 355), the probability in (4.2)
can be bounded by

2—(logn2)A _I_ n2—1/2 (10g TLQ)/\ W(TLQ) < 2_(10g7”b2)A _I_ eXP[)\ w(nZ) 10g10g Ny — %log n2]

IN

g-(logn2)* 4 exp[Alogna(1 4+ o(1)) — %log ng]
9-(osm2)™ (1 4 (1)),

IA

since A < 1/2.

5. Conclusion

We have analyzed the performance of both the Miller-Rabin and the Solovay-Strassen test, under
the assumption that the search for a witness proceeds by choosing = € Z, at random, and then
considering z,z 4+ 1,..., as candidate witnesses.

Our results for the Miller-Rabin test strengthen those previously obtained by Bach. Our results
for the Solovay-Strassen test are new, but unfortunately are not as good as our results for the
Miller-Rabin test, as they depend on the number of prime factors of n.
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