A Note on Session Key Distribution Using Smart Cards

Victor Shoup
Bellcore, 445 South St., Morristown, NJ 07960

shoup@bellcore.comn

July 24, 1996

Abstract

In this note, we discuss some variants of the session-key protocol of Shoup and Rubin pre-
sented at Eurocrypt 96, and we discuss some implementation issues.

1 Introduction

Shoup and Rubin (Eurocrypt '96) propose a protocol for session key distribution in a setting where
“smart cards” are used to hold the participants’ long-term keys. In this note, we make some
clarifications and correct some minor errors; we discuss variants that are more efficient, while still
preserving security; and we discuss some implementation issues.

2 Random nonces versus counters

In §2.2 of Shoup and Rubin, it is suggested that the strings r and s in Protocol SK1 could be
replaced by counters. This is indeed true. However, the claim in §3.2 that the same holds for
Protocol SK3 is simply not true. If one traces through the proof, one sees that the randomness of
r is required to “sandwich” the smart-card query C;(2,1,7) between the two message-queries made
to host A. Indeed, if r were predictable, the adversary could make the query C;(2,4,7) at any
time, and then at some later time, it could correctly respond to A’s challenge without accessing
the smart card.

Thus, » must be a random string; however, a careful examination of the proof does show that
s may be a counter.

3 Re-using the same key

It is possible to use a single key K; instead of 3 keys in SK1 and the 4 keys in SK3. To do this,
one uses the simple trick of making the function calls independent by partitioning the inputs using
“pad strings.” The details will be presented below.

4 Eliminating a smart card query

The query C;(4,17,s,6) can be eliminated altogether by having C;(2,1,r) simply output ¢ itself.
The comparison can be done by the host.

5 The new protocol SK3

Using the above observations, we describe the new Protocol SK3. The key server S has a single
secret key K, from which it can compute the long-term key K'(7) of host i as fx (7). On input (¢, 7),
the key server outputs

€= fr@(01-7) & fx(;(00-1),
and

a = fr(10-€- 7).

There are three types of queries that can be made of all smart cards, where we write C;(-) for
a query to ¢’s smart card. For clarity, we sometime use host ¢ and sometimes j.

o Ci(1) = (7, fr@)(11- 1)), where r — Ry.

o C(2,1,7) = (8,B,0,6), where s — Ry, k = fr(;5(00-4), 8 = fo(1-7-3), 0 = f.(00-s),
6= f.(01-5).

o Ci(3,4,7,8,6,0,B,7) = (6,0). This is computed as follows. Check if fr(;(10-€-j) = a. If
not, output “bad a” and quit. Check if fK(Z»)(ll 1) = 7. If not, output “bad 4” and quit.
Set k = € ® fr(;)(01- 7). Check if fi(1-7-s) = 8. If not, output “bad B” and quit. Set
6 = fx(01-s) and 0 = f.(00- s) and output (4,w).

The process-to-process protocol is as follows. We assume process A is an initiator on host i,
and process B is a responder on host j. Upon acceptance, a process assigns the session key to the
variable o.

Step la A sends (i,7) to 5.

Step 1b A sets (r,7) = C;(1) and sends r to B.

Step 2a S receives (7, 7) from A and sends the corresponding € and a to A.
Step 2b B receives r from A, sets (s, 3,0,6) = C;(2,4,r), and sends s, 5 to A.

Step 3 A receives €, from S and s, from B. A computes C;(3,j,7,s,¢,a,3,7). If this is an
error value, A rejects, otherwise A accepts, assigns this value to (8’,0), and sends ¢’ to B.

Step 4 B receives 6’ from A, and accepts if § = §’, and rejects otherwise.

6 Implementation Issues

6.1 Binding Names to Keys

In the above description of Protocol SK3, we have not specified what we mean by a name.

There are several possibilities. One is to view a name in the protocol as a small, unique code
number. Securely binding a code number to a socially-meaningful “identity” then requires some
other mechanism, such as public-key signatures. In this case, it is important that the signing
authority never allows the same identity to get bound twice, since otherwise imitation attacks
would be possible. This requires that a database of used identities is maintained.

Another possibility is to simply use self-identifying names. This avoids the need for a public-key
infrastructure. However, a database of used names must also be maintained in this case, not only
to prevent imitation attacks, but also to prevent private keys from being revealed. To see this,
consider the following scenario. When a smart card is manufactured, it is given a special initial key
which it effectively shares (via a pseudo-random function) with the device G that generates personal
long-term keys. Given a name, G computes an the corresponding long-term key and outputs an
authenticated encryption of this key, using the initial key of the given smart card. Now, provided
no smart card is ever broken (obtaining its initial key), this scheme is only susceptible to imitation
attacks (assuming (G maintains no database of names). However, if an attacker should break any
card, obtaining its initial key, then by gaining access to G (by bribery, break-in, etc.) the long-term
key associated with any name can be obtained.

This type of attack is entirely unacceptable. It can be defeated if G maintains a database of
names, which defeats imitation attacks as well.

For reasons of efficiency, “real world” names can be hashed using a hash function like MD5 or
SHA. If this hash function is collision free, one can always use the hash of a name instead of the
name itself in protocol SK3. In particular, the hashing can be done on the host, and not on the
card itself—this can greatly reduce the card’s I/O and computation.

6.2 Choice of Pseudo-random function

One could use a hash function like MD5 or SHA with a secret key, using the secret key as part of
the message block or as part of the initial vector. Given an implementation of such a hash function,
implementing SK3 should be easy.

Another choice is to use DES, using DES in CBC mode for longer inputs. However, one must
be very careful doing this, as CBC-DES is far from a perfect pseudo-random functions; it can be
subject to simple “cut-and-paste” attacks and to certain types of “birthday” attacks.

We describe now an implementation of Protocol SK3 using DES. This implementation assumes
names are 128-bit hash-values (or truncated hash values). We write hq(i) and hy(¢) for the two
64-bit blocks of the hash of name 2. All the hashing can be done by the hosts, and only hash-values
are sent to the smart cards.

We write fi(z) to denote DES applied to a single 64-bit block z with key k. We
write fi(z1,...,%,) to denote m blocks processed in CBC mode, ie., fi(z1,...,2,) =
fel(fu(z1, ... 2m_1) ® x,) for m > 1. Note that implementations of CBC-DES that always use an
initial vector should simply be programmed to use x; as the initial vector.

The long-term key K(7) associated with the name i is frx(h1(7), ho(7)), where K is a master key.

A secret key K (i) is issued by a key issuing server GG, which contains K. On input ¢, G checks if
key K (i) has already been issued, and if not, computes fx(hi1(7), ha(7)). Because of weaknesses in
CBC-DES, it is important that G’ compute the hash of 7 itself. As mentioned above, G may output
an authenticated encryption of K(i) under an initial card key.

The key server S also contains the secret key K. On input (41,142, 71,72), S computes Ky =
fr(i1,12) and Ky = fr(j1,j2), and outputs

€ = i, (1,71, J2) ® fr, (0,41, %2),

and
o= f]&'1(27€7j17.j2)-
Because of the sensitivity of the master key K, one might choose to use triple-DES, which
doubles the length of the key K. We assume in this implementation that single-DES is used
everywhere else.

We now describe the three types of smart card queries. Each card maintains a single counter
I;, which is restricted to 62 bits.

o Cy(1) = (r,r",y), where r — I;; I; = I; + 1, 7' = fre(y(10-7), and v = fry(11- 7).

o Ci(2,01,49,m,7") = (8,3,0,8),where s « [, I; — Li+1,k = fx(;)(0,i1,42), B = f(10-s,7,77),
0= fe(00-5), 6 = f.(01-5).

o Ci(3,51, 42,77, 8,€,a,8,7) = (6,0). This is computed as follows. Check if fx(;y(2,¢€,j1,2) =
a. If not, output “bad a” and quit. Check if fkr(i)(ll 1) = 7. If not, output “bad y” and
quit. Set £ = € D fr(iy(1,J1,J2). Check if f.(10-s,7,7') = . If not, output “bad 7 and
quit. Set § = f,(01-s) and o = f.(00- s) and output (é,w).

The process-to-process protocol is as follows. We assume process A is an initiator on host i,
and process B is a responder on host j. Upon acceptance, a process assigns the session key to the
variable o.

Step la A sends (hi(2), ho(?), h1(7), h2(7)) to S.

Step 1b A sets (r,7/,7) = C;(1) and sends r, 7’ to B.

Step 2a S receives (1,12, j1,j2) from A and sends the corresponding € and o to A.

Step 2b B receives r, 7’ from A, sets (s,[,0,6) = C;(2, h1(i), ho(i),r,1’), and sends s, § to A.

Step 3 A receives ¢, a from S and s, 3 from B. A computes C;(3,h1(7), ha(j), r, 7,8, 6,0, 8,7). If
this is an error value, A rejects, otherwise A accepts, assigns this value to (6’,0), and sends
o' to B.

Step 4 B receives §' from A, and accepts if § = §’, and rejects otherwise.

That completes the description of the protocol. It has been carefully designed to resist vari-
ous types of cut-and-paste and birthday attacks. The precise ordering of the blocks in the CBC
computations, and the funny 0’s and 1’s, are all critical.

We note that in the type 3 card query, the value 7’ could be computed by the card itself (from
r). This might save on space and card I/O, but requires an extra DES evaluation. This does not
appear to be necessary to avoid obvious attacks on CBC-DES, but it can’t hurt.

One might also let the host in step la send ¢ and j to .5 and let it compute the hashes of these
names itself. This would increase the load on the server. This does not appear to be necessary
Again, this does not appear to be necessary to avoid obvious attacks on CBC-DES, but it can’t

hurt.

