Smoothness and Factoring Polynomials over Finite Fields*

Victor Shoup!
Computer Sciences Department
University of Toronto

Toronto, Ontario M5S 1A4, Canada

February 15, 1996

Keywords: polynomials, finite fields, factorization.

Let p be a prime number, and F,, the finite field with p elements. Let S(m) be the “smoothness”
function that for integers m is defined as the largest prime divisor of m. In this note, we prove the
following theorem.

Theorem. There is a deterministic algorithm for factoring polynomials over F,, which on poly-
nomials over F,, of degree n runs in time

S(p—1)"*(nlogp)°

under the assumption of the Extended Riemann Hypothesis (ERH).

The algorithm we describe is a refinement of algorithms given by von zur Gathen [19] and
Rényai [13]. Assuming the ERH, these algorithms run in time S(p — 1)(nlogp)®("), thus our
algorithm represents an improvement of a factor of S(p — 1)1/2. If the ERH is true, then in terms
of the dependence on p, the bound on the running time of our algorithm is better than the worst-
case bounds on the running times of current algorithms in the literature for factoring arbitrary
polynomials over F,. See [15] for an unconditional running time bound of p/%(nlogp)°M), and
[8, 14] for running time bounds (assuming ERH) of (nlog p)o(l) for polynomials of a special form.

The algorithms of von zur Gathen and Ronyai essentially reduce the problem of factoring a
polynomial of degree n over F, to the following two problems in time (nlog p)o(l):

(1) computing the prime factorization of p — 1;

(2) computing all of the roots of X? — a, where ¢ is a prime divisor of p— 1, and «a is a ¢-th power
residue in F,.

*Appeared in Information Processing Letters 39, pp. 3942, 1991.

TThis research was done while the author was at the Unviversity of Wisconsin—-Madison with the support of NSF
grants DCR-8504485 and DCR-8552596. An earlier version of this paper appeared under the title “A Theorem on
Factoring Polynomials over Finite Fields” as Computer Sciences Technical Report No. 866, University of Wisconsin—
Madison, August 1989.

Both of these algorithms solve problem (2) using a variant of the root finding algorithm of
Adleman, Manders and Miller [1]. Using discrete logarithm techniques in [11], a single g-th root of @
can be computed in time q1/2(log p)o(l) assuming the ERH. But these algorithms in general compute
all ¢ of the ¢-th roots of a, which of course requires time at least ¢q. Actually, only a very small
subset of these roots is required, and our algorithm computes this subset in time q1/2(n10g p)o(l)
by employing a variant of the technique used in the Pollard-Strassen integer factoring algorithm
[12, 18]. We also note that problem (1) can be solved in time S(p — 1)"/?(log p)°") using the
Pollard-Strassen integer factoring algorithm.

Remark 1. The ERH assumption in our theorem can be replaced by the assumption that we
have a primitive root mod p. The following unconditional consequence of this was pointed out by
L. E. Shparlinskiy [17]. It was proved in [9] that for a positive proportion of primes p, S(p—1) < p**e,
where @ = 1/(24/e) = 0.303.... Combining this fact with the bound in [6] on the average order
of the least primitive root, it follows that for a positive proportion of primes p, we can factor any
polynomial of degree n over F, in deterministic time po/2+ep0(1) — p0-155,0(1)

Remark 2. One can prove an analog of our theorem with S(p+ 1) replacing S(p — 1) by making
use of the methods in this paper and in [4], along with [16, Theorem 2].

Preliminaries

Suppose f € F,[X] is the polynomial we wish to factor. Using well-known techniques [5, 10], we
can assume that f is of the form

f=(X—-a1) (X —a,),

where the a;’s are distinct elements of F'),. Furthermore, we need only address the problem of finding
a nontrivial factor of f, since an algorithm for this problem can obviously be used to completely
factor f.

Let R be the F,-algebra F,[X]/(f). Let = denote the residue class of X modulo fin R. Then
any element in R can be written as g(z) where ¢ is a polynomial of degree less than n over F,, and
by the Chinese Remainder Theorem, the map that sends g(z) to

(9(a1),...,9(a,)) €F, & ---dF,
—_—
n times

is an F,-algebra isomorphism. We shall identify elements v € R with their image under this iso-

morphism, writing v = (uq,. .., u,), with each u; in F,, and referring to the u;’s as the components
of u. In particular, z = (aq,...,a,), and for elements a in F,—which is as a subalgebra of R
under the usual embedding sending @ € F,, to ¢ mod f—we have ¢ = (a,...,a) (all components

equal to a). This isomorphism will only be used in the analysis of our algorithm, and not in the
algorithm itself—indeed, computing this isomorphism is equivalent to factoring f. The algorithm
itself represents elements of R by polynomials in F,[X] of degree less than n.

The zero divisors of R are precisely those u = (uq,...,u,) € R where some, but not all, of the
u;’s are zero. If g is a polynomial over F, with g(z) = u, then gecd(f,g) is a nontrivial divisor of
f—in fact,

ged(fog)= I (X - an).

1<i<n
u; =0

Thus, the problem of finding a nontrivial divisor of f reduces to the problem of finding a zero
divisor in R.

For a given u € R, there exists a unique monic polynomial of minimum degree in F,[X] that is
zero at u, and we denote this polynomial by M,. The degree of M, is no more than n, and we can
easily compute M, using linear algebra by looking for the first linear relation among the powers

1,u,u?, Furthermore, it is easy to see that if v = (u1,...,u,), then
M, = J] (X -a),
a€{u;}

where the product ranges over all of the distinct components of u.
Let

p—l=di"q’
be the prime factorization of p — 1. Since F} is a cyclic group, from elementary group theory we

know that F7 can be written as the inner direct of subgroups 51,..., 5, where S; is of order q;].
Therefore, any a € F}, can be written uniquely as

a=aMa® ... q)
where o) € S;. Given the prime factorization of p—1, we can easily compute al) using the formula
al) = q% | where b; =¢;d;, d; = (p— 1)/q;], and ¢; is the multiplicative inverse of d; modulo q;].

Factoring Algorithm

We now describe our algorithm. The notation described in the Preliminaries section remains in
force. As described there, it suffices to find a zero divisor in the ring R associated with f.

Step 1. Factor p — 1 and compute b;, 7 =1,...,7.

The factorization of p—1 can be obtained in time S(p—1)"/%(log p)°") using the Pollard-Strassen
integer factoring algorithm.

Step 2. Compute z%, j = 1,...,r, and from among these select one =% that is not in F,. For
this j, let y = 2%, ¢ = q;, € = ¢€;.

For any given j, 2% = (agj) ...,a(j)). Since the a;’s are all different, there must be some

j=1,...,r such that the components of % are not all the same, i.e. z% ¢ F,.

1

Step 3. Compute the least t such that yqt €F, Leta= yqt, and z = yqt_ .

Since y ¢ F,, and y?" = 1, we know that ¢ as defined above satisfies 1 < ¢t < e. Observe that
z =1(z1,...,2,), where the z;’s are ¢-th roots of a in F,, not all the same (since ¢ was chosen so
that z ¢ F,).

The purpose of the remaining steps of the algorithm is to find one of the z;’s, since for any z;,
z — z; is a zero divisor. If it happens that ¢ < n, then we can compute all of the roots of X9 — @ in
time (nlogp)®() (assuming the ERH) using the algorithm of Adleman, Manders and Miller, and
then easily find a zero divisor. Therefore, in the sequel we shall assume that ¢ > n.

Step 4. Compute M,, the minimum polymial of z. Let m = deg M,.

We know that
M, =(X —2)-(X = 2,),

where {z{,..., 2] } is the set of distinct elements among z1,...,z,. So we have now reduced our
problem to finding a root of M,. Before we do this, however, we do the following.

Step 5. Compute a g-th root a of a in F),.

We can find a g-th root of a in time (nlogp)®() as follows (without assuming the ERH).
Suppose that the constant term of M, is b, and that the multiplicative inverse of m mod ¢° is
m (which exists since we are assuming that ¢ > n > m, and which we can compute in time
(log p)°M). Then we claim that a = ((—1)™b)™ is a ¢-th root of a. To see this, note that we can
write M, = (X —&§a')--- (X = &na'), where o is some ¢-th root of @ and the &;’s are ¢-th roots of
unity. Therefore, b = (—1)"¢'(a’)™, where £’ is some ¢-th root of unity. Since o’ has order dividing
q°, we have ((—1)™b)™ = (¢')™a’, which is also a ¢-th root of a.

Step 6. Compute a root of M,.

We can find a root of M, in time ql/Q(nlog p)o(l) as follows. We shall require a primitive g-th
root of unity, call it £. Under the assumption of the ERH, with Ankeny’s theorem [3] we can obtain
¢ in time (log p)°(),

If ¢ were small, i.e., ¢ = (n logp)o(l), we could simply search among the elements £'a, i =
0,...,g—1, for a root of M,. However, for large ¢, we can use the following variant of the Pollard-
Strassen integer factoring technique.

Let § = F,[X]/(M.), and let A denote the residue class of X modulo M, in S. Let s = |¢'/?].
Consider the polynomials

hi(X) = (X — &a)(X — o). (X =6 Na) (i=0,...s—1).

If we could compute all of the h;’s, then we could examine them one at a time until we found one
for which gcd(M,, h;) # 1. If we succeeded in finding such an h;, then we could search for a root
of M, in the set {£%a, &5 a,. .., £t~ Da} (which has s elements); otherwise, we could search
in the set {552a,552+1a, ..., €77 1a} (which has < 2¢'/2 — 1 elements).

It will suffice to compute the h;’s mod M,. To do this, we first compute the polynomial
AX)= (X —1)(X =£)---(X —¢&~1) € F,[X]. Using the FFT, this takes time s(log p)°(!) (see,
e.g., [2, 7]). But note that

hi(d) = (A =€)+ (A= £+ a)
= (€a) (MeTa — 1) (A0 — &)
= (%)’ h(A/E"a).
So to compute the h;’s mod M., it suffices to evaluate the polynomial A(X) at s points in S,

which can be done using the FFT with s(log 5)0(1) additions, subtractions, and multiplications in
S (again, see [2, 7]), each of which can be performed in time (nlogp)°().

References

[1] L. M. Adleman, K. Manders, and G. L. Miller. On taking roots in finite fields. In 18th Annual
Symposium on Foundations of Computer Science, pages 175-178, 1977.

[2] A.V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[3] N. C. Ankeny. The least quadratic nonresidue. Ann. of Math., 55:65-72, 1952.

[4] E. Bach and J. von zur Gathen. Deterministic factorization of polynomials over special fi-
nite fields. Technical Report 799, Computer Sciences Department, University of Wisconsin—
Madison, 1988.

[5] E.R. Berlekamp. Factoring polynomials over large finite fields. Math. Comp., 24(111):713-735,
1970.

[6] D. A. Burgess and P. D. T. A. Elliot. The average of the least primitive root. Mathematika,
15:39-50, 1968.

[7] D. G. Cantor and E. Kaltofen. Fast multiplication of polynomials over arbitrary rings. Tech-
nical Report 87-35, Department of Computer Science, Rensselaer Polytechnic Institute, 1987.
To appear, Acta. Inf.

[8] S. A. Evdokimov. Factoring a solvable polynomial over a finite field and Generalized Riemann
Hypothesis. Zapiski Nauchn. Semin. Leningr. Otdel. Matem. Inst. Acad. Sci. USSR, 176:104—
117, 1989. In Russian.

[9] J. B. Friedlander. Shifted primes without large prime factors. In Number Theory and Appli-
cations, pages 393-401. Kluwer Acad. Publ., 1989.

[10] R. Lidl and H. Niederreiter. Finite Fields. Addison-Wesley, 1983.

[11] S. Pohlig and M. Hellman. An improved algorithm for computing logarithms over GF(p) and
its cryptographic significance. IFEF Trans. Inf. Theory, 24:106-110, 1978.

[12] J. M. Pollard. Theorems on factorization and primality testing. Proc. Cambridge Phil. Soc.,
76:521-528, 1974.

[13] L. Rényai. Factoring polynomials modulo special primes. Combinatorica, 9(2):199-206, 1989.

[14] L. Rényai. Galois groups and factoring polynomials over finite fields. In 30th Annual Sympo-
sium on Foundations of Computer Science, pages 99-104, 1989.

[15] V. Shoup. On the deterministic complexity of factoring polynomials over finite fields. Inform.
Process. Lett., 33(5):261-267, 1990.

[16] V. Shoup. Searching for primitive roots in finite fields. In 22nd Annual ACM Symposium on
Theory of Computing, pages 546—554, 1990. To appear, Math. Comp.

[17] 1. E. Shparlinskiy. Personal Communication, 1990.

[18] V. Strassen. Einige Resultate iber Berechnungskomplexitét. Jahresber. Deutsch. Math.- Verein,
78:1-8, 1976.

[19] J. von zur Gathen. Factoring polynomials and primitive elements for special primes. Theoret.
Comput. Sci., 52:77-89, 1987.

