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Abstract

For the most compelling applications of threshold cryptosystems, security against chosen
ciphertext attack is a requirement. However, prior to the results presented here, there appeared
to be no practical threshold cryptosystems in the literature that were provably chosen-ciphertext
secure, even in the idealized random oracle model. The contribution of this paper is to present
two very practical threshold cryptosystems, and to prove that they are secure against chosen
ciphertext attack in the random oracle model. Not only are these protocols computationally
very efficient, but they are also non-interactive, which means they can be easily run over an
asynchronous communication network.

1 Introduction

In a threshold cryptosystem, the secret key of a public key cryptosystem is shared among a set of
decryption servers, so that a quorum of servers can act together to decrypt a given ciphertext. Just
as for ordinary, non-threshold cryptosystems, a natural and very useful notion of security is that
of security against chosen ciphertext attack. In this paper, we consider the problem of designing
threshold cryptosystems that are secure against chosen ciphertext attack. Our goal is to design a
practical scheme, and provide strong evidence that it cannot be broken.

Even though the most compelling applications of threshold cryptosystems seem to require
chosen-ciphertext security, prior to the results presented here, there appeared to be no practi-
cal threshold cryptosystems in the literature that were provably secure — even in the random
oracle model, where one models a cryptographic hash function as a random oracle.

Our main contribution is to present and analyze two such schemes which are secure in the
random oracle model. The first scheme, which we call TDH1 (for Threshold Diffie-Hellman), is
secure assuming the hardness of the computational Diffie-Hellman problem [DH76]. The second
scheme, TDH2, is secure under the stronger assumption of the hardness of the decisional Diffie-
Hellman problem, but is more efficient than TDH1.
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2 Background and related work

2.1 Chosen ciphertext security

In the context of ordinary, non-threshold cryptosystems, the notion of security against chosen
ciphertext attack was developed by Naor and Yung [NY90], Rackoff and Simon [RS91], and Dolev,
Dwork, and Naor [DDN91]. These definitions are further explored and developed in [BDPR98] and
[BS99].

In a chosen ciphertext attack, the adversary is given access to a decryption oracle that allows
him to obtain the decryptions of ciphertexts of his choosing. Intuitively, security in this setting
means that an adversary obtains (effectively) no information about encrypted messages, provided
the corresponding ciphertexts are never submitted to the decryption oracle.

2.2 Threshold cryptosystems

In a k out of n threshold cryptosystem there is a single public encryption key, but the corresponding
private decryption key is shared among a set of n decryption servers in such a way that k of them
must cooperate to decrypt a message.

We consider only simple client/server protocols. That is, to decrypt a message, a client presents
a ciphertext to be decrypted to a server, who responds with a decryption share. The client should
be able to inspect the decryption share and verify its correctness or “validity.” After collecting
valid shares from k servers, the client can combine these shares to obtain the decryption of the
ciphertext.

Such client/server protocols are attractive since they require no interaction or synchronization
among the servers, and as such can be easily and efficiently run on an asynchronous communications
network, with absolutely no reliance on network latency guarantees. In practice, this is an important
property, since it allows the servers to be geographically distributed, and it allows the use of
inexpensive public communication networks, rather than the expensive, private networks that would
be required to provide a guaranteed latency.

For a k out of n threshold cryptosystem, the adversary first corrupts k − 1 decryption servers.
After corrupting these servers, the key generation algorithm is run, and the adversary obtains the
shares of the secret key held by the corrupted servers.

During the course of the attack, the adversary submits ciphertexts to the uncorrupted decryption
servers; whenever the adversary submits a ciphertext ψ to a server, the server responds with its
decryption share of ψ.

Intuitively, security in this setting means that the adversary obtains (effectively) no information
about encrypted messages, provided their corresponding ciphertexts are never submitted to an
uncorrupted server.

Note that we only analyze the situation where the adversary statically corrupts the servers, i.e.,
it makes its decision as to who to corrupt independently of the observed network traffic.

One important difference between chosen ciphertext attack in the non-threshold and threshold
settings is that in the latter the adversary sees not only the decryption of chosen ciphertexts, but
also the decryption shares of these ciphertexts. This extra information that is available to the
adversary can make security proofs more challenging.
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2.3 Applications of threshold cryptosystems

One of the main motivations for a threshold cryptosystem is that it allows one to construct a
third-party decryption service in a distributed, secure, fault-tolerant fashion, without a significant
increase in the size or the cost of creating a ciphertext compared to a standard cryptosystem. To
be at all useful, the third party should not decrypt everything that comes its way and give it to just
anybody, but should implement some kind of useful decryption policy. To implement such a policy
securely, in addition to chosen-ciphertext security, one needs an additional facility: the ability to
attach a label to the ciphertext during the encryption process. Such a label is a bit string that
contains information that can be used by the third party to determine if the decryption request
is authorized, according to its policy and its current state. One can think of the label as being a
part of the ciphertext, so that changing the label changes the ciphertext; security against chosen
ciphertext attack would then imply, in particular, that one cannot subvert the third party’s policy
by simply swapping labels.

Perhaps the most obvious example of this is key recovery. Here, two parties who wish to
communicate securely generate a session key, and encrypt the session key under a third party’s
public key. The party that creates the encryption attaches a label containing the identities of the
two parties, and the current time. This labeled ciphertext is sent along the wire, along with the
encrypted conversation. A law enforcement agency may be authorized via a court order to tap the
line, and request that the third party decrypt the ciphertext containing the session key. To protect
individual privacy, the court order specifies to whom the wiretap applies and a time interval. To
enforce this policy, the third party only decrypts a ciphertext if the information in its label is
consistent with the given court order.

There are other similar scenarios where a secret of some sort needs to be “escrowed” by encrypt-
ing it under a trusted third party’s public key, and where this third party only decrypts ciphertexts
according to a particular decryption policy. One such example is the recent work of [ASW00] on
fair exchange, where an “off line” trusted third party is used to enforce fairness.

Another application of threshold decryption is to maintain causal order among client requests
for a distributed or replicated service [RB94, CKPS01]. In this scenario, clients make requests to a
distributed service. One wants each server to process the same requests in the same order, and in
addition, one wants to prevent an adversary from inserting requests that depend on other requests
that have been issued but not yet processed. This can be achieved using a threshold cryptosystem
that is secure against chosen ciphertext attack, as discussed rather informally in [RB94] and more
rigorously in [CKPS01].

Yet another application of threshold decryption is verifiable signature sharing [FR95, CG99b].
In a signature sharing scheme, one party wants to verifiably distribute shares of a digital signature
to a group of players so that later, a quorum of these players can combine their shares to reconstruct
the digital signature. One way to implement this, is to combine an algorithm to verifiably encrypt
a signature under a public key, and have the corresponding decryption key distributed using a
threshold cryptosystem. The verifiable encryption can be done using algorithms in [ASW00]. The
use of a label can also be helpful here to control the circumstances under which the digital signature
will be reconstructed.

A label might also contain the identity or public key of the intended recipient, allowing the
decryption service to direct the cleartext to that recipient only.

The usefulness of labeled ciphertext was already observed by Lim and Lee [LL93] (who called it
an indicator). In a non-threshold cryptosystem, labeled ciphertexts can be implemented by simply
embedding a hash of the label in the cleartext before encrypting. The decryption service is given a
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ciphertext and a label, computes the cleartext, and compares the value of the embedded hash with
the hash of the given label. If these match, and the decryption policy authorizes the given label,
then the cleartext is released. If the underlying cryptosystem is secure against chosen ciphertext
attack, then so too will be the cryptosystem with labeled ciphertexts. This implementation is
not suitable for threshold cryptosystems since the attacker who is mounting the chosen ciphertext
attack may be cooperating with some of the decryption servers. Those servers would have to see
the decrypted labeled plaintext before it is output, thus it would be too late at that point to check
if the label is correct, since the attacker has already seen the result of the decryption operation.

2.4 Constructions of chosen ciphertext secure cryptosystems

A number of ordinary, non-threshold chosen ciphertext secure cryptosystems have been proposed
in the literature.

In addition to formal definitions, [NY90], [RS91], and [DDN91] present provably secure cryp-
tosystems (without random oracles). However, all of these schemes rely on theoretical constructions
of non-interactive zero-knowledge proofs [BDMP91], and as such are quite impractical.

To overcome the above inefficiency problem some practical cryptosystems intended to be secure
against chosen ciphertext attack were proposed by Damgard [Dam91], Zheng and Seberry [ZS92],
and Bellare and Rogaway [BR93, BR94]. The scheme in [BR93] was proven chosen-ciphertext secure
in the random oracle model, using any one-way trapdoor permutation, such as RSA [RSA78]. The
scheme in [BR94], known as OAEP, was also claimed to be chosen-ciphertext secure, using any one-
way trapdoor permutation; however, it was shown in [Sho01] that their proof was invalid and could
not be repaired using standard techniques, at least for an arbitrary one-way trapdoor permutation.
It was also shown in [Sho01] that OAEP when instantiated with low-exponent RSA was in fact
chosen-ciphertext secure, and this result was extended to arbitrary-exponent RSA in [FOPS01].

Recently, the first truly practical cryptosystem that is provably secure against chosen ciphertext
attack without using random oracles was discovered by Cramer and Shoup [CS98]. The security of
this scheme is based on the hardness of the decisional Diffie-Hellman problem. For the historical
record, we should point out that the results in [CS98] follow and build on the results in a preliminary
version of this paper [SG98]. The paper [Sho00b] presents a variant of the scheme in [CS98] that
is both more practical and (potentially) more secure. Subsequent to [CS98] and [SG98], Fujisaki
and Okamoto [FO99] presented a cryptosystem that can be proven secure against chosen ciphertext
attack in the random oracle model under the computational Diffie-Hellman assumption; this result
was refined and extended in [Poi00] and [BLK00].

Although the schemes in this paper are presented as threshold cryptosystems, they can also
be used as ordinary cryptosystems, and as such are the first cryptosystems in the literature based
on the Diffie-Hellman problem that are chosen-ciphertext secure in the random oracle model. The
subsequent schemes of [FO99] and [Poi00] are more efficient; however, they cannot be readily
transformed into threshold cryptosystems. The papers [TY98] and [ABR99, ABR01] also present
schemes based on the Diffie-Hellman problem, but to date, they are not known to be chosen-
ciphertext secure, even in the random oracle model (at least, assuming a standard intractability
assumption).

2.5 Difficulties in securing threshold cryptosystems against chosen ciphertext
attack

Threshold cryptosystems are part of a general approach known as threshold cryptography, intro-
duced by Boyd [Boy86], Desmedt [Des87], and Desmedt and Frankel [DF89]. In particular, in
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[DF89], a threshold cryptosystem based on the Diffie-Hellman problem is presented. The tech-
niques developed later by De Santis et al [DDFY94] yield a corresponding system based on RSA
[RSA78]. These schemes can be shown to withstand chosen plaintext attack, but they are not
known to withstand chosen ciphertext attack.

It should be observed that none of the practical non-threshold schemes mentioned above can be
readily transformed into threshold schemes that are chosen-ciphertext secure. To see why, consider
the scheme in [BR93], which is representative. This scheme uses a trapdoor permutation f and
hash functions G and H; to encrypt a message m, a random r in the domain of f is chosen, and
the ciphertext is (f(r),m ⊕ G(r),H(r,m)). The output length of G is equal to that of m, and
the output length of H is large enough to make it difficult to find collisions. Given a ciphertext
(s, c, v), the decryption algorithm computes r = f−1(s), m = G(r)⊕ c, and v′ = H(r,m). If v′ = v,
it outputs m, and otherwise “?”.

The proof of security relies in a critical way on the fact that the decryption algorithm makes
the “validity test” v = v′ before generating an output.

Now consider turning this into a threshold scheme, and assume we can effectively share the
trapdoor for the function f . The problem is that the above validity test cannot be performed until
after the individual shares of f−1(s) are generated and then combined. As mentioned above, we
must assume that the adversary can see these shares, making the validity test pointless, and giving
the adversary the ability to invert f at chosen points. This destroys any hope of proving security
using current techniques. Of course, one could use general techniques for multi-party computation,
but this would be extremely impractical.

The above difficulty was noted by Lim and Lee [LL93], who observed that a publicly checkable
validity test would be useful in this regard. Lim and Lee proposed two practical systems based on
this observation; however, both schemes were subsequently broken by Frankel and Yung [FY95].

Interestingly, one can readily convert all of the impractical schemes mentioned above into secure
(but impractical) threshold schemes. It is instructive to see why this is so. All of these schemes
use a publicly checkable validity test, which is essentially a non-interactive zero-knowledge proof of
knowledge of the plaintext. The key to the proof of security is that one can simulate the adversary’s
view with a simulator that has a trapdoor that allows it to extract the plaintext from the given
proof of knowledge in a decryption request, thus allowing the simulator to respond correctly to the
request. It is essential that this proof of knowledge allows the simulator to extract the plaintext “on
line,” without any “rewinding.” Assuming the underlying decryption function can be effectively
shared, such a scheme can then be transformed into a threshold scheme where each decryption
server performs the validity test before generating a decryption share.

Since the publication of the Cramer-Shoup cryptosystem [CS98], several threshold implemen-
tations of it have been designed and proved secure (also without random oracles) [CG99a, Abe99,
JL00]. The validity test of the Cramer-Shoup cryptosystem is not publicly checkable, which as
we have seen, makes it difficult to efficiently distribute the decryption function. Nevertheless, the
above results show how the special algebraic structure of the validity test can be exploited to ob-
tain a protocol that is much more efficient than a general multi-party computation. We should
stress, however, that none of the schemes in [CG99a, Abe99, JL00] are nearly as practical as the
schemes we present in this paper. In particular, none of these schemes is a simple, non-interactive,
client/server protocol like ours. All of them require either a large degree of synchronized interaction
or storage for a large number of pre-shared secrets (proportional to the total number of decryption
requests that may be performed over the lifetime of the system). It remains an open problem
to construct a truly practical, non-interactive, client/server threshold cryptosystem secure against
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chosen ciphertext attack, whose security proof does not rely on the random oracle model.

2.6 The random oracle model

The random oracle model was first used by Fiat and Shamir [FS87], and later given a more rigorous
treatment by Bellare and Rogaway [BR93]. It has proved to be quite useful in analyzing a wide
range of cryptographic schemes and protocols. See, for example, [BR93, BR94, BR96, BMP00,
CKS00, PS96b, Sho00a].

The random oracle methodology works as follows. Consider a cryptographic scheme that makes
use of cryptographic hash functions (like SHA-1 or MD5). Instead of analyzing the security of
this scheme directly, we analyze its security in an idealized model of computation where the hash
functions are replaced by “black boxes” that output random strings. More specifically, all parties
involved, including the adversary, do not evaluate the hash function directly, but only have oracle
access to this function; moreover, the function implemented by this oracle is a random function:
whenever the oracle is queried at a new input, it outputs a random bit string independent of all
other oracle outputs. Note that the oracle implements a function, in the sense that if it is given
the same input twice, the two outputs are the same.

The basic tenet of the random oracle model approach is to view a proof of security in the random
oracle model as “strong evidence” that the scheme is actually secure in the standard model, i.e.,
the “real world.”

When one instantiates the random oracle with an actual hash function, it is important to
apply the following “rule of thumb”: the actual hash function should be in some vague sense
“independent” of other computations performed by the algorithms in the scheme; i.e., there should
be no “obvious” interactions or correlations between the hash function and other computations.

When the random oracle is instantiated with a hash function, this hash function (i.e., its
description as an algorithm) becomes known to the adversary, and so a real world adversary could
of course exploit special properties of the hash function, which is something that he could not do
with a random oracle. Thus, a proof of security in the random oracle model at most implies security
in the real world against adversaries who never look at the description of the hash function, and
only access it as a black box, as in the random oracle model.

The limitations of the random oracle model were demonstrated in [CGH98]. They exhibit
cryptographic schemes that are secure in the random oracle model, but are trivially insecure in
the real world with any instantiation of the random oracle. The schemes they exhibit are quite
unnatural, and their results in no way uncover weaknesses in any protocols in the literature that
have been proven secure in the random oracle model. One lesson to be drawn from their work is
that the above-mentioned “rule of thumb” cannot be formulated as a simple syntactic constraint,
and that the application of this “rule” is destined to remain an “art” rather than a “science.”

Despite these limitations, the random oracle model seems to be a very good heuristic. All things
being equal, a proof of security in the real world is to be preferred; however, if substantially more
efficient schemes can be designed that can only be analyzed in the random oracle model, then these
schemes deserve a place in the security engineer’s toolbox. Certainly, a proof of security in the
random oracle model is far better than no proof of security at all.

2.7 The TDH0 Cryptosystem

In this section, we discuss a simple threshold cryptosystem, based on the computational Diffie-
Hellman assumption, which we call TDH0. This cryptosystem (in both threshold and non-threshold
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form) has been claimed in several papers to be chosen ciphertext secure; however, we shall argue
that these claims are unjustified — even in the random oracle model.

Say we have a group G of prime order q with generator g, hash functions H and H ′, and a
public key h = gx. To encrypt a message m with label L, we choose r ∈ Zq at random, and
compute u = gr and c = H(hr) ⊕m. The ciphertext consists of u, c, and a non-interactive proof
of knowledge of logg u. It is straightforward to share the secret key, and a decryption server only
generates a decryption share if the proof of knowledge is valid.

For the non-interactive proof of knowledge, we could use Schnorr’s [Sch91] signature scheme
with “public key” u and “private key” r. More specifically, to generate this proof of knowledge,
we compute w = gs for random s ∈ Zq, e = H ′(c, L, u, w), and f = s + re ∈ Zq. The proof of
knowledge consists of the pair (e, f). The entire ciphertext is then ψ = (c, L, u, e, f). To verify the
validity of the ciphertext, one checks that e = H ′(c, L, u, w), where w = gf/ue.

Intuitively, this strategy makes sense, since if the adversary proves that he “knows” the decryp-
tion of a ciphertext, then giving the adversary this decryption should not help him. The trouble
is, this intuition cannot be transformed into a formal proof of security. TDH0 may very well be
secure, but it does not seem possible to prove, using known techniques, a reduction to any standard
cryptographic assumption, even in the random oracle model.

The problem is a bit subtle. Schnorr’s interactive identification scheme (from which the signa-
ture scheme is derived using the Fiat-Shamir heuristic) is a proof of knowledge (see [FFS88, BG93]
for definitions). However, the corresponding knowledge extractor does not operate “on line” —
it must “rewind” the adversary. More specifically, in our setting, if the adversary requests the
decryption of ψ = (c, L, u, e, f), we have to rewind the adversary back to the point where it
queried the random oracle H ′ with input (c, L, u, gf/ue), and feed the adversary a different chal-
lenge e′. Then if we run the adversary forward, we hope that he makes a valid decryption request
ψ′ = (c, L, u, e′, f ′), with f ′ such that gf/ue = gf

′
/ue

′
. If and when he does this, we can compute

r = logg u as r = (f − f ′)/(e− e′). Once we have r, we can decrypt the original ψ.
Unfortunately, when one tries to turn the above idea into a proof, one discovers that the

running time of the simulator can blow up exponentially. A similar phenomenon was observed by
Pointcheval and Stern [PS96a] in the context of blind digital signatures.

We illustrate the problem with an example. In this example, we will just consider TDH0 as
an ordinary, non-threshold scheme, since this is simpler, and is sufficient to illustrate the point.
Our adversary works as follows. He generates a sequence of ciphertexts ψ1, . . . , ψt, of the form
ψi = (ci, Li, ui, ei, fi), for 1 ≤ i ≤ t. The adversary generates these ciphertexts in the usual way,
except that to generate ui = gri , he computes ri as some sort of hash of e1, . . . , ei−1. Likewise, the
message mi that he encrypts is also a hash of e1, . . . , ei−1. The adversary generates these ciphertexts
in this order, accessing the random oracle for H ′ to generate e1, . . . , et. Next, he proceeds to obtain
decryptions— in reverse order — of ψt, . . . , ψ1. To summarize, the adversary accesses the random
oracle t times, obtaining e1, . . . , et, and then accesses the decryption oracle t times, submitting
ψt, . . . , ψ1 for decryption.

Now, imagine how a simulator would work. We want to simulate the responses to the adversary’s
random oracle and decryption oracle requests, without knowing the secret key x of the cryptosystem.
When the adversary makes his first decryption request, ψt, we have to rewind the adversary to the
point where he obtained the challenge et from the random oracle H ′, and feed the adversary a
different challenge e′t. Then we run him forward, and when he presents a corresponding ψ′t for
decryption, we extract rt, and so we can easily decrypt ψt. Now we let the adversary move forward
to the second decryption request, ψt−1. As before, we rewind the adversary to the point where he
obtained the challenge et−1 from from the random oracle H ′, and feed the adversary a different
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challenge e′t−1. When we run him forward, before the adversary makes his request to decrypt the
corresponding ψ′t−1, he inconveniently asks us to first decrypt a ciphertext ψ′′t = (c′′t , L

′′
t , u
′′
t , e
′′
t , f
′′
t ).

Unfortunately, we cannot directly respond to this request, since (in general) r′′t 6= rt and m′′t 6= mt;
this is because both r′′t and m′′t are computed as a hash of e1, . . . , et−2, e

′
t−1, and e′t−1 6= et−1. So

we will have to recursively rewind the adversary back to the point where he obtained e′′t from the
random oracle, and run him forward again, just so that we can respond to the decryption request
for ψ′′t .

It should now be clear that this adversary will force the simulator to run for time proportional
to 2t. We do not claim that TDH0 is insecure, but any proof of security will have to circumvent
this exponential blow up in the simulation. Because of this difficulty, it appears that current proof
techniques are not adequate to prove the security of TDH0.

One could circumvent all this by straightaway assuming an on-line knowledge extractor; that is,
we simply assume that any algorithm that can create a valid proof of knowledge can be transformed
into an algorithm that simultaneously outputs a corresponding witness. Such an assumption is made
by Tsiounis and Yung [TY98] in the analysis of a non-threshold version of TDH0. A similar type of
assumption is made by Damgard [Dam91] and Zheng and Seberry [ZS92]. This type of assumption,
however, is not very acceptable: it is completely nonstandard, and it is not an “intractability
assumption” in the usual sense of the term.

Other papers ([Jak98], [DK00], as well as a preliminary version of [TY98]) have claimed that
TDH0 is secure, without offering any proof at all beyond a vague argument that “since the Schnorr
signature scheme is a proof of knowledge, accessing the decryption oracle does not help.” As we
have seen, the notion of a “proof of knowledge” is not always that useful, especially when the
“knowledge extractor” requires rewinding.

3 A Formal Security Model

In this section, we present a formal model for a k out of n threshold cryptosystem. Before giving
the details, we briefly sketch the overall workings of such a system.

For simplicity, in the following we assume that the system is initialized by a trusted dealer that
gives the decryption servers a share of the private key. It is important to notice though that this
trusted dealer can be replaced by a secure communication protocol among the servers at the end
of which a public key is generated and the servers have shares of the matching decryption key. For
the specific case of our threshold cryptosystems TDH1 and TDH2, we can use the key generation
protocol of [GJKR99].

Operation of the cryptosystem runs as follows.
There is a trusted dealer and a set P1, . . . , Pn of decryption servers.
In an initialization phase, the dealer is run, creating a public key PK , a verification key VK ,

and private keys ~SK = (SK 1, . . . ,SK n). For 1 ≤ i ≤ n, the private key SK i is given to server Pi.
A user who wants to encrypt a message with a given label can run the encryption algorithm,

using the public key.
A user who wants to decrypt a ciphertext gives the ciphertext to the servers, requesting a

decryption share. The label is embedded in the ciphertext, and so each server can make its own
decision as to the appropriateness of generating a decryption share. The user can verify the validity
of the shares using the given verification key. When the user collects valid shares from at least k
servers, he can apply a combining algorithm to obtain the decryption.

More formally, a threshold cryptosystem consists of the following algorithms.
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• A probabilistic key generation algorithm G that takes as input a security parameter Λ, the
number n ≥ 1 of decryption severs, and the threshold parameter k (1 ≤ k ≤ n); it outputs

(PK ,VK , ~SK ) = G(Λ, n, k),

where PK is the public encryption key, VK is the public verification key, and ~SK =
(SK 1, . . . ,SK n) is the list of private keys.

• A probabilistic encryption algorithm E that takes as input the public key PK and a cleartext
m, and a label L, and outputs a ciphertext ψ = E(PK ,m, L).

• A label extraction algorithm L which takes as input a ciphertext ψ, and outputs a label
L = L(ψ).

• A probabilistic decryption share generation algorithm D that takes as input a private key SK i

and a ciphertext ψ, and outputs a decryption share σ = D(SK i, ψ).

• A share verification algorithm V that takes as input the public verification key VK , a cipher-
text ψ, and decryption share σ, and outputs V(VK , ψ, σ) ∈ {0, 1}.

• A combining algorithm C that takes as input the public verification key VK , a ciphertext ψ,
and a set of decryption shares, and outputs a cleartext m = C(VK , ψ, S). The combining
algorithm is also allowed to output a special “?” symbol that is distinct from all possible
cleartext messages.

All of these algorithms should run in time polynomial in the length of their inputs (with the
convention that inputs to G are encoded in unary).

Before going further, we introduce some further conventions.

• We shall assume that the private key SK i encodes the index i of server Pi in some canonical
way, and we shall say that “SK i belongs to server Pi.”

• We shall assume that a decryption share σ encodes in some canonical way the index of the
server that (supposedly) created it. If this index is i, then we say that “σ belongs to sever
Pi.”

• We shall call a decryption share σ a genuine decryption share of ψ if it is a possible output
of D(SK i, ψ) for some 1 ≤ i ≤ n.

• We shall call a decryption share σ a valid decryption share of ψ if V(VK , ψ, σ) = 1.

• We shall say a set S of decryption shares is full if it contains k shares, no two of which belong
to the same server.

There are a number of basic consistency conditions that should hold. For any output
(PK ,VK , ~SK ) of G(Λ, n, k), the following conditions should hold.

• Correctness of label extraction. For any message m, any label L, and any output ψ of
E(PK ,m, L), we have L(ψ) = L.

This condition merely ensures that the encryption algorithm embeds the label in the cipher-
text in a canonical way.
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• Completeness of share verification. Any genuine decryption share of a ciphertext ψ is also a
valid decryption share of ψ.

• Correctness of decryption. Given:

– any plaintext m and label L,

– any output ψ of E(PK ,m, L),

– any full set S of genuine decryption shares of ψ,

we have C(VK , ψ, S) = m.

The two basic properties that we want a threshold cryptosystem to have are security against
chosen ciphertext attack and consistency of decryptions.

Security against chosen ciphertext attack means that any polynomial time adversary has a
negligible advantage in the following game.

Game A

A1 The adversary chooses to corrupt a fixed set of k − 1 servers.

A2 The key generation algorithm is run. The private keys of the corrupted servers are given to
the adversary, while the other private keys are given to the uncorrupted servers, and kept
secret from the adversary. The adversary of course receives the public key and verification
key as well.

A3 The adversary interacts with the uncorrupted decryption servers in an arbitrary fashion,
feeding them ciphertexts ψ, and obtaining decryption shares.

A4 The adversary chooses two cleartexts m0 and m1 (of the same length) and a label L. These
are given to an “encryption oracle” that chooses b ∈ {0, 1} at random, and gives the “target”
ciphertext ψ′ = E(PK ,mb, L) to the adversary.

A5 The adversary continues to interact with the uncorrupted servers, feeding them ciphertexts
ψ 6= ψ′.

A6 At the end of the game, the adversary outputs b′ ∈ {0, 1}.

The adversary’s advantage is defined to be the absolute difference between 1/2 and the proba-
bility that b′ = b.

We assume the adversary runs in time polynomial in a given security parameter Λ. For technical
reasons, it is convenient to assume that the adversary’s running time is strictly polynomial bounded;
i.e., it always halts after a polynomially bounded number of steps, regardless of its coin tosses, and
regardless of the outputs of the key generation algorithm, the uncorrupted decryption servers, and
the encryption oracle. The adversary is allowed to choose n and k as he likes, but their values must
be bounded by a fixed polynomial in Λ, and may also have to satisfy further constraints imposed
by a particular cryptosystem. When we say that a quantity, such as the adversary’s advantage, is
negligible, this means that as a function of Λ, it is less than than 1/Q(Λ), for any fixed polynomial
in Q, and for sufficiently large Λ. To say that a quantity is nonnegligible means that there is a
polynomial Q(Λ) such that for infinitely many Λ, the quantity is at least 1/Q(Λ).
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Consistency of decryptions means that any polynomial time adversary has a negligible chance
of winning the following game. The adversary interacts with the system exactly as in steps A1–A3
above. The adversary wins this game if he can produce a ciphertext ψ and two full sets S, S′ of
valid decryption shares such that C(VK , ψ, S) 6= C(VK , ψ, S′).

4 Basic Tools

4.1 Threshold secret sharing

Let q be a prime, and 1 ≤ k ≤ n < q. Shamir’s [Sha79] k out of n secret sharing scheme over Zq
works as follows. We have a secret x ∈ Zq. We choose random points f1, . . . , fk−1 ∈ Zq, set f0 = x,
and define the polynomial F (X) =

∑k−1
j=0 fjXj . For 1 ≤ i ≤ n, let xi = F (i) ∈ Zq be the ith share

of x. Just for notational purposes, we will denote x as its own 0th share, so we have x = x0 = f0.
If any subset of k − 1 shares is revealed, then no information about x is obtained, whereas if k

shares are revealed, x is completely determined, and can be computed by interpolation. Actually
the following property holds: for S ⊂ Zq of cardinality k, any i ∈ Zq, and any j ∈ S, there exists
an easy-to-compute element λSij ∈ Zq, such that

F (i) =
∑
j∈S

λSijxij .

4.2 Intractability assumptions

Let G be a group of prime order q, generated by an element g ∈ G.
The computational Diffie-Hellman problem is this: given gx and gy for random x, y ∈ Zq,

compute gxy.
The decisional Diffie-Hellman problem is this: given a tuple that is either of the form (gx, gy, gxy)

or (gx, gy, gz), where x, y, z ∈ Zq are random, determine which is the case.
Clearly, the second problem is no harder than the first, but it is not known if they are equivalent.

The only known method for solving either problem is to solve the discrete logarithm problem: given
gx, compute x. For suitable groups, such as a large prime-order subgroup of the multiplicative
group modulo a large prime, all of these problems are widely conjectured to be intractable.

Triples of the form (gx, gy, gxy) are called Diffie-Hellman triples (with respect to the base g).

4.3 Zero-knowledge proof of discrete logarithm identities

Let G be a group of prime order q with generators g, ḡ. Let EDLogg,ḡ be the language of pairs
(u, ū) ∈ G2 such that logg u = logḡ ū.

Our cryptosystems will heavily rely on a zero-knowledge proof of membership for the language
EDLogg,ḡ. It is important to notice that our proofs techniques do not require a proof of knowledge
(which would create the problems encountered with the TDH0 cryptosystem).

The following is a well-known zero-knowledge proof system for EDLogg,ḡ, due to Chaum and
Pedersen [CP92]. Although it happens to also be a proof of knowledge we will not use that property
in our schemes.

Let (u, ū) ∈ EDLogg,ḡ be given, so there exists r ∈ Zq such that u = gr and ū = ḡr.

• The prover chooses s ∈ Zq at random, computes w = gs and w̄ = ḡs, and sends w, w̄ to the
verifier.
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• The verifier chooses e ∈ Zq at random, sending this to the prover.

• The prover sends f = s+ re to the verifier. The verifier checks that gf = wue and ḡf = w̄ūe.

It is well known that this proof system is sound: the verifier can be cheated into accepting a
pair not in the language with probability at most 1/q. For completeness, we recall the argument.
Suppose (u, ū) /∈ EDLogg,ḡ. That is, u = gr and ū = ḡr

′
, with r 6= r′. Suppose a cheating

prover presents (u, ū) to a verifier, along with a pair (w, w̄), where w = gs and w̄ = ḡs
′
. Now,

if the verifier is to accept, then we must have that gf = wue and ḡf = w̄ūe. This implies that
(s− s′) + e(r − r′) = 0. So, since r − r′ 6= 0, there is at most one challenge to which the cheating
prover can hope to respond, and the verifier generates this challenge with probability 1/q. Actually,
it is evident from this argument that a stronger soundness condition holds: the verifier will accept
with at most probability 1/q if either (u, ū) /∈ EDLogg,ḡ or (w, w̄) /∈ EDLogg,ḡ.

It is also well known that this proof system can be simulated in zero-knowledge against an
honest verifier. By making the challenge e a hash of (u,w, ū, w̄), then in the random oracle model,
this becomes a non-interactive zero-knowledge proof of language membership.

Note that if ḡ is not a generator for G, i.e., ḡ = 1, the above proof system can still be used
to ensure that ū = 1. Thus, we can view the above proof system more generally as a proof that
(ḡ, u, ū) is a Diffie-Hellman triple, where ḡ is an arbitrary element of G. It is also easily seen that
the above proof system ensures that (ḡ, w, w̄) is also a Diffie-Hellman triple.

5 The TDH1 Cryptosystem

We now describe the threshold cryptosystem TDH1.
TDH1 works over an arbitrary group G of prime order q, with generator g; for simplicity, assume

that messages and labels are l-bit strings. It uses four hash functions:

H1 : G→ {0, 1}l, H2 : {0, 1}l × {0, 1}l ×G×G→ G, H3,H4 : G3 → Zq.

Key Generation. For a k out of n scheme, the key generation algorithm runs as follows (we
assume q > n). Random points f0, . . . , fk−1 ∈ Zq are chosen, defining a polynomial F (X) =∑k−1
j=0 fjX

j ∈ Zq[X]. For 0 ≤ i ≤ n, set xi = F (i) ∈ Zq and hi = gxi . For notational convenience,
we set x = F (0) and h = h0 = gx.

The public key PK consists a description of the group G, along with the group elements g and
h. The public verification key VK consists of the public key PK , along with the tuple (h1, . . . , hn)
of group elements. For 1 ≤ i ≤ n, the secret key SK i consists of the public key PK along with the
index i and the value xi ∈ Zq.

To be technically complete, the key generation algorithm takes a security parameter Λ as input.
The security parameter is used in selecting an appropriate group.

Encryption. The algorithm to encrypt a message m ∈ {0, 1}l with label L ∈ {0, 1}l runs as
follows. We choose r, s ∈ Zq at random, and compute

c = H1(hr)⊕m, u = gr, w = gs, ḡ = H2(c, L, u, w),
ū = ḡr, w̄ = ḡs, e = H3(ḡ, ū, w̄), f = s+ re.

The ciphertext is ψ = (c, L, u, ū, e, f).
Note that with overwhelming probability, ḡ 6= 1, i.e., ḡ generates G. In addition to an ordinary

ElGamal encryption, consisting of the c and u, the above ciphertext also includes the group element
ū, along with a non-interactive proof, consisting of e and f , that logg u = logḡ ū.
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Label Extraction. Given an appropriately encoded ciphertext ψ = (c, L, u, ū, e, f), the label
extraction algorithm simply outputs L.

Decryption. Decryption server i does the following given ciphertext ψ = (c, L, u, ū, e, f). It checks
if

e = H3(ḡ, ū, w̄), where
w = gf/ue, ḡ = H2(c, L, u, w), w̄ = ḡf/ūe.

(1)

If this condition does not hold, it outputs (i, “?”). Otherwise, it proceeds as follows. It chooses
si ∈ Zq at random, and computes

ui = uxi , ûi = usi , ĥi = gsi , ei = H4(ui, ûi, ĥi), fi = si + xiei. (2)

Its output is (i, ui, ei, fi).
Note that the check (1) verifies the non-interactive proof that logg u = logḡ ū. Also, the de-

cryption share includes a non-interactive proof that (u, hi, ui) is a Diffie-Hellman triple, i.e., that
ui = uxi . This is needed to ensure consistency of decryption.

Share Verification. The share verification algorithm is given the verification key VK , a ciphertext
ψ, and a decryption share belonging to some server i. The verification algorithm first tests if (1)
holds. If this does not hold, then a decryption share is valid if and only if it is of the form (i, “?”).
Otherwise, the share is considered valid if and only if it is of the form (i, ui, ei, fi), and

ei = H4(ui, ûi, ĥi), where
ûi = ufi/ueii , ĥi = gfi/heii .

(3)

Note that the check (3) ensures that (u, hi, ui) is a Diffie-Hellman triple.

Combining Shares. The share combining algorithm takes as input the verification key VK , a
ciphertext ψ, and a full set of valid decryption shares of ψ. If the test (1) does not hold, then we
output “?” (all the decryption shares are of the form (i, “?”) in this case). So we can assume that
the set of decryption shares is of the form

{(i, ui, ei, fi) : i ∈ S},

where S ⊂ {1, . . . , n} has cardinality k. Then, using the notation defined in §4.1, the recovery
algorithm outputs

m = H1(
∏
i∈S

u
λS0i
i )⊕ c.

Theorem 1 In the random oracle model, the TDH1 cryptosystem is secure against chosen cipher-
text attack, assuming the computational Diffie-Hellman problem in G is hard.

Proof:
We show how to use an adversary that can guess bit b in game A to solve the computational

Diffie-Hellman problem. It is clear that if the adversary is able to guess bit b, then he must query
the function H1 at the same point that the encryption oracle did. We simulate the adversary’s
view up to the point that this happens. After this point, the simulation is no longer accurate,
but it does not matter: we already solved the computational Diffie-Hellman problem. Actually,
the output of our algorithm is simply a list of all points at which H1 was queried, which with
nonnegligible probability will contain the solution to the computational Diffie-Hellman problem.
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The Diffie-Hellman self-corrector in [Sho97] can be used to transform this into an algorithm that
outputs a single, correct solution to the computational Diffie-Hellman problem.

We now give the details of the simulation. Let α, β ∈ G be random elements in G for which
we want to solve the computational Diffie-Hellman problem to the base g. That is, we want to
compute γ = αlogg β .

At any point in the simulation, the adversary may query one of the random oracles. The
simulator responds by first checking if the value of the hash function has already been defined at
the given point; if so, it responds with the defined value; otherwise, it chooses a random value,
defines the value of the hash function at the given point to be this value, and responds with this
value.

The simulator itself may at some point choose to define the value of a hash function at a chosen
point. Such “backpatching” is allowable so long as the hash function has not already been defined
at the chosen point.

Now suppose the adversary in step A1 chooses to corrupt a subset of k − 1 servers. Without
loss of generality, we can assume these are servers P1, . . . , Pk−1. Let S = {0, . . . , k − 1}, and we
will write λij instead of λSij .

Now in step A2, we proceed as follows. We choose x1, . . . , xk−1 ∈ Zq at random, and we set
h = α. Note that with overwhelming probability, h 6= 1, and we shall assume this in what follows.
For k ≤ i ≤ n, we compute hi = hλi0

∏k−1
j=1 g

xjλij .
Next, we have to describe how to simulate the “encryption oracle” in step A4, and how to

simulate each query to one of the noncorrupt decryption servers.
We deal first with the encryption oracle. The adversary gives a label L′ and two messages, m0

and m1, to the encryption oracle. We ignore the messages completely. Instead, we simply choose
c′ ∈ {0, 1}l and t′, e′, f ′ ∈ Zq at random. We then set

u′ = β, ḡ′ = gt
′
, ū′ = (u′)t

′
, w′ = gf

′
/(u′)e

′
, w̄′ = (ḡ′)f

′
/(ū′)e

′
.

We then backpatch, defining H2(c′, L′, u′, w′) = ḡ′, and H3(ḡ′, ū′, w̄′) = e′. The output of the
encryption oracle is ψ′ = (c′, L′, u′, ū′, e′, f ′).

It is easily verified that this backpatching is allowable, at least with overwhelming probability.
Also, one sees that u′, ḡ′, and ū′ have the right distribution; namely, (u′, ḡ′, ū′) is a random Diffie-
Hellman triple. The rest is just a standard zero-knowledge simulation.

Thus, the simulation is statistically close to perfect, as long as the adversary does not query H1

at the point (u′)logg h = γ. Note that the simulator cannot detect when and if this event occurs —
that would be tantamount to solving the decisional Diffie-Hellman problem. Nevertheless, if this
does occur, we will already have a solution to the given computational Diffie-Hellman problem in
our list of inputs to the H1 oracle, so we do not care if the view presented to the adversary by the
simulator is inaccurate after this occurs.

We next deal with the simulation of the uncorrupted decryption servers. First of all, whenever
the adversary queries H2 at a point other than (c′, L′, u′, w′), we arrange that the simulator defines
the value ḡ at that point by first choosing t ∈ Zq at random, and then computing ḡ = ht, so that the
simulator knows logh ḡ (but the adversary is oblivious to this). Note that t 6= 0 with overwhelming
probability, and we will assume this in what follows.

Now suppose Pi is given a valid ciphertext ψ 6= ψ′, where ψ = (c, L, u, ū, e, f). Now,
(c, L, u, ū, e, f) determines via the validity condition (1) corresponding variables ḡ, w, w̄.

We first argue that we can assume that (c, L, u, w) 6= (c′, L′, u′, w′). On the contrary, suppose
that (c, L, u, w) = (c′, L′, u′, w′). Then of course ḡ = ḡ′. But then with overwhelming probability,
we must also have (ū, w̄) = (ū′, w̄′); this follows immediately from the strong soundness condition
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discussed in §4.3. It then follows that e = e′, since e = H(ḡ, ū, w̄) = e′. From this, it follows that
f = f ′, since the equation w = gf/ue uniquely determines f , once w, u, and e are determined.
This then contradicts our assumption that ψ 6= ψ′.

So assume (c, L, u, w) 6= (c′, L′, u′, w′). We can assume that the adversary has already queried
H2 at the point (c, L, u, w), so that we have ḡ = H2(c, L, u, w) = ht, where t 6= 0 is known to the
simulator, as discussed above.

Now suppose u = gr, where r is not known to the simulator. We want to compute hr. But by
the soundness of the proof that logg u = logḡ ū, we can assume that ū = ḡr. But then (ū)1/t =
(ḡ)r/t = hr.

So the simulator can compute hr, but we are not quite done. We want to simulate the output of
server Pi, who is supposed to output ui = hri , along with a proof that (u, hi, ui) is a Diffie-Hellman
triple. But ui can be computed by the simulator as ui = (ū)λi0/t

∏k−1
j=1 u

xjλij . Once we have ui,
we can readily produce a zero-knowledge simulation of the proof that (u, hi, ui) is a Diffie-Hellman
triple, backpatching H4 as necessary.

That completes the proof of Theorem 1. 2

Theorem 2 In the random oracle model, the TDH1 cryptosystem satisfies the consistent decryption
property.

This theorem follows immediately from the soundness of the equality of discrete logarithm
protocol in §4.3.

6 The TDH2 Cryptosystem

Cryptosystem TDH2 is very similar to TDH1. The main difference is that the group element ḡ,
instead of changing with each encryption, is chosen at key-generation time.

We now give the details. As before, we have a group G of prime order q with generator g. We
need three hash functions:

H1 : G→ {0, 1}l, H2 : {0, 1}l × {0, 1}l ×G4 → Zq, H4 : G3 → Zq.

Key Generation. Same as for TDH1, except that a random generator ḡ ∈ G is chosen which is
also part of the public key.

Encryption. The algorithm to encrypt a message m ∈ {0, 1}l with label L ∈ {0, 1}l runs as
follows. We choose r, s ∈ Zq at random, and compute

c = H1(hr)⊕m, u = gr, w = gs, ū = ḡr, w̄ = ḡs,

e = H2(c, L, u, w, ū, w̄), f = s+ re.

The ciphertext is (c, L, u, ū, e, f).
As in TDH1, the encryption includes a non-interactive proof that logg u = logḡ ū.

Label Extraction. Same as in TDH1.

Decryption. Decryption server i does the following given ciphertext (c, L, u, ū, e, f). It checks if

e = H2(c, L, u, w, ū, w̄), where
w = gf/ue, w̄ = ḡf/ūe.

(4)

If this condition does not hold, it outputs (i, “?”). Otherwise, it computes ui, ei, fi as in (2), creating
an output (i, ui, ei, fi).
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Share Verification. Same as for TDH1, except that we use the test (4), instead of the test (1).

Combining Shares. Same as for TDH1, except that we use the test (4), instead of the test (1).

Theorem 3 In the random oracle model, the TDH2 cryptosystem is secure against chosen cipher-
text attack, assuming the decisional Diffie-Hellman problem in G is hard.

Proof:
Again, the proof is by reduction, and we assume the adversary queries, with nonnegligible

probability, H1 at the same point in game A that was queried by the encryption oracle in step A4.
Let (α, β, γ) be a random instance of the decisional Diffie-Hellman problem. This triple is drawn

from one of two distributions: that of Diffie-Hellman triples, where α = gx, β = gy, and γ = gxy,
for random x, y ∈ Zq, or from that of random triples, where α = gx, β = gy, and γ = gz, for random
x, y, z ∈ Zq. The job of the simulator is to distinguish between these two distributions. It outputs
a 1 or a 0, and to be an effective test, the expected value of its output on the two distributions
should differ by a nonnegligible amount.

We simulate the view of the adversary in game A as follows.
As in the proof of Theorem 1, we assume the adversary corrupts players P1, . . . , Pk−1 in step

A1. In step A2, we set h = α(= gx), generate x1, . . . , xk−1 ∈ Zq at random, and solve for hk, . . . , hn
as in the proof of Theorem 1. We also choose t ∈ Zq at random and set ḡ = ht ( = gxt). Note that
with overwhelming probability, we have h 6= 1 and t 6= 0, and we assume this in what follows.

Now we discuss how to simulate the adversary’s view of the encryption oracle in step A4, given
a label L′. We choose c′ ∈ {0, 1}l at random. We set u′ = β ( = gy) and ū′ = γt, which is
either gxyt or gzt, depending on the distribution from which (α, β, γ) was drawn. We then choose
e′, f ′ ∈ Zq at random, and compute w′ = gf

′
/(u′)e

′
, and w̄′ = ḡf

′
/(ū′)e

′
. We then backpatch,

setting H2(c′, L′, u′, w′, ū′, w̄′) = e′. The output of the encryption oracle is (c′, u′, ū′, e′, f ′).
The simulation of the uncorrupted servers is essentially just as it was in the proof of The-

orem 1: the key is that the simulator knows t 6= 0 with ḡ = ht, and so given a valid cipher-
text (c, L, u, ū, e, f) 6= (c′, L′, u′, ū′, e′, f ′), it is easy to argue that with overwhelming probability
logg u = logḡ ū, which implies we can compute ux as (ū)1/t, and simulate the rest of the server’s
output just as before.

The simulator itself never directly queries or backpatches H1, except on behalf of the adversary.
If the adversary ever queries H1 at γ, we stop and output 1; otherwise, if the adversary terminates
without querying H1 at γ, we output 0.

That completes the description of the simulator.
Consider the joint distribution of (h, ḡ, u′, ū′). In the case where (α, β, γ) is drawn from the

Diffie-Hellman triple distribution, (h, ḡ, u′, ū′) is (statistically indistinguishable from) a random
element of G4, subject to the condition ḡ 6= 1 and logg u′ = logḡ ū′. In the case where (α, β, γ) is a
random triple, (h, ḡ, u′, ū′) is (statistically indistinguishable from) a random element of G4, subject
to the condition that ḡ 6= 1. In either case, γ is determined by γ = (ū′)logḡ h; moreover, if (α, β, γ)
is a Diffie-Hellman triple, then the relation γ = (u′)logg h also holds.

We now argue as follows. In the case where (α, β, γ) is drawn from the Diffie-Hellman triple
distribution, the simulation of game A is statistically close to perfect until the adversary queries
H1 at γ = (u′)logg h, at which point we stop and output a 1. By our assumption about the behavior
of the adversary, and the fact that the simulation is accurate up to this point, this happens with
nonnegligible probability.

Now, if in the case where (α, β, γ) is a random triple the simulator outputs a 1 with negligible
probability, we are done: the simulator is an effective test for distinguishing Diffie-Hellman triples
from random triples.
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Otherwise, suppose that in the case where (α, β, γ) is a random triple the simulator outputs
1 with nonnegligible probability. As mentioned above, (h, ḡ, u′, ū′) is essentially just a random
element in G4 (with ḡ 6= 1). The other random variables e′, f ′, w′, and w̄′ are also just random,
subject to relations that make the “proof” that logg u′ = logḡ ū′ look legitimate; in fact, the relation
logg u′ = logḡ ū′ does not in general hold, and the “proof” is entirely bogus, but that is irrelevant.

The point is that if the adversary makes the simulator output a 1, it can essentially compute
(ū′)logḡ h given random (h, ḡ, u′, ū′) ∈ G4.

As we show below, we can use this adversary to solve the following “inverse” Diffie-Hellman
problem with the nonnegligible probability: given random α′ = gt and β′ = gv, compute γ′ =
gv/t. It is easy to see that the “inverse” Diffie-Hellman problem is random self reducible, just like
the computational Diffie-Hellman problem. Also, the self-corrector for the computational Diffie-
Hellman problem in [Sho97] can be easily modified to yield a self-corrector for the “inverse” Diffie-
Hellman problem. It is easy to see that this “inverse” Diffie-Hellman problem is equivalent (under
polynomial-time reduction) to the computational Diffie-Hellman problem. In particular, we can
solve an instance of the computational Diffie-Hellman by making two queries to an “inverse” Diffie-
Hellman oracle.

Now the details. The new simulation proceeds as follows. The input to the simulator is α′, β′

as above. First choose x ∈ Zq at random, set ḡ = (α′)x ( = gxt), and run the actual key generation
algorithm for the cryptosystem, in particular, setting h = gx. Since this new simulator knows the
private decryption key, it can without any trouble respond to arbitrary decryption requests.

Now consider the encryption oracle in step A4, given label L′. We choose c′ ∈ {0, 1}l at
random, e′, f ′ ∈ Zq at random, and u′ ∈ G at random. We then set ū′ = β′ ( = gv). We compute
w′ = gf

′
/(u′)e

′
, and w̄′ = ḡf

′
/(ū′)e

′
. We then backpatch, setting H2(c′, L′, u′, w′, ū′, w̄′) = e′. The

output of the encryption oracle is (c′, L′, u′, ū′, e′, f ′).
This new simulator halts when the adversary halts, outputting the list of all queries made to

H1.
It is straightforward to verify that the view of this adversary relative to this new simulator is

identical to the view of the adversary relative to the original simulator on a random triple, at least
up until the point that it queries H1 at

γ = (ū′)logḡ h = (gv)x/xt = gv/t = γ′.

So, if the adversary causes the first simulator on a random triple to output 1 with nonnegligible
probability, then this same adversary causes this new simulator to output a list containing the
desired solution γ′ to the given instance of the “inverse” Diffie-Hellman problem.

That completes the proof of Theorem 3. 2

Theorem 4 In the random oracle model, the TDH2 cryptosystem satisfies the consistent decryption
property.

Just as for THD1, this theorem follows immediately from the soundness of the equality of
discrete logarithm protocol in §4.3.

7 Implementation Issues

To implement these schemes, one has to choose concrete hash functions. This is relatively straight-
forward, but see [BR93] for a detailed discussion. One technicality that we have to deal with here,
though, is the hash function H1 in TDH1, whose output is supposed to be an element of the group
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G. For example, consider the case where p is a prime, p−1 = mq, (m, q) = 1, and G is the group of
order q in Z∗p. We could implement H1 by raising the output of a standard hash function (viewed as
a number) to the power m modulo p. This gives us an element in G. Note that the decryption and
recovery algorithms must also check that the given group elements lie in G. It is straightforward
to modify the proof of security to deal with this.

Unfortunately, this implementation of H1 is quite costly, as it requires extra exponentiations,
some to the power m, which is typically much larger than q.

The TDH2 scheme does not suffer from this problem. Moreover, in TDH2, the group element
ḡ is fixed (per public key). In practice, this makes quite a difference, as one can pre-compute a
table that makes exponentiation to the base ḡ far more efficient than when it is constantly changing
[BGMW92, LL94]. This speeds up the encryption algorithm significantly. Of course the same can
be done for g already in TDH1.

8 Conclusion

We have proposed two new threshold cryptosystems, TDH1 and TDH2, that are provably secure
in the random oracle model assuming, respectively, that the computational and decisional Diffie-
Hellman problems are hard.

TDH2 requires a stronger intractability assumption than TDH1, but is much more efficient.
Moreover, TDH2 is not much less efficient than the very simple TDH0 scheme in §2.7, which is not
known to be secure in the random oracle model.

We close with three open problems: (1) determine the security of TDH0; (2) find a practical
threshold cryptosystem based on RSA that is provably secure against chosen ciphertext attack
(even using the random oracle model); (3) find a practical threshold cryptosystem that is provably
secure against chosen ciphertext attack, without using the random oracle model; to date, the most
practical such schemes known [CG99a, Abe99, JL00] require either synchronized interaction or
a large number of pre-shared secrets, which makes them much less practical than the schemes
presented here.
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