
projector: a simple LaTeX document class for making
slides

Victor Shoup

January 15, 2009

1 Introduction

There are other LaTex classes that do very similar things, such as beamer and prosper, so why
another class? I wrote this class because I found it easier and more interesting than reading all
the documentation and/or customizing these other classes.

projector allows one to make presentations that can be viewed using any standard PDF viewer.
It allows "incremental builds" of slides, as a sequence of "overlays". While it is easy to customize
the color scheme, layout, etc., the package is designed to produce rather simple looking slides,
without a lot of gratuitous splashes, streaks, or other decorations, and without fancy transitions
that sparkle or bounce.

projector is intended to be simple and extensible. It provides basic functionality, and does not
impose any preconceived notions about what your slides should look like.

As for the name: "projector" is the English word for the German word "beamer".

2 Installing

These instructions assume you want to install into your "personal texmf tree", rather than into a
"system texmf tree".

Before doing anything, you have to determine where your "personal texmf tree" is. On Linux,
this is usually ~/texmf. On Mac OSX, this is usually ~/Library/texmf. In what follows below,
I’ll write $TEXMF for your "texmf tree".

To install the projector class, simply copy the file projector.cls to $TEXMF/tex/latex.
For some (but not all) latex distributions, you may also have to run the command texhash af-
terwards.

You may want to use some packages that provide special font support. To find out if package foo
is already installed, run the command

kpsewhich foo.sty

1

If this prints out a path name, you already have it. If not, the package should be in the accompa-
nying support directory, and installation directions are given below.

One package that you may want to install is sfmath. If you don’t have it, just copy the file
sfmath.sty from support to $TEXMF/tex/latex (and follow with texhash). This package
allows you to typeset all LaTex math in sans serif font.

Another package called arev provides a sans serif font for all text (normal and math) that is
particularly nice to read in presentations. Unfortunately, it takes just a bit more work to install
this package, if you don’t already have it. Here are the instructions.

1. cd to $TEXMF/.. and copy arev-texmf.tgz from support to here

2. run tar -xzf arev-texmf.tgz

If your tar is not gnutar, you’ll need to replace the above tar command by
gunzip -c arev-texmf.tgz | tar xf -

3. Finally, you’ll need some extra magic to complete the font installation. What seems to work
is the following:

updmap --enable Map arev.map
updmap --enable Map bera.map
updmap --enable Map mdbch.map

How these fonts may be used in your LaTex documents is discussed below.

3 Getting started

3.1 The basic LaTex document structure

\documentclass{projector}

% preamble -- load packages and define macros here

\begin{document}

\begin{slide}
...

\end{slide}
.
.
.

\begin{slide}
...

\end{slide}

\end{document}

2

3.2 Processing and viewing

• Process your LaTex file using pdflatex, which produces a PDF file.

• View your PDF with any standard PDF viewer, and use "full screen mode" when you want
to view it using a projector.

3.3 Fonts

A good choice of fonts is essential for a good presentation. Unfortunately, the default CM (Com-
puter Modern) fonts are not very appropriate. Usually, a sans serif font is preferable.

One simple hack that requires no special font packages is to place the following in the preamble:

\renewcommand\rmdefault{\sfdefault}

This will typeset all normal text as CM sans serif, but all math text will still be typeset in normal
CM math font. Some people like the look of this, but to make both normal and math text typeset
in CM sans serif, place the following in the preamble:

\usepackage{sfmath}
\renewcommand{\rmdefault}{\sfdefault}

The sfmath package is easily installed, as described above, if you don’t already have it. For a
somewhat heavier look, try the following:

\usepackage{helvet}
\usepackage{sfmath}
\renewcommand{\rmdefault}{\sfdefault}

My preferred method, though, is the following:

\usepackage{arev}

If you don’t already have package arev installed, it should not be too difficult to do so, as de-
scribed above. The arev font was specifically designed to look very nice in presentations. It is a
sans serif font with a nice, heavy look that is easy to read when projected.

3.4 The basic slide environment

\begin{slide}

Body.

\end{slide}

3

Note that the text in a slide is not automatically centered, either vertically or horizontally. For
example, to make the above text centered both vertically and horizontally, write:

\begin{slide}

\vfill

\begin{center}
Body.
\end{center}

\vfill

\end{slide}

Also, note that text will be formatted with a "ragged right edge", and with no paragraph inden-
tation. As such, a small amount of space is automatically inserted between paragraphs. If you
want a line break without the extra paragraph spacing, use \\.

There is no automatic mechanism for generating slide titles (but see §5.10 for some helpful title-
making commands).

There is also a slide* environment, which is useful when "verbatim text" needs to be included
on a slide. It is also useful for debugging. See §5.17 below.

3.5 Basic overlay usage

\begin{slide}
First item

\pause
Second item

\pause
Third item
\end{slide}

This will produce a slide that expands into three overlays (i.e., 3 PDF pages). The three lines of
text will be revealed one at a time. You don’t have to explicitly specify the number of overlays:
this is automagically deduced.

Here is an example of a bulleted list, revealed a bit at a time:

4

\begin{slide}
\begin{itemize}
\pause\item Line 1
\pause\item Line 2
\pause\item Line 3
\pause\item Line 4
\end{itemize}
\end{slide}

For convenience, there is a command \pitem that is equivalent to \pause\item, so the above
can be written:

\begin{slide}
\begin{itemize}
\pitem Line 1
\pitem Line 2
\pitem Line 3
\pitem Line 4
\end{itemize}
\end{slide}

The overlay mechanism is implemented in a simple way using colors. Indeed, each instance of
\pause (and all of the other overlay commands discussed below) quite literally translates into
a command \color{c}, where c is determined by context. In particular, just like the usual
\color command, the effect of these commands extends to the end of the smallest enclosing
scope.

Behind the scenes, here is what happens. Suppose the slide expands into N overlays. Then
the LaTex code on the slide is processed N times. There are two counters: overlaynum and
pausecnt. The counter overlaynum is initialized to 1, and incremented as each overlay is pro-
cessed. The counter pausecnt is initialized 1 when starting to process each overlay. The seman-
tics of \pause is:

pausecnt++
if overlaynum >= pausecnt then \visible else \invisible

Here, \visible is a macro that expands into a \color command that makes the following text
visible, while \invisible expands into a \color command that makes the following text blend
into the background. The effect of this \color command extends from here to the end of scope.

These rules are at least fairly simple and clear, and usually pretty convenient. However, some-
times the "scoping effect" can be inconvenient. To extend the effect of a \pause command be-
yond its scope, you can use the \refresh command. For example, in a tabular environment,
to reveal one row at a time, you should write:

\begin{tabular}{ccc}
\pause A & \refresh B & \refresh C \\
\pause D & \refresh E & \refresh F
\end{tabular}

5

Without the \refresh’s, B and C would still be visible, because the scope of the first \pause is
limited to A (this is an artifact of the implementation of tabular). In fact, you can avoid writing
so many \refresh’s using a feature of the included colortbl package (which is loaded by the
projector class).

\begin{tabular}{>{\refresh}c>{\refresh}c>{\refresh}c}
\pause A & B & C \\
\pause D & E & F
\end{tabular}

Or even shorter, using the usual repeat mechanism of tabular:

\begin{tabular}{*{3}{>{\refresh}c}
\pause A & B & C \\
\pause D & E & F
\end{tabular}

Here is another example of combining \pause and \refresh commands in an align* envi-
ronment, from the amsmath package (also loaded by projector):

\begin{align*}
\pause X & \refresh = Y + Z \\
\pause W & \refresh \le A + B \\

& \pause = A’ + B’ \\
& \pause \le A’’ + ’’B

\end{align*}

The \pause command also takes an optional argument that specifies the number overlays you
wish to pause (default = 1).

3.6 Using colors

Because the overlay mechanism is implemented using colors, one has to be a bit careful in how
one uses colors in a document.

Use the command \fgcolor{#1}, either between slides or within a slide, to set the foreground
color to #1, e.g., \fgcolor{red}. The effect of this command extends to the end of the en-
closing scope. You may reference the current foreground color using the special color name
foreground.

One should in general avoid direct use of the \color command, using \fgcolor in its place.

Use the command \bgcolor{#1}, either between slides or within a slide, to set the background
color to #1. If used between slides, all subsequent slides are affected; if used within a slide, only
that slide is affected. You may reference the current background color using the special color
name background.

The commands \colorbox and \fcolorbox should be avoided. Instead, use the commands
\Colorbox and \FColorbox, which have the same syntax, but which are designed to work with

6

the overlay mechanism: if the entire box is currently invisible, then it will disappear into the
background; moreover, the overlay mechanism works within such a box as well; in particular,
\pause commands within a box work as expected.

There is also an environment BOX, described below in §5.11, which generalizes and extends the
functionality of \Colorbox and \FColorbox.

Use the command \filtered{#1} in any other context where you want a color #1 to be prop-
erly filtered using the overlay mechanism.

Note that the package xcolors is loaded by projector, and so you can use write "color
mixes", like red!50!yellow, in place of color names, with one exception: the argument to
the \filtered command should always be a simple color name (use the \colorlet to de-
fine a new color name, if necessary). In addition, the xcolor package is loaded with both the
x11names and svgnames options, which predefines a whole host of useful color names. See the
manual for the xcolor package for more details.

4 More advanced overlays

4.1 The \hideX commands

There are commands \hideTo, \hideFrom, and \hideAt. Each takes an overlay number as an
argument. For example, the command \hideAt{2} will make things invisible at overlay 2, and
otherwise does nothing.

More precisely, the semantics of \hideTo{#1} (resp., \hideFrom{#1}, \hideAt{#1}) are the
following: if the relevant inequality is satisfied (i.e., overlaynum ≤ #1 (resp., ≥ #1, = #1)), then
the \invisible command is executed, and otherwise, the command has no effect at all. The
effect, if any, extends to the end of the enclosing scope.

4.2 The \showX commands

Similarly, there are commands \showTo, \showFrom, and \showAt. So for example,
\showAt{2} will make things visible at overlay 2, but has no effect otherwise.

The semantics are that if the relevant inequality is satisfied, the \visible command is executed,
and otherwise, the command has no effect at all. The effect, if any, extends to the end of the
enclosing scope.

For example, to make some text appear only on overlays 3 through 6

\invisible\showFrom{3}\hideFrom{7} ... some text ...

or alternatively:

\invisible\showTo{6}\hideTo{2} ... some text ...

In processing such a sequence of \showX/\hideX commands, it is the last inequality that is
satisfied that determines the result.

7

4.3 The \ShowX and \HideX commands

For convenience, there are also commands \ShowTo, \ShowFrom, and \ShowAt. The command
\ShowX{#1} is equivalent to \invisible\showX{#1}. The semantics are that if the relevant
inequality is satisfied, the \visible command is executed, and otherwise, the \invisible
command is executed. Thus, the command always has an effect, which extends to the end of the
enclosing scope.

Example:

\begin{slide}
{\ShowAt{3} A line visible only on overlay 3}

{\ShowFrom{2} A line visible only on overlays 2 and 3}

{\ShowTo{2} A line visible only on overlays 1, 2}
\end{slide}

Similarly, there are commands \HideTo, \HideFrom, and \HideAt. The command
\HideX{#1} is equivalent to \visible\hideX{#1}. The semantics are that if the relevant in-
equality is satisfied, the \invisible command is executed, and otherwise, the \visible com-
mand is executed. Thus, the command always has an effect, which extends to the end of the
enclosing scope.

The\pause command is in fact simply implemented as\PauseStep\ShowFrom{\p}. Here, the
\PauseStep command increments the pause counter. It takes an optional argument (default
= 1), indicating how much to increment the counter. There is also a command \PauseSet:
executing \PauseSet{#1} sets the pause counter to #1. It is best to modify the pause counter
only through these two commands.

4.4 The \colorX commands

There are commands \colorTo, \colorFrom, and \colorAt. For example, the command

\colorAt{2}{red}

makes things red at overlay 2, and otherwise does nothing. Again, the effect extends to the end
of the enclosing scope.

4.5 The \alertX and \alert commands

There are commands \alertTo, \alertFrom, and \alertAt. For example, the command

\alertAt{2}

8

will make the foreground color a special "alert color" at overlay 2.

The command \alert unconditionally makes the foreground color equal to the "alert color".
Again, the effect extends to the end of the enclosing scope.

You may change the alert color by setting the style parameter alert.color. For example:

\style{alert.color=green}

sets the alert color to green. alert.color is one of many "style parameters" that can by tuned.
For a complete discussion, see §6.6 below.

4.6 The \fadeX and \fade commands

There are commands \fadeTo, \fadeFrom, and \fadeAt. For example, the command

\fadeAt{2}{20}

makes things appear 20% faded (instead of he default 0%) at overlay 2, and otherwise does noth-
ing.

The command \fade{20} fades things out unconditionally. Again, the effect extends to the end
of the enclosing scope.

The macro \fadeamount represents the current "fade amount". This is useful for performing
relative fades. For example, to decrease the contrast by 25%, you can write:

\FPeval\newfade{clip(100 - 0.75*(100 - fadeamount))}
\fade{\newfade}

This makes use of the fp package, which is loaded by projector.

4.7 Overlay numbers

The argument to \hideX, \showX, \HideX, \ShowX, \colorX, \alertX, \fadeX need not be
a constant. In fact, it may be a simple expression, as recognized by the calc package (which
is loaded by projector). Moreover, within this expression, one may write \p to refer to the
current value of pausectr. (Note that the macro \p is locally defined as \value{pausectr},
and won’t interfere with any other definitions of \p). This can be conveniently used for many
special effects. For example:

\newcommand{\rollitem}{\pause\hideFrom{\p+2}\item}

...

\begin{itemize}
\rollitem a
\rollitem b
\rollitem c
\end{itemize}

9

This creates a bulleted list where each item is displayed for two overlays, creating a "rolling"
effect.

As another example, consider:

\newcommand{\alertiteminit}{\colorlet{savedfg}{foreground}}
\newcommand{\alertitem}{\fgcolor{savedfg}\pause\alertAt{\p}\item}

...

\begin{itemize} \alertiteminit
\alertitem a
\alertitem b
\alertitem c
\end{itemize}

This creates a bulleted list where each item is revealed one at a time, and is also highlighted in
the "alert color" when it is revealed.

One more list example:

\newcommand{\fpitem}{\pause\fade{0}\fadeFrom{\p+1}{50}\item}

...

\begin{itemize}
\fpitem A
\fpitem B
\fpitem C
\end{itemize}

This creates a bulleted list where each item appears one at a time, and fades out when the next
item appears.

As another example, consider:

${\hideAt{\p}%
\underbrace{%

{\showAt{\p}v_1, v_2, \ldots, v_{k-2}}%
}_{\text{moved nodes}}}, v_{k-1}, v_k$

\pause

This has the effect of showing just v1, . . . , vk−2, vk−1, vk on one overlay, and then additionally
shows the underbrace and the subscripted text on the next overlay.

Also, the number of overlays for a given slide is calculated as the maximum overlay number
appearing as an argument to any command on that slide.

10

Usually, you will get just the right number of overlays. If you want to force at least n overlays, just
place the command \showFrom{n} at the end of the slide. If for some reason you have more
overlays than you want, place the command \trimslide at the end of the slide. \trimslide
takes an optional argument that specifies how many overlays you want to trim (default=1). Sup-
plying a negative argument works as you would expect, adding overlays, instead of trimming
them.

4.8 \ifvisible and visibleP

The command \ifvisible{<then part>}{<else part>} executes the <then part> if the
text is currently visible, and executes the <else part> otherwise. The corresponding value
\boolean{visibleP} may be used in \ifthenelse tests (from the ifthen package, which is
loaded by projector). Note that this also defines a low-level tex "conditional" \ifvisibleP.

4.9 The \refresh and \record commands

The \refresh command actually works as follows: it restores the "local visibility status" that
was in effect just after the last \visible or \invisible command on the current overlay was
executed (with an implicit \visible at the beginning of each overlay).

There is even a more general mechanism for working around "scoping" issues. The command
\record{TAG} records the current "local visibility status". The tag name TAG may be supplied
as an optional argument to \refresh, so that \refresh[TAG] restores the "local visibility sta-
tus" that was in effect when \record{TAG} was executed. The \visible and \invisible
commands actually work by recording to the special tag name @, and \refresh is equivalent to
\refresh[@].

4.10 Making hidden text partially visible

By default, "invisible" items are the same color as the background. You can make these items
"partially visible" by setting the style parameter hidden. For example:

\style{hidden=90}

This makes the hidden text only "90% hidden". This is sometimes preferable to the default, as it
gives viewers the chance to read ahead, if they want.

Combining primitives, one can easily build some nice special effects. For example, consider the
following. Let \alertitem and \alertiteminit be defined as above (in §4.7). Consider:

\begin{itemize} \alertiteminit \style{hidden=0}
\alertitem a
\alertitem b
\alertitem c
\end{itemize}

This will highlight each item in the "alert color" one at a time, while all items remain visible.

11

4.11 Turning overlays off

The command

\overlaysoff

turns off the overlay mechanism. When this is done, the commands

\pause, \PauseStep, \PauseSet
\visible, \invisible
\hideTo, \hideFrom, \hideAt,
\showTo, \showFrom, \showAt,
\HideTo, \HideFrom, \HideAt,
\ShowTo, \ShowFrom, \ShowAt,
\colorTo, \colorFrom, \colorAt,
\alertTo, \alertFrom, \alertAt
\fadeTo, \fadeFrom, \fadeAt
\refresh, \record
\trimslide

have no effect at all. The impact of \overlaysoff extends to the end of scope. There is no
\overlayson command.

Typically, you include this command in the preamble when you want to prepare a version for
printing. The result will be that each slide consists of a single overlay, with all text on the slide
visible.

There is also a command

\ifoverlaysoff{<then part>}{<else part>}

which will expand the <then part> when the overlay mechanism is turned off, and the
<else part> otherwise. This is useful for certain special effects. The corresponding boolean
value \boolean{overlaysoffP} may also be used in \ifthenelse tests. Note that this also
defines a low-level tex "conditional" \ifoverlaysoffP.

5 Carrying on

5.1 "Hot corners" for navigation

When viewing using a standard PDF viewer, the last overlay of each slide has a "hypertext an-
chor". Clicking on the lower left corner of any page will bring you to the previous anchor, while
clicking on the lower right corner will bring you to the next anchor. This allows you to quickly
skip over intermediate overlays of a slide. Note that there is no visible marker on the slide for
where to click: you just have to point the mouse in the corner, and click.

12

5.2 Hyperlinks

The class projector loads the package hyperref, which defines the command \hyperlink.
The command

\hyperlink{TARGET}{some text}

will turn some "some text" into a hyperlink: when you click on it, your browser should jump to
the page with a target called TARGET. To set the target slide, use the command \targetslide:

\begin{slide}
\targetslide{TARGET}
...
\end{slide}

By default, \targetslide makes the last overlay of a slide the actual target. However,
\targetslide takes an optional parameter which specifies the overlay of the slide is the ac-
tual target. So \targetslide[2]{TARGET} makes the second overlay the target. The overlay
number may be an arithmetic expression that includes \p, which represents the current value of
the pause counter.

Also, the hyperref package defines the \url command so that it generates an external hyperlink.

5.3 Stretching and shrinking

You can stretch/shrink certain vertical spacing parameters (space between items in a list, para-
graphs, and also \smallskip, \medskip, and \bigskip) by setting the style parameter vskip.
For example:

\style{vskip=75}

sets the vertical spacing to 75% of the default, allowing more text to fit on a slide.

Additionally, there is a command

\squeeze

which will make all of these vertical skips "shrinkable", allowing more material to be squeezed
onto a slide. This command obeys usual scoping rules. If you are lazy, just put \squeeze in the
preamble, so it stays in effect for the whole file.

NOTE: if you want to squeeze a single slide, or change the value of the style parameter vskip for
a single slide, for annoying TeXnical reasons, you are better off doing this as

{\squeeze \style{vskip=...}
\begin{slide}
...
\end{slide}
}

13

rather than

\begin{slide}
\squeeze \style{vskip=...}
...
\end{slide}

5.4 Page layout

The margins of a slide can be adjusted via the style parameter slide.margin. For example, to
make the all margins 200% of the default, do:

\style{slide.margin=200}

You can similarly adjust the top, bottom, and side margins individually by setting the style pa-
rameters slide.margin.top, slide.margin.bot, and slide.margin.side.

The style parameter slide.size controls the amount of text that fits on a slide. For example:

\style{slide.size=120}

makes the slide size 120% of the default, which has the effect of making the text appear smaller
when projected.

The style parameter slide.aspect.ratio controls the aspect ratio of slides. The default is
4:3. For example:

\style{slide.aspect.ratio=16:9}

gives a "wide screen" aspect ratio.

Unlike all other style parameters, all of these slide.. . . style parameters should be set only in
the preamble to have the desired effect.

5.5 Dimensions

As usual, \textheight and \textwidth are lengths representing the height and width of the
text, not including the margins, and \paperheight and \paperwidth represent the height and
width of the entire page, including margins. In addition, \smargin, \tmargin, and \bmargin
are the lengths of the slide margins (side, top, and bottom). Also, \fsmargin, \ftmargin, and
\fbmargin are the lengths of the footer margins, and\footwidth is the width of the footers (see
below). None of these dimensions should be directly modified by the user; rather, appropriate
style parameters should be set, which automatically redefines these dimensions.

14

5.6 Footers and Headers

You can add running footers and headers that appear in the margins at the top and bottom of
each slide.

To create customized footers and headers, set the style parameters

foot.text.top.left foot.text.top.center foot.text.top.right
foot.text.bot.left foot.text.bot.center foot.text.bot.right

The counter slidenum represents the current slide number. So to make a footer with a slide
number in the lower right corner, do the following:

\style{foot.text.bot.right=\theslidenum}

The macro \lastslide represents the total number of slides in your document, so you can
write

\style{foot.text.bot.right=\theslidenum/\lastslide}

to give the audience a warning of how many slides are left.

You can use the command \fgcolor within such customized text, but overlay commands
(\pause, \showX, \colorX, ...) have no effect.

By default, all footers and headers are formatted using the current foreground color and "tiny"
font. To change the font or color of all footers and headers, set the style parameter foot.format.
By default, this is empty.

For example, suppose you want just lightly visible footers:

\style{foot.format={\fgcolor{background!90!foreground}}}

Note the use of the color mix background!90!foreground, which creates a blend of 90% of
the current background color and 10% of the current foreground color.

The margins of footers and headers on the slide are controlled via the style parameter
foot.margin. For example, to make the all footer and header margins 200% of the default,
do:

\style{foot.margin=200}

You can similarly adjust the top, bottom, and side footer margins individually by setting the style
parameters foot.margin.top, foot.margin.bot, and foot.margin.side (footers on the
top are usually called "headers").

The footer margin measures the distance from the edge of the page to the footer text. Note that
slide and footer margins are completely independent. If the slide margins are too small, the
footer text will protrude into the body of the slide.

There is no built-in mechanism for adding ruled lines to headers and footers, but this is easily
accomplished:

15

\style{foot.text.top.left=
{\makebox[0pt][l]{\raisebox{-2pt}{\downbox{\rule{\footwidth}{0.5pt}}}}%
...text... }

}
\style{foot.text.bot.left=

{\makebox[0pt][l]{\raisebox{\heightof{X}+2pt}{\rule{\footwidth}{0.5pt}}}%
...text... }

}

The above generates ruled lines that extend the width of the headers and footers. In addition
to standard LaTeX commands, it makes use of the command \downbox, discussed below (see
§5.7). To make lines that extend across the entire page, do the following:

\style{foot.text.top.left=
{\makebox[0pt][l]{\raisebox{-2pt}{%

\downbox{\hspace{-\fsmargin}\rule{\paperwidth}{0.5pt}}}}%
...text... }

}
\style{foot.text.bot.left=

{\makebox[0pt][l]{\raisebox{%
\heightof{X}+2pt}{\hspace{-\fsmargin}\rule{\paperwidth}{0.5pt}}}%

...text... }
}

The interface for setting margins in terms of percentages of their initial defaults is intended to
be convenient. However, in some situations, it can be slightly awkward. Suppose, for example,
we want to make the side footnote margins equal to the slide side margin. One can still do this,
as follows:

\dimdiv{\mratio}{\smargin}{\fsmargin}
\FPmul{\mratio}{\mratio}{100}
\style{foot.margin.side=\mratio}

Here, \dimdiv{#1}{#2}{#3} is a command provided by the projector class, which com-
putes #1 := #2 / #3, where #2 and #3 are dimensions, and #1 is a decimal number.
\FPmul{#1}{#2}{#3} is a command provided by the fp package (loaded by the projector
class), which computes #1 := #2 * #3, where all parameters are decimal numbers.

5.7 Vertical box placement

When making slides, one often wants to string boxes of graphics and text together on a line.
For convenience, commands \upbox, \downbox, and \centerbox are provided. Each of these
commands typesets its argument as a box, and then shifts the baseline of the box so that it is at
the bottom (for \upbox), at the top (for \downbox), or centered (for \centerbox). When such
boxes are placed on a line, their new baselines line up the baseline of the current line of text.

For example,

16

\downbox{\includegraphics{foo1}} \downbox{\includegraphics{foo2}}

will produce a line of text with the top edge of each graphic box aligned at the baseline of the
current line of text.

\centerbox{\includegraphics{foo1}} \centerbox{\includegraphics{foo2}}

will align the center of each graphic box with the baseline of the current line of text.

Each of these commands takes an optional length argument, which shifts the box up by the given
amount, after performing the initial shift. For example,

\centerbox[0.5ex]{\includegraphics{foo1}} implies
\centerbox[0.5ex]{\includegraphics{foo2}}

will center the graphic box around a point 0.5ex above the baseline of the current line of text,
which may be more visually appealing in some cases.

These commands are quite simply implemented in terms of the \raisebox command, as fol-
lows:

\newcommand{\upbox}[2][0pt]{\raisebox{\depth+(#1)}{#2}}
\newcommand{\downbox}[2][0pt]{\raisebox{-\height+(#1)}{#2}}
\newcommand{\centerbox}[2][0pt]%

{\raisebox{(\depth-\height)*\real{0.5}+(#1)}{#2}}

5.8 Arbitrary box placement

Suppose you just want to place one or more objects at arbitrary places on your slide. Use the
command \putbox for this. This command is invoked as

\putbox{<hoffset>}{<voffset>}{<text>}

<text> is placed on the slide at a horizontal distance of <hoffset> and a vertical distance of
<voffset> from the lower left-hand corner of the slide. Thus, \putbox{0pt}{0pt}{X} puts
an X is the lower left-hand corner, while \putbox{0.5\textwidth}{0.5\textheight}{X}
puts an X near the middle. In the latter example, to completely center the X, both horizontally
and vertically, write

\putbox{0.5\textwidth}{0.5\textheight}{\makebox[0pt][c]{\centerbox{X}}}

Here are some other recipes:

\putbox{\textwidth}{0pt}{\makebox[0pt][r]{X}} % lower right
\putbox{\textwidth}{\textheight}{\downbox{\makebox[0pt][r]{X}}}

% upper right
\putbox{\textwidth}{0.5\textheight}{\centerbox{\makebox[0pt][r]{X}}}

% centered right

17

Note that <text> may contain arbitrary commands, including overlay commands like \ShowX,
\HideX, etc. These commands are processed when the \putbox command is processed. You
may place as many \putbox commands as you like in a slide. They do not affect in anyway the
placement of ordinary text on the slide. The boxes generated will appear on top of ordinary text.

5.9 Conditional typesetting

Sometimes, you may want to show one thing on the first overlay of a slide, and another thing
on the second. However, you want to make sure both things take up the same amount of space;
otherwise, the surrounding text will move around.

The \ifthenbox command takes care of the details. When you write

\ifthenbox{<test>}{<then part>}{<else part>}

both the <then part> and <else part> are evaluated, and a box is created that is just large
enough to hold both of them. The <test> determines which part goes in the box.

The <test> may be any test recognized by the usual \ifthenelse command from the
ifthen package. Also, the macro \n is locally defined as the current overlay number (\n =
\value{overlaynum}), and the macro \p is locally defined as the current value of the pause
counter (\p = \value{pausectr}).

\ifthenbox commands may be arbitrarily nested.

Here is an example:

Hello
\ifthenbox{\NOT\n>\p}{%

$x + y + x + z$%
}{%
\ifthenbox{\n=\numexpr\p+1}{%

\parbox[b]{50pt}{HELLO OUT THERE}%
}{%

$\displaystyle \sum_{i=1}^n i^2$
}}
World

\pause[2]

Up through overlay number \p, the first expression is displayed. At overlay number \p+1, the
second expression is displayed. After overlay number \p+1, the third is displayed (note the use
of \numexpr — this is necessary for nontrivial arithmetic expressions within an \ifthenelse).
Enough space is allocated for all three expressions, and the baselines will line up nicely.

A common usage is conditional inclusion of graphics files (i.e., PDF files). Since one cannot
easily make such graphics disappear by changing their color, one simply has to not include them
to make them invisible. However, one has to allocate sufficient space even when the graphics is
not included. This is trivial to do using \ifthenbox. For example:

18

\ifthenbox{\boolean{visibleP}}{\includegraphics[scale=0.5]{foo}}{}

This is such a common case that a special command \graphicbox is included, which is simply
defined as follows:

\newcommand{\graphicbox}[2][]{%
\ifthenbox{\boolean{visibleP}}{\includegraphics[#1]{#2}}{}%

}

Thus, we could write the previous example as follows:

\graphicbox[scale=0.5]{foo}

If we want to center the box on the current line, we could write:

\centerbox[0.5ex]{\graphicbox[scale=0.5]{img}}

The following example shows how to make a slide consisting of two overlays, with one graphic
for the first, another for the second, and with only the second appearing in the print version.

\begin{slide}
\vfill
\begin{center}
\ifthenbox{\boolean{overlaysoffP} \OR \n=2}{%

\includegraphics{bar}%
}{%

\includegraphics{foo}%
}
\end{center}
\pause
\vfill
\end{slide}

Note that the \ifthenbox takes an optional position parameter, which is l, c, or r. This controls
the horizontal positioning of individual boxes within the resulting, larger box. The default is c
(for centered). If you want all boxes left justified, write \ifthenbox[l]{...}{...}. If you
want all boxes right justified, write \ifthenbox[r]{...}{...}.

5.10 Banners and stripes

The commands

\banner{<text>}, \Banner{<text>}, \BANNER{<text>}

are useful for providing slide titles (of increasing levels of emphasis).

Banner colors and fonts can be changed by setting the style parameters:

19

banner.format, Banner.format, BANNER.format
banner.env, Banner.env, BANNER.env
banner.aboveskip, Banner.aboveskip, BANNER.aboveskip
banner.belowskip, Banner.belowskip, BANNER.belowskip

The command

\Stripe{<text>}

makes a title in a colored stripe across the top of the slide. This command should be issued only
at the beginning of a slide environment.

Stripe colors, fonts, and layout can be changed by setting the style parameters:

Stripe.margin, Stripe.bgcolor, Stripe.env, Stripe.format

5.11 Fancy Colored Boxes

The BOX environment is a convenient way of typesetting text in a box that may have a colored
background and/or frame and/or a drop shadow.

In its basic form, you write

\begin{BOX}
some text
\end{BOX}

The behavior of BOX is governed by several style parameters:

parameter default meaning

BOX.fwidth 100 frame width (% of default)
BOX.margin 100 margin (% of default)
BOX.bgcolor blue!20 background color
BOX.fcolor foreground frame color
BOX.framed false box has a frame
BOX.opaque false box background is colored
BOX.shaded false box has a drop shadow
BOX.extended false margins extend into surrounding text
BOX.when \boolean{true} condition to trigger frame/background/shadow

One can set these style parameters as usual, or one can override the defaults locally for a single
BOX. For example, to make a yellow box with a blue frame and a drop shadow, you could write:

\style{BOX.bgcolor=yellow, BOX.opaque=true, BOX.fcolor=blue,
BOX.framed=true, BOX.shaded=true }

\begin{BOX}
some text
\end{BOX}

20

Or you could write this as:

\begin{BOX}[bgcolor=yellow, opaque=true, fcolor=blue, framed=true, shaded=true]
some text
\end{BOX}

Or more simply as:

\begin{BOX}[bgcolor=yellow, opaque, fcolor=blue, framed, shaded]
some text
\end{BOX}

Or even more simply as:

\begin{BOX}[bgcolor=yellow, fcolor=blue, shaded]
some text
\end{BOX}

The rule is: locally setting bgcolor sets opaque=true, and locally setting either fcolor or
fwidth sets framed=true.

The overlay mechanism will work correctly both outside and inside a BOX environment.

The when parameter is a test that determines if the frame, background color, and drop shadow
are actually are shown. This can be useful for highlighting text at appropriate times. For example,
to highlight at overlay 5:

\begin{BOX}[bgcolor=yellow, fcolor=blue, shaded, when={\n=5}]
some text
\end{BOX}

The value of when is a boolean expression, with the same conventions as in the test in an
\ifthenbox (so \n and \p are defined as the current overlay number and the current value
of the pause counter). If the test is true, the frame (if framed=true) is colored using fcolor,
the background (if opaque=true) is colored using bgcolor, and a drop shadow is shown (if
shaded=true).

Drop shadows may be configured via their own set of style parameters:

parameter default meaning

shadow.color foreground color of shadow
shadow.contrast 100 how dark the shadow appears
shadow.fuzz 100 how much of a fuzzy edge appears
shadow.hoffset 100 horizontal offset of shadow
shadow.voffset 100 vertical offset of shadow
shadow.resolution 100 how "fine grained" is the fuzz drawn

21

5.12 Theorems and such

The command \newtheoremframe creates a new environment that typesets theorems and such
in a nice, two-toned frame — inspired by a similar effect in beamer, but without fancy rounded
corners. It takes 2 arguments: the environment name and the title. It works just like the basic
form of LaTex’s \newtheorem.

There is also a command \renewtheoremframe that works the same, but redefines the envi-
ronment.

For example:

\newtheoremframe{claim}{Claim}

\begin{claim} ... \end{claim} % title reads "Claim"
\begin{claim}[1] ... \end{claim} % title reads "Claim 1"
\begin{claim}[(key step)] ... \end{claim} % title reads "Claim (key step)"

All of these commands are defined in terms of a generic environment

highlight

which takes an optional title argument: if no title is present, then the title bar is not shown at all.
For example, one could also just write

\begin{highlight}[Claim 1] ... \end{highlight}

The following style parameters control the highlight environment, and by extension, all theorem
frames.

parameter default meaning

highlight.title.format \it\fgcolor{white} formatting commands for title
highlight.title.bgcolor blue!60 background color for title
highlight.body.format \fgcolor{black} formatting commands for body
highlight.body.bgcolor blue!20 background color for body
highlight.shaded false draw a drop shadow

control the colors and fonts of the highlight environment, and by extension, all, theorem frames.

Of course, you can define a specialized environment with its own style parameters. For example,
suppose you want lemmas in green instead of blue:

\newtheoremframe{lemma-aux}{Lemma}
\newenvironment{lemma}[1][]{%

\style{highlight.title.bgcolor=green!60,highlight.body.bgcolor=green!20}%
\begin{lemma-aux}[#1]%

}{%
\end{lemma-aux}%

}

22

This example illustrates how one can easily exploit the fact that style parameters obey scope
rules. It also illustrates how one can set several style parameters using a single \style com-
mand.

One can similarly define a specialized highlight environment:

\newenvironment{myhighlight}[1][\NULL]{%
\style{highlight.title.bgcolor=green!60,highlight.body.bgcolor=green!20}%
\begin{highlight}[#1]%

}{%
\end{highlight}%

}

Note that the default value of the argument to the highlight environment is actually the special
token \NULL.

Note that within a theoremframe, or more generally, a highlight environment, one may use
the overlay mechanism.

Drop shadows can be fine tuned by setting appropriate style parameters, discussed in §5.11.

5.13 The \StackBackground command

A number of commands, like \Colorbox, are implemented using the \StackBackground com-
mand, which may be useful in similar contexts. For example, \Colorbox is implemented as:

\newcommand{\Colorbox}[2]{{%
\colorlet{PROJ@boxbgcolor}{#1}%
\StackBackground{PROJ@boxbgcolor}%
\colorbox{\filtered{PROJ@boxbgcolor}}{#2}%

}}

The purpose of \StackBackground is to make the overlay (and fade) mechanism work in envi-
ronments where the background color temporarily changes.

5.14 Labels, equation numbers, and other counter issues

The usual \label and \ref mechanism will work fine for the most part (although see below for
some issues regarding AMS math environments). The hyperref package automatically turns
these \ref’s into hyperlinks as well. The \ref will always take you to the first overlay of the slide
containing the \label.

There are some issues regarding AMS math environments to watch out for. You can write an
equation like

\begin{equation} \label{L1} ... \end{equation}

23

which will generate an equation with a number, which you can refer to with \ref{L1}. This will
work fine, even if the equation appears in a slide with overlays.

Now suppose you want an align* environment, where each line is revealed one at a time:

\begin{align*}
\pause x & \refresh = y + z \\

& \pause = 2w + 3r
\end{align*}

Note the use of \refresh to extend the effect of the first \pause to the second column.

Now suppose we want to add equation numbers or other tags to these equations. Normally,
to get equation numbers on each line, you would use the align environment instead, and to
get custom tags, you would use the \tag or \tag* commands. Unfortunately, for TeXnical rea-
sons, these mechanisms do not work very well in conjunction with overlays. To correct these
problems, the commands \Tag and \TagRef are provided, and one should consider using these
commands consistently throughout for labeling all equations with numbers or other tags.

The command \Tag by default generates a tag as an equation number. You can provide your
own tag as an optional argument. The command \TagRef is used just like \ref: it takes a label
as an argument; however, if the tag was an equation number, the reference will already have
parentheses.

For example, you can generate an equation with a number as follows:

\[\Tag \label{L1} ... \]

and the reference \TagRef{L1} will look like (1). Alternatively, you can specify your own tag,
say (*). Define:

\[\Tag[($*$)] \label{L1} ... \]

and the reference \TagRef{L1} will look like (*).

Now let us return to the align* example above. If you want equation numbers, write:

\begin{align*}
\pause x & \refresh = y + z \Tag \label{L2} \\

& \pause = 2w + 3r \Tag \label{L3}
\end{align*}

The equation numbers will appear at just the right time, and the references \TagRef{L2} and
\TagRef{L3} will look like (2) and (3).

If you want your own tags, say (*) and (**), write

\begin{align*}
\pause x & \refresh = y + z \Tag[($*$)] \label{L2} \\

& \pause = 2w + 3r \Tag[($**$)] \label{L3}
\end{align*}

The tags will appear at just the right time, and the references \TagRef{L2} and \TagRef{L3}
will look like (*) and (**).

24

One technique used to make equation numbers interact well with the overlay mechanism may
be more generally useful. There is a command

\ResetCounterAtOverlay{<counter name>}

which ensures that at the beginning of each overlay of a slide, the counter <counter name> is
restored to the value it had at the beginning of the slide. So to ensure that equation numbers
don’t get incremented too much, the command

\ResetCounterAtOverlay{equation}

is executed when the class is loaded. You may wish to do the same for other counters that need
to be reset in this way.

\ResetCounterAtOverlay itself is implemented using a more general mechanism that may be
useful. Four commands are defined

\AtBeginSlide{<code>} \AtBeginOverlay{<code>}
\AtEndSlide{<code>} \AtEndOverlay{<code>}

Using these commands, you can "register" code that is to be executed at the indicated time.
Every call simply adds the code to the list of registered code. When a slide environment is en-
tered, all AtBeginSlide-code is executed, then for each overlay, the AtBeginOverlay-code is
executed at the beginning of the overlay, and the AtEndOverlay-code is executed at the end
of the overlay; finally, after the last overlay, the AtEndSlide-code is executed. As an example,
\ResetCounterAtOverlay is implemented as follows:

\newcommand\ResetCounterAtOverlay[1]{%
\newcounter{PROJ@saved@@#1}%
\AtBeginSlide{\setcounter{PROJ@saved@@#1}{\value{#1}}}%
\AtBeginOverlay{\setcounter{#1}{\value{PROJ@saved@@#1}}}%

}

5.15 Colored tables

The colortbl package is loaded by the projector class. You can use this to easily make tables
with colored rows and columns.

Consider the following:

\pause

\begin{tabular}{cc}
\rowcolor{\filtered{blue}} one & two \\
\rowcolor{\filtered{green}} three & four
\end{tabular}

25

Here, \rowcolor is a special command provided by the colortbl package. The use of
\filtered will make the entire table (both foreground and background) remain hidden until
the right moment, until the appropriate overlay is reached. One can also color columns:

\begin{tabular}{
>{\columncolor{\filtered{red}}}c
>{\columncolor{\filtered{blue}}}c

}
1 & 2 \\
3 & 4
\end{tabular}

Here, \columncolor is a special command provided by the colortbl package. The >{...}
construct allows one to insert arbitrary text or commands in each cell of the given column.

However, suppose you want to reveal the table one row or column at a time. This is just a bit
tricky, and for convenience, commands \Row, \Col, \Cell, \SaveP, and \ResP are provided to
facilitate this.

Here is a table colored by rows and revealed by rows:

\begin{tabular}{*{3}{>{\Col}c}}
\pause\Row[red]A & B & C \\
\Row[green]D & E & F \\
\pause\Row[blue]D & E & F \\
\Row[blue]D & E & F
\end{tabular}

The \Row[<color>] command specifies a row color, while the \Col command just assists in
keeping each column looking right.

Here is a table colored by columns and revealed by columns:

\SaveP
\begin{tabular}{ >{\ResP\pause\Col[red]}c >{\Col[blue]}c

>{\pause\Col[yellow]}c }
\Row A & B & C \\
\Row D & E & F \\
\Row D & E & F
\end{tabular}

Here, the \Col[<color>] command specifies the column color. Note the use of \SaveP right
before the table, and \ResP in the first >{...} construct. This ensures the pause counter gets
reset at the beginning of each row.

Here is a table colored by columns and revealed by rows:

26

\begin{tabular}{ >{\Col[red]}c >{\Col[orange]}c >{\Col[blue]}c }
\pause\Row A & B & C \\
\Row D & E & F \\
\pause\Row D & E & F \\
\Row D & E & F
\end{tabular}

Here is a table colored by rows and revealed by columns:

\SaveP
\begin{tabular}{ >{\ResP\pause\Col}c *{2}{>{\pause\Col}c} }
\Row[red]A & B & C \\
\Row[green]D & E & F \\
\Row[blue]D & E & F \\
\Row[blue]D & E & F
\end{tabular}
\end{center}

Here is the same table with one cell colored differently:

\SaveP
\begin{tabular}{ >{\ResP\pause\Col}c *{2}{>{\pause\Col}c} }
\Row[red]A & B & C \\
\Row[green]D & E & F \\
\Row[blue]D & E & F \\
\Row[blue]D & \Cell{Olive}E & F
\end{tabular}

Finally, note that if a cell lies in a row with an explicitly specified color, and a column with an
explicitly specified color, then the column color always trumps the row color, and an explicit cell
color trumps everything. For example:

\SaveP
\begin{tabular}{ >{\ResP\pause\Col}c >{\pause\Col[yellow]}c >{\pause\Col}c }
\Row[red]A & B & C \\
\Row[green]D & E & F \\
\Row[blue]D & E & F \\
\Row[blue]D & \Cell{Olive}E & F
\end{tabular}

Here, all of column 2 is yellow, except the last cell in that column, which is Olive.

Instead of using \pause commands in the above examples, you can just as well use \ShowFrom
commands to reveal rows or columns in an arbitrary order. Here is the same table as in the last
example, but revealed in reverse column order.

27

\begin{tabular}{ >{\ShowFrom{\p+3}\Col}c
>{\ShowFrom{\p+2}\Col[yellow]}c
>{\ShowFrom{\p+1}\Col}c }

\Row[red]A & B & C \\
\Row[green]D & E & F \\
\Row[blue]D & E & F \\
\Row[blue]D & \Cell{Olive}E & F
\end{tabular}
\pause[3]

NOTE: these commands work equally well with the tabular* and array environments.

NOTE: The \Col command always executed a \refresh. Under unusual circumstances, this
may give you results other than what you might expect. You can always add a \record{@}
command just before the table to remedy this.

NOTE: The overlay mechanism will not work directly within a cell. You must use a special com-
mand called \Panel. For example:

\begin{tabular}{*{3}{>{\Col}c}}
\pause\Row[red]A & B & C \\
\Row[green]D & E & F \\
\pause\Row[blue]D & \Panel{E1 \pause E2} & \Panel{\ShowFrom{\p} F}
\end{tabular}

The first \pause will reveal rows 1 and 2; the second \pause will reveal D and E1 in row 3, and
all of row 4; the third \pause will reveal E2 and F in row 3.

5.16 Customizing lists

A mechanism is provided for controlling the style and layout of list environments in general, and
the itemize and enumerate environments in particular.

The style parameter list.margin controls the indentation of all lists. For example:

\style{list.margin=120}

sets the indentation to 120% of the default.

The style parameter list.label.margin controls the gap between any label and the text. For
example:

\style{list.label.margin=120}

sets the size of the gap to 120

To customize the type of bullets used in the itemize environment, set the style parameters

item.label.1, item.label.2, item.label.3, item.label.4

28

which control what is printed at the 1st, 2nd, 3rd, and 4th level of itemize.

For example, the default value of item.label.1 is \(bullet\). Suppose you want to change
it to a red pointing hand.

\usepackage{pifont}
\style{item.label.1={\fgcolor{red}\ding{43}}}

The package pifont provides many funny little symbols that may be useful. See the doc-
ument "Using common postscript fonts with Latex" for a complete list (see www.ctan.org/
tex-archive/macros/latex/required/psnfss/psnfss2e.pdf).

The style parameter item.format can be set to any command sequence that you want to apply
to all itemize labels. To make all itemize labels at all levels red:

\style{item.format={\fgcolor{red}}}

There are also style parameters for customizing the labels of the enumerate environment. These
are:

enum.label.1, enum.label.2, enum.label.3, enum.label.4

These style parameters are processed in a special way. Suppose you want the enumerate labels
at level 1 to look like "1:", "2:", etc. You specify this as follows:

\style{enum.label.1={\N\arabic:}}

Suppose you want instead "(i)", "(ii)", etc. You specify this as follows:

\style{enum.label.1={(\N\roman)}}

In general you write whatever combination of text and commands that you like, writing \N\XXX
(or \N{\XXX}) where you want the number to appear. Here, \XXX is one of \arabic, \roman,
\Roman, \alph, or \Alph, and specifies how the counter to be encoded.

In fact, the command \XXX can be any command that encodes a counter as text. You can de-
fine your own encoding command. There is a special command \DefineSpecialEncoding,
which takes 10 arguments, the first is the name of a new command, and the remaining are the
encodings of 1–9. For example:

\usepackage{pifont}

\DefineSpecialEncoding{\DING}{\ding{172}}{\ding{173}}{\ding{174}}%
{\ding{175}}{\ding{176}}{\ding{177}}{\ding{178}}{\ding{179}}{\ding{180}}

\style{enum.label.1={\N\DING}}

29

www.ctan.org/tex-archive/macros/latex/required/psnfss/psnfss2e.pdf
www.ctan.org/tex-archive/macros/latex/required/psnfss/psnfss2e.pdf

gives you labels that are little numbers inside circles. The command
\DefineSpecialEncoding takes care to ensure that all this will work together nicely with the
usual \label and \ref mechanism.

In an enumeration label format string, in addition to the macro \N, the macros \A, \B, and \C
have special meaning: they refer to the encodings of the counters at levels 1, 2, and 3. For exam-
ple, suppose you want labels at level 1 to look like "1." and labels at level 2 to look like "1-a:" The
following does the trick:

\style{enum.label.1={\N\roman.}, enum.label.2={\A-\N\alph:}}

The style parameter enum.format can be set to any command sequence that you want to apply
to all enumerate labels. To make all enumerate labels at all levels red:

\style{enum.format={\fgcolor{red}}}

Finally, the style parameters

enum.sep.1, enum.sep.2, enum.sep.3, enum.sep.4

control the formatting of label references (as generated by the \ref command). For example:

\style{enum.label.1={\N\Roman.}, enum.label.2={\N\Alph.}, enum.sep.2={-}}

makes labels at level 1 look like "I.", and labels at level 2 look like "A." A reference to a label at
level 2 looks like "I-A". In general, label reference is generated as

S1E1S2E2 . . .

where Si is defined by enum.sep.i, and E i is the encoding of the counter at level i .

Example. Suppose one wants an itemized list where each bullet gets highlighted with each pause,
but all text remains visible. There are a number of ways to do this. Here is one:

\begin{itemize} \style{item.format={\alertAt{\p}}, hidden=0}
\pitem a
\pitem b
\pitem c
\pitem d
\end{itemize}

If you want, define a new environment:

\newenvironment{AlertItemize}{%
\begin{itemize}%

\style{item.format={\alertAt{\p}}}%
\ifvisible{\style{hidden=0}}{}%

}{%
\end{itemize}%

}

30

This definition is slightly more sophisticated: if the entire itemize list is hidden, then the
\ifvisible command ensures that it remains hidden. The same can be done with an enu-
merate list, setting the style parameter enum.format instead.

Example. Here we make an itemized list where the bullet changes across overlays, and all text
remains visible. Here, the current item has a check mark, previous items a cross, and future items
a pencil.

\newcommand\SpecialList{%
\style{hidden=0}%
\style{item.label.1=%

\ifthenbox{\n > \p}{\ding{55}}{%
\ifthenbox{\n = \p}{\ding{51}}{\ding{48}}}%

}%
}
% note the use of \ifthenbox to prevent "jitters"

...

\begin{itemize} \SpecialList
\pitem a
\pitem b
\end{itemize}

5.17 Verbatim text and the slide* environment

For TeXnical reasons, the \verb command and verbatim environment cannot be used in the
slide environment. If you want to use such "verbatim text" on a slide, use the slide* environ-
ment instead.

The syntax for the slide* environment is the same as for the slide environment, but with the
following restrictions: (1) the text \end{slide*} must appear on a line by itself, possibly with
leading and trailing blanks/tabs, and (2) the slide* environment may not itself be an argument
to any other command.

You may want to consider using the fancyvrb package. It provides a number of nice features.
Note that if you use line numbering with the Verbatim environment from the fancyvrb pack-
age, you should adjust the fancyvrb parameters xleftmargin and/or numbersep; otherwise,
the line numbers will disappear off of the left side of the slide.

You can use the overlay mechanism in aslide* environment as usual. With some effort, you can
even put pauses and other overlay commands within the verbatim text. Here is a simple recipe
for making verbatim boxes with arbitrary LaTex commands, using the fancyvrb package.

In the preamble:

31

\usepackage{fancyvrb}

\newcommand\BackSlash{\char92}
\newcommand\LeftBrace{\char123}
\newcommand\RightBrace{\char125}

\DefineVerbatimEnvironment{Vrb}{Verbatim}{commandchars=\\\{\}}
\newenvironment{Quote}{\let\\\BackSlash\let\{\LeftBrace\let\}\RightBrace}{}

And then:

\begin{slide*}

\begin{Quote}
\begin{Vrb}
\fgcolor{red}\\foo\{bar\}
\pause{}Xfoo/bar-
\refresh{}Xfoo/bar-
\end{Vrb}
\end{Quote}

\end{slide*}

Notes:

• With this recipe, the characters \, {, and }have their usual meaning, so that you can invoke
arbitrary LaTex commands.

• \\, \{, and \} are written to get the literals \, {, and }.

• Each end of line in a verbatim box closes scope, so coloring and overlay effects do not
extend beyond the end of line (use \refresh if necessary).

How it works. The lines between \begin{slide*} and \end{slide*} are written verbatim
to a temporary file \jobname.vrb (e.g., if the LaTeX input file is foo.tex, the temporary file
is foo.vrb). In fact, this is done using the same techniques used to implement verbatim envi-
ronments. Then the usual slide environment is invoked, with \input{\jobname.vrb} as its
body.

Using slide* for debugging. When using the slide environment, information about input line
numbers is lost, and any LaTeX error messages will not give meaningful line numbers. If you have
difficulty tracking down an error, using the slide* environment should give you an error mes-
sage with the line number within the temporary file \jobname.vrb, which will help pinpoint
the error.

32

5.18 Other issues

\parbox’s have some "issues". In the implementation of \parbox, various layout settings are
restored to "default" values which are undesirable: the "ragged right" setting is lost, as well as
some the vertical skip settings, like \parskip.

To correct these problems, add the command \fixparbox:

\parbox{0.5\textwidth}{\fixparbox ... }

Fortunately, this problem does not exist for minipage environments, because LaTex provides a
"hook" to insert formatting code into the minipage, which the projector class exploits — unfor-
tunately, there is no such hook for \parbox’s.

TIP: available documentation often does not mention the extended capabilities of \parbox and
minipage. One can write:

\parbox[pos][height][innerpos]{width}{...text...}
\begin{minipage}[pos][height][innerpos]{width} ...text... \end{minipage}

where pos and innerpos are in {t,b,c,s}, and control the external and internal vertical align-
ment of the resulting box.

Another problem with both \parbox’s, minipage’s, and \vbox’s in general, is that you may
under some circumstances get an unwanted paragraph skip at the beginning. This will happen
if you issue any \vspace command, or any \color command (and by extension, and overlay
command, like \pause), at the beginning of the box.

One fix is to place the command

\vspace{-\parskip}

at the beginning of the box to avoid this problem — although external alignment may be adversly
affected.

If the first command is a \color command, one can try moving the command out of the
\parbox, or alternatively, to leave it in the \parbox, but precede it immediately (no spaces)
with the command \mbox{}.

6 Summary

6.1 Commands and environments

....................................
n = overlay number
i = integer
c = color name or expression
t = any text or command sequence
l = length
% = percentage

....................................

33

\begin{slide} ... \end{slide}
\begin{slide*} ... \end{slide*}

\pause[i], \PauseStep[i], \PauseSet[i]
\pitem
\visible
\invisible
\hideFrom{n}, \hideTo{n}, \hideAt{n}
\showFrom{n}, \showTo{n}, \showAt{n}
\HideFrom{n}, \HideTo{n}, \HideAt{n}
\ShowFrom{n}, \ShowTo{n}, \ShowAt{n}
\colorFrom{n}{c}, \colorTo{n}{c}, \colorAt{n}{c}
\alertFrom{n}, \alertTo{n}, \alertAt{n}
\fadeFrom{n}{%}, \fadeTo{n}{%}, \fadeAt{n}{%}
\refresh[t]
\record{t}
\trimslide[i]

\alert
\fade{%}
\fgcolor{c}
\bgcolor{c}

\Colorbox{c}{t}
\FColorbox{c}{c}{t}

\filtered{c}

\ifvisible{t}{t}

\upbox[l]{t}, \downbox[l]{t}, \centerbox[l]{t}

\ifthenbox[<position>]{<test>}{t}{t}
\graphicbox[<includegraphics options>]{<file name>}

\putbox{l}{l}{t}

\overlaysoff
\ifoverlaysoff{t}{t}

\squeeze

\banner{t}, \Banner{t}, \BANNER{t}, \Stripe{t}

34

\begin{BOX}[<parameter settings>] ... \end{BOX}

\newtheoremframe{t}{t}
\renewtheoremframe{t}{t}

\begin{highlight}[t] ... \end{highlight}

\fadeamount
\lastslide

\targetslide[n]{<target name>}

\Tag[t]
\TagRef{<label>}

\ResetCounterAtOverlay{<counter name>}

\Row[c], \Col[c], \Cell{c}, \SaveP, \ResP, \Panel{t}

\AtBeginSlide{t}
\AtBeginOverlay{t}
\AtEndSlide{t}
\AtEndOverlay{t}

\DefineSpecialEncoding{<command name>}{t1}{t2} ... {t9}

\fixparbox

\dimdiv{<macro name>}{l}{l}

6.2 Lengths

\smargin
\tmargin
\bmargin
\fsmargin
\ftmargin
\fbmargin
\footwidth

These should not be directly modified.

35

6.3 Counters

slidenum
overlaynum
pausectr

These should normally not be directly modified.

6.4 Booleans

visibleP
overlaysoffP

These should not be directly modified.

6.5 Color names

foreground -- initially white
background -- initially black

These should normally not be directly modified.

6.6 Style parameters

Style parameters can be set with the command

\style{<name1>=<value1>, <name2>=<value2>, ...}

The \style command is implemented using the keyval package, which is loaded by the
projector class. As such, you can insert spaces around the = and , characters, and you can
enclose values in brackets ({ and }) if convenient.

There is a lower-level function called \setparam. \setparam{#1}{#2} is essentially equivalent
to \style{#1={#2}}.

Also, for style parameters that take a percentage as a value, you can use the command

\scaleparam{<name>}{x}

to multiply the current value of <name> by the real number x. For example,

\scaleparam{vskip}{120}

sets the value of the style parameter vskip to 120, while

\style{vskip=1.2}

36

multiplies the current value of vskip by 1.2.

The effects of \style, \setparam, and \scaleparam extend to the end of the enclosing scope.
You may reset a style parameter at any time, except for those named slide.. . . , which should
only be set in the preamble.

The command \paramval{<name>} expands to the current value of <name>.

The following is a list of all style parameters, with their type and default values. The types are:

% = percentage of default
c = color
b = boolean
t = arbitrary text or commands
f = special enumerate label format string
l = length

Name Type Default
---- ----- -------

slide.margin % 100
slide.margin.side % 100
slide.margin.bot % 100
slide.margin.top % 100

slide.size % 100
slide.aspect.ratio <ratio> 4:3

vskip % 100

hidden % 100

alert.color c blue!80!black

foot.margin % 100
foot.margin.side % 100
foot.margin.bot % 100
foot.margin.top % 100

foot.text.top.left t
foot.text.top.center t
foot.text.top.right t
foot.text.bot.left t
foot.text.bot.center t
foot.text.bot.right t
foot.format t

37

banner.format t \large\fgcolor{blue!80!black}
Banner.format t \large\bf\fgcolor{blue!80!black}
BANNER.format t \Large\bf\fgcolor{blue!80!black}

banner.env t center
Banner.env t center
BANNER.env t center

banner.aboveskip l 0pt
Banner.aboveskip l 0pt
BANNER.aboveskip l 0pt

banner.belowskip l \smallskipamount
Banner.belowskip l \medskipamount
BANNER.belowskip l \bigskipamount

Stripe.margin % 100
Stripe.bgcolor c blue!60
Stripe.env t center
Stripe.format t \bf\large\fgcolor{white}

BOX.fwidth % 100
BOX.margin % 100
BOX.bgcolor c blue!20
BOX.fcolor c foreground
BOX.framed b false
BOX.opaque b false
BOX.shaded b false
BOX.extended b false
BOX.when <test> \boolean{true}

shadow.color c foreground
shadow.contrast % 100
shadow.fuzz % 100
shadow.hoffset % 100
shadow.voffset % 100
shadow.resolution % 100

highlight.title.format t \it\fgcolor{white}
highlight.title.bgcolor c blue!60
highlight.body.format t \fgcolor{black}
highlight.body.bgcolor c blue!20
highlight.body.shaded b false

38

list.margin % 100
list.label.margin % 100

item.label.1 t \(\bullet\)
item.label.2 t \(\circ\)
item.label.3 t \(\cdot\)
item.label.4 t -

item.format t

enum.label.1 f \N\arabic.
enum.label.2 f \N\alph.
enum.label.3 f \N\roman)
enum.label.4 f \N\Alph.

enum.format t

enum.sep.1 t
enum.sep.2 t
enum.sep.3 t .
enum.sep.4 t)

Note that for types t, l, f, and <test>, the \style command uses \def to assign values; for
other types, it uses \edef, meaning that the value to be assigned to the parameter is evaluated
immediately at the time \paramval is executed.

Also note that when setting boolean parameters with the \style command, writing name is the
same as writing name=true.

6.7 Preloaded packages

These LaTex packages are loaded in the given order:

amsmath
latexsym
url
calc
ifthen
xcolor (loaded with options x11names and svgnames)
colortbl
graphicx
fancyhdr
hyperref
fp (loaded with option nomessages)
keyval

39

6.8 Change Log

Version 2.4 (Jan. 15, 2008)

• added extended style parameter for the BOX environment

Version 2.3 (Sept. 12, 2008)

• fixed some internal names

Version 2.2 (Sept. 11, 2008)

• added \Stripe command

Version 2.1 (May 9, 2008)

• some bug fixes

Version 2.0 (May 8, 2008)

• added drop shadows

• redefined slide* (semantics have changed to allow overlays)

• added BOX environment for very fancy colored boxes

• added \style command for syntactically simpler assignment to style params

• changed typesetting semantics (slightly) of headers and footers

• added \Panel command that makes the overlay mechanism work in a colortbl envi-
ronment

• modified semantics (slightly) of \fade command

• modified \targetslide semantics

• introduced edef option of style parameters, to force immediate evaluation

• added command \dimdiv, which may be useful in scaling certain lengths

• name change: \hmargin→ \smargin, \fhmargin→ \fsmargin

• packages fp and keyval loaded

• revised documentation

Version 1.5 (March 21, 2008):

40

• simplified implementation of \upbox, \downbox, \centerbox, \ifthenbox

Version 1.4 (March 21, 2008):

• added commands \upbox, \downbox, \centerbox

Version 1.3 (March 20, 2008):

• added commands \Colorbox, \FColorbox

• modified the color-mixing logic of the \fade command slightly

Version 1.2 (March 2, 2008):

• added commands \fade, \fadeFrom, \fadeTo, \fadeAt

Version 1.1 (Jan. 17, 2008):

• do not load packages amssymb and amsfonts (these can cause conflicts with certain cus-
tom font packages, and are not needed by the projector class itself)

• do not load the amstext package (already loaded by amsmath)

Version 1.0 (Nov. 6, 2007)

41

	Introduction
	Installing
	Getting started
	The basic LaTex document structure
	Processing and viewing
	Fonts
	The basic slide environment
	Basic overlay usage
	Using colors

	More advanced overlays
	The \hideX commands
	The \showX commands
	The \ShowX and \HideX commands
	The \colorX commands
	The \alertX and \alert commands
	The \fadeX and \fade commands
	Overlay numbers
	\ifvisible and visibleP
	The \refresh and \record commands
	Making hidden text partially visible
	Turning overlays off

	Carrying on
	"Hot corners" for navigation
	Hyperlinks
	Stretching and shrinking
	Page layout
	Dimensions
	Footers and Headers
	Vertical box placement
	Arbitrary box placement
	Conditional typesetting
	Banners and stripes
	Fancy Colored Boxes
	Theorems and such
	The \StackBackground command
	Labels, equation numbers, and other counter issues
	Colored tables
	Customizing lists
	Verbatim text and the slide* environment
	Other issues

	Summary
	Commands and environments
	Lengths
	Counters
	Booleans
	Color names
	Style parameters
	Preloaded packages
	Change Log

