
xbup: a set of backup tools for Mac OSX

Victor Shoup

December 2, 2008

Abstract

This document describes some simple tools for backing up a directory on a Mac OSX
HFS+ filesystem to a non-HFS+ filesystem on a remote Unix machine using rsync. The
goals of these tools are to preserve all metadata, make backups relatively fast (and in partic-
ular, bandwidth efficient), and facilitate simple restoration of files and their metadata.

1 Introduction

Suppose you would like a way to backup your critical files on your Mac OSX laptop to a remote,
non-Mac file server (and from there, they may well get backed up even further). You want the
backups to be easy and fast, so that you can do them often (at least once a day, if not more often).

1.1 Possible solutions

1.1.1 rsyncrsyncrsync

The natural tool to use is rsync. However, the Mac OSX file system HFS+ associates various non-
standard metadata with files, including resource forks and special information for the Finder,
and if you use rsync "out of the box", you will simply lose this metadata. Some applications
actually store important information in resource forks, so this is bad.

Apple has patched rsync to deal with metadata (with the -E option), but their implementation
is notoriously buggy, and moreover, does not help with backup to non-HFS+ files systems.

The very latest versions of rsync (version 3.x) handles HFS+ metadata fairly well, at least for
HFS+ to HFS+ backups, but there are still various problems and limitations with HFS+ to non-
HFS+ backups (see §2.6 below).

There are also a few different patched versions of rsync floating around the web that could do
the job, more or less. Here are some relevant patched rsyncs on the web:

• http://www.quesera.com/reynhout/misc/rsync+hfsmode/

• http://www.onthenet.com.au/~q/rsync/

• http://lartmaker.nl/rsync/

However, it is not at all clear if these are well maintained, and they all have various limitations.
Also, as rsync evolves, these patches will invariably fall behind.

1

http://www.quesera.com/reynhout/misc/rsync+hfsmode/
http://www.onthenet.com.au/~q/rsync/
http://lartmaker.nl/rsync/

1.1.2 rdiff-backup

A program called rdiff-backup (see http://www.nongnu.org/rdiff-backup/) can be
used — in theory — to obtain similar functionality to the tools provided here. However, it is
not clear how well rdiff-backup actually handles HFS+metadata. Some users have reported
some limitations with this tool, although these may have been fixed in later releases.

1.1.3 Commercial backup tools

One reasonable commercial backup tool is Chronosync (http://www.econtechnologies.
com). While it can be used to backup to a remote filesystem, the latter must be an HFS+ filesys-
tem, and must be "mounted" in some way. Even if this works, it would not likely be nearly as fast
as rsync.

The same issue arises with Apple’s Time machine.

1.1.4 xbup

The tools provided here work in conjunction with any standard rsync. There are several com-
mands provided, but the most important ones are split_xattr and join_xattr.

Suppose you want to backup the directory /Users/smith/mystuff to the remote directory
smith@access.cims.nyu.edu:/home/smith/mystuff. Working in your home directory
(/Users/smith), you execute:

split_xattr mystuff mystuff-xattr

This creates a directory mystuff-xattr, which has the same directory structure as mystuff,
but contains special "xattr container" files that store all the non-standard metadata. So for ex-
ample, if you have a file mystuff/path/to/foowith funny metadata, then there will be an xattr
container mystuff-xattr/path/to/foo.__@. Note that mystuff/path/to/foo may itself
be a directory — directories may have funny metadata too — in which case, the corresponding
xattr container is mystuff-xattr/path/to/foo/..__@. For efficiency, if a file has no funny
metadata, then no xattr container file will be generated. Also note that split_xattr does not
add or change any files in mystuff.

Now you run rsync twice, first to backup the files, and second to backup the xattr containers:

rsync -avz --delete \
mystuff/ smith@access.cims.nyu.edu:/home/smith/mystuff

rsync -avz -c --delete \
mystuff-xattr/ smith@access.cims.nyu.edu:/home/smith/mystuff-xattr

Note the -c option in the second rsync. This forces a "checksum" to determine which files are
to be transferred. This is the safest way to do it; however, it is still pretty safe to leave this off (see
detailed discussion below). While the checksum takes time, it will typically be significantly faster
than actually transmitting all the data over the network. And anyway, the time spent doing the
checksums will likely be no more than the time that split_xattr spent generating the data.

2

http://www.nongnu.org/rdiff-backup/
http://www.econtechnologies.com
http://www.econtechnologies.com

The next time you want to backup your files, you first remove the directory mystuff-xattr, and
run the three commands above. So a complete backup script is:

rm -rf mystuff-xattr
split_xattr mystuff mystuff-xattr
rsync -avz --delete \

mystuff/ smith@access.cims.nyu.edu:/home/smith/mystuff
rsync -avz -c --delete \

mystuff-xattr/ smith@access.cims.nyu.edu:/home/smith/mystuff-xattr

To restore mystuff, you use rsync to restore the directories mystuff and mystuff-xattr, and
then run the command:

join_xattr mystuff mystuff-xattr

This will set the funny metadata for all files in mystuff, using the information contained in
mystuff-xattr.

The commands split_xattr and join_xattr take various optional arguments to give finer-
grained control over what files and what metadata are backed up and restored (see below).

There is also a Perl script called xbup (see below), which provides even more functionality — but
feel free to "roll your own".

The xbup tools require version 10.4 (or later) of OSX.

2 Macintosh Metadata Madness

This section discusses the various types of metadata associated with objects in an HFS+ filesys-
tem.

2.1 Traditional Unix metadata

• owner and group: the user and group that "own" the object.

For backing up one’s own personal files, saving this information is not so important. How-
ever, if you want or need to backup this information, rsync can do this. But if you are
backing up to a remote file server where you do not have root access, this may not be so
straightforward. The xbup tools can be used to work around this.

• permissions: the traditional read/write/execute bits on Unix filesystems.

rsync can store this metadata; however, if the permissions are too restrictive, and you
are backing up to a remote file server where you do not have root access, you will have
problems restoring your files. Also, in HFS+, symbolic links can have their own permission
bits, while on the server’s filesystem, this may not be possible. The xbup tools can be used
to work around these (somewhat esoteric) limitations.

3

• mtime: the modification time (the last time the data was modified).

rsync can preserve this metadata. Besides mtime, there is also atime, the access time (the
last time the data was read), and ctime (the last time the data or metadata changed). Most
backup tools do not preserve atime and ctime — and neither do rsync or the xbup tools.

On version 10.5 of OSX, one can set the mtime of a symbolic link on HFS+. Many filesys-
tems do not allow this, and so the mtime of symbolic links may be lost when backing up
to such a filesystem. The xbup tools can be used to work around this (somewhat esoteric)
limitation.

2.2 xattrs (extended attributes)

xattrs are arbitrary name/value pairs associated with a file. Two special and important xattrs are

• com.apple.FinderInfo, which encodes various Finder flags, and

• com.apple.ResourceFork, which represents the so-called "resource fork" of a file,
which may contain lots of application-specific data, like custom icons, and other stuff.

These two xattrs are a sort of "legacy" from pre-OSX days. In fact, "under the hood", these
are not really xattrs in the underlying filesystem, but are made to appear as such via the
getxattr/setxattr function interface.

Note that a Finder Alias, which is a Mac-ish alternative to a symbolic link that is only interpreted
by the Finder (and maybe some other Mac-ish software), is a regular file with special values of the
com.apple.FinderInfo and com.apple.ResourceFork xattrs: com.apple.FinderInfo
tells the Finder that the file is an alias, and com.apple.ResourceFork contains information
about the location of the target file.

On HFS+, files, directories, and even symbolic links may have xattrs (although a symbolic link
may not have a resource fork).1

It seems that other modern Unix-based filesystems are starting to provide xattrs as well. Unfortu-
nately, there is very little standardization on APIs, and different filesystem impose different types
of limitations (on xattr names and sizes, and on what types of files may have xattrs). Indeed,
while a resource fork can easily be many kilobytes or even megabytes long2, many filesystems
place restrictions of a few kilobytes on the size of an xattr. Indeed, even HFS+ does not allow
any xattr other than the resource fork to be larger than a few kilobytes (as mentioned above, the
resource fork is kind of a "fake" xattr).

The xbup tools automatically backup all xattrs, even to filesystems that have no xattrs them-
selves.

2.3 BSD Flags

There are various so-called BSD Flags, which are traditionally a part of BSD Unix distributions
(and OSX is partly derived from BSD Unix). These flags can be changed from the command

1It seems that special filesystem objects, like FIFOs and devices, cannot have xattrs.
2A resource fork can apparently be no larger than 16MB.

4

line using the chflags command. The most important of these flags is the "locked" flag (also
called uchg). The "locked" flag prevents everyone (including root) from modifying the data or
metadata, or deleting the file. The "locked" flag can also be set from the OSX GUI.

On HFS+, files, directories, and even symbolic links can have BSD Flags (on traditional BSD Unix
filesystems, symbolic links cannot have BSD Flags).3

The xbup tools automatically preserve the "user level" BSD Flags — there are also "system level"
BSD Flags, which the xbup tools do not preserve (and which are quite cumbersome: you can only
"unlock" a system-locked file if you boot the machine into single-user mode).

2.4 crtime (creation time)

The crtime represents the time an object in the filesystem was created. It seems that crtime is
fairly unique to HFS+. If desired, the xbup tools can be used to backup crtime (although this is
not the default).

2.5 ACLs (access control lists)

ACLs are a more recent addition to HFS+. These can be used to provide more fine-grained access
control to files and directories than is possible with the traditional Unix permissions. ACLs were
introduced in OSX Tiger (10.4), where they were turned off by default; in OSX Leopard (10.5), they
are turned on by default (you can turn them on/off for a given file system using the fsaclctl
command).

ACLs are starting to be found on numerous filesystems. Unfortunately, there is very little stan-
dardization. ACLs on HFS+ are meant to compatible with Microsoft’s NTFS ACLs, and are
completely unlike POSIX ACLs found on other Unix filesystems. In addition, unlike ACLs on
other Unix filesystems, on HFS+, ACLs and traditional permissions are completely independent:
changing one will not affect the other.4

On HFS+, files, directories, and even symbolic links can have ACLs.5

The xbup tools can be used to backup and restore ACLs (although this is not the default).

2.6 rsyncrsyncrsync metadata limitations

The latest versions of rsync (versions 3.x), using the --fake-super option, can backup xattrs,
ACLs, and other metadata from HFS+ to non-HFS+ filesystems. It does this by storing this meta-
data in xattrs on the destination filesystem. There are several limitations with this approach:

• The non-HFS+ filesystem must itself support xattrs in a way that rsync understands.
Some Solaris platforms (like the one used by the author of xbup), for example, do not sup-
port rsync with --fake-super.

3It seems that special filesystem objects, like FIFOs and devices, can have BSD flags as well.
4But the algorithm to grant/deny access to an object uses both.
5It seems that special filesystem objects, like FIFOs and devices, cannot have ACLs. Also, while symbolic links can

have ACLs, version 10.4 of OSX provides no API to actually set an ACL on a symbolic link (see §6).

5

• The resource forks on HFS+ can easily exceed the size limit for xattrs on non-HFS+ filesys-
tems.

• Some (most?) non-HFS+ filesystems do not support xattrs on symbolic links.

• BSD flags and crtime cannot be preserved — while there are patches that make rsync
preserve this metadata, they currently only work for HFS+ to HFS+ transfers.

In addition to the above limitations, if you want to enjoy the benefits provided by additional
backup on the backup server itself, you have to hope that the backup regime of the system ad-
ministrator actually backs up xattrs, which may not always be the case.

The xbup tools provide a way to work around these limitations, relying on rsync for what rsync
does best: preserving data and traditional Unix metadata.

3 Installation

The tarball is called xbup-XXX.tgz, where XXX is the version number.

First, if necessary, unpack the tarball:

tar -xzvf xbup-XXX.tgz

This puts all files in a subdirectory called xbup-XXX. Then do:

cd xbup-XXX
make
make install

Note that make install will copy executables into ~/bin by default. Edit the makefile to
change this behavior, or copy the executables by hand. Make sure your $PATH environment
variable includes this location.

This documentation is located in the file doc.pdf, and the corresponding LaTeX source is in
doc.tex.

4 Commands

NAME:split_xattrsplit_xattrsplit_xattr

Synopsis

split_xattrsplit_xattrsplit_xattr options datadir xattrdir

6

Description

This creates a directory xattrdir, which acts as a repository for xattr containers corresponding
to files in datadir. The directory xattrdir should not exist prior to invocation. xattr contain-
ers will only be created for files that have "non-traditional" metadata (by default, this means xat-
trs or BSD Flags). If datadir/path/to/foo is not a directory, its corresponding xattr container
(if any) is xattrdir/path/to/foo.__@; otherwise, it is xattrdir/path/to/foo/..__@. The
mtime of an xattr container is set to the ctime of the corresponding file. This means that xattr
containers can be safely backed up using rsync -a; however, rsync -ac (i.e., with checksums)
is even safer.6

If you do not have effective read permission on a file in datadir, you will not be able to read
its extended attributes: this will result in an error. Of course, if you try to backup such a file
using rsync, this will result in an error as well. If you do not have effective read and execute
permissions on a directory, you will not be able to process its contents — this will also result in
an error. To avoid these problems, you may need to run split_xattr (as well as rsync) as root
(or run: sudo split_xattr ...).

Symbolic links are never followed.

Special types of files (devices, FIFOs, etc.) are not given any special treatment, and are processed
like any other file.

If split_xattr finds any files in datadir whose names end with ".__@", an error will be re-
ported, as such file names may conflict with names of xattr containers in xattrdir.

Options: these control what metadata is preserved, and what files are processed.

--files-from--files-from--files-from flist
flist is a file that contains a list of file/directory names, which are relative to datadir.
Only those files (and ancestors and descendents thereof) that appear in this list will be
processed. Names in flist should be one per line, with no extra blanks and no leading or
trailing slashes. Empty lines are ignored.

For example, to backup just your iPhoto and iTunes stuff in your home directory, you
could place the following in flist:

Pictures
Music

or possibly:

Pictures/iPhoto Library
Music/iTunes

With this second list of files, if you backup your home directory $HOME, then the following
files will be processed:

6It seems that deleting the special xattr com.apple.FinderInfo will not change the ctime of a file. This would
seem to be a bug; however, if this is the only change to the metadata, then the size of the xattr container will change,
and so rsync -a will also detect the change, since it tests both the mtime and size of a file.

7

• $HOME

• $HOME/Pictures

• $HOME/Pictures/iPhoto Library

• all files and subdirectories in $HOME/Pictures/iPhoto Library

• $HOME/Music

• $HOME/Music/iTunes

• all files and subdirectories in $HOME/Music/iTunes

The same file flist can be used in conjunction with the files-from option in rsync
to back up the data files. Alternatively, you can get somewhat more predictable results by
using the gen_pat command (described below) in conjunction with rsync.

--crtime--crtime--crtime
Causes creation time to be stored (by default, this is not). This will cause an xattr container
to be created for each file/directory.

--acl--acl--acl
Causes ACLs to be stored (by default, ACLs are not stored).

--owner--owner--owner ID
Causes the owning user to be stored. IfID is not-, then as an optimzation, this information
will not be stored if the owning user is ID. Note that ID can be either a symbolic or numeric
ID.

--group--group--group ID
Causes the associated group to be stored. If ID is not -, then as an optimzation, this in-
formation will not be stored if the associated group is ID. Note that ID can be either a
symbolic or numeric ID.

--perms--perms--perms

--lnkperms--lnkperms--lnkperms

--fixperms--fixperms--fixperms
These cause traditional permissions to be stored.

--perms will force permissions to be stored for every file/directory. This is usually not
necessary, as rsync will preserve this metadata, except in some cases that can be dealt
with using the --lnkperms and --fixperms options.7

--lnkperms causes permissions to be stored for symbolic links. Many filesystems do not
allow symbolic links to have their own permissions, and so backing up your files to such a
filesystem will loose this information. The --lnkperms options will solve this problem.

--fixperms causes "problematic" permissions to be stored. Problematic permissions are
defined as:

7Backups to a truly foreign filesystem, like FAT32, may benefit from this option.

8

1. permissions that do not include user read and write,

2. permissions on a directory that do not include user execute, or

3. permissions that include the setuid, setgid, or sticky bits.

Such permissions may cause problems when using rsync.

Unless you have root permission on the backup filesystem, you will not be able to recover
all your files if you have problematic permissions of types (1) or (2). Problematic permis-
sions of types (1) and (2) are traditionally quite unusual; however, with the advent of ACLs
on HFS+, they may become more common, since one can set the traditional permissions
to deny all access, and then use ACLs to grant access.

Problematic permissions of type (3) can cause problems, since these special bits have dif-
ferent semantics and restrictions across filesystems.

The --fixperms option is designed to be used in conjunction with the rsync option
--chmod=u+rw,u-s,g-s,-t,Du+x , which will cause all objects on the receiving end
to have user read/write permission, directories to have user execute permission, and all
setuid, setgid, and sticky bits cleared. Note that the --chmod option is only available
on rsync version 2.6.7 and later.

--mtime--mtime--mtime

--lnkmtime--lnkmtime--lnkmtime
These cause mtime to be stored.

--mtimewill force mtime to be stored for every file/directory. This is usually not necessary,
as rsyncwill preserve this metadata, except in some cases that can be dealt with using the
--lnkmtime option.

--lnkmtime causes mtime to be stored for symbolic links. Many filesystems do not allow
symbolic links to have their mtime set, and so backing up your files to such a filesystem
will loose this information. The --lnkmtime option will solve this problem.

--recycle--recycle--recycle olddir
An experimental optimization to speed things up if you have lots of metadata.
split_xattr creates an xattr container for a file with an mtime equal to the ctime of the
data file. Theoretically, if the metadata of a file changes, then its ctime should change. Un-
fortunately, this is not quite true (see Footnote 6). Ignoring this limitation, the --recycle
option can be used as follows. Suppose you run split_xattr once, and then move
xattrdir to olddir. If you later run

split_xattr --recycle olddir datadir xattrdir

then for each file, if an xattr container needs to be generated, and if a corresponding xattr
container file exists in olddir whose mtime matches the ctime of the data file, then in-
stead of generating the xattr container file in xattrdir, the file in olddir is moved to
xattrdir.

Note: the speed-up is not as dramatic as one would hope, and given the possibility that
some changes are not properly tracked, it is not clear if the use of this flag should be rec-
ommended.

9

NAME:join_xattrjoin_xattrjoin_xattr

Synopsis

join_xattrjoin_xattrjoin_xattr options datadir xattrdir

The "opposite" of split_xattr: xattr container files in xattrdir are used to set the metadata
of files in datadir. Note that if a file in datadir does not have a corresponding xattr container
in xattrdir, that file will be stripped of its xattrs and BSD Flags — more generally, the file will
be treated as if its corresponding xattr container was "empty".

You will need to have effective read and execute permissions on all directories in datadir in
order to process their contents. If this is a problem, it can be avoided by running join_xattr
as root (or run: sudo join_xattr ...). Also, use of the --owner and --group options will
require you to run join_xattr as root.

Options: these control what metadata is restored, and what files are processed.

--files-from--files-from--files-from flist
Just as in split_xattr, this can be used to restrict the files in datadir that are processed.

--acl--acl--acl
Causes ACLs to be restored. Even if split_xattr was called with the --acl option,
join_xattr will ignore ACLs unless this option is set.

The options --numeric-ids, --preserve-uuids, --ignore-uuids, --usermap, and
--groupmap (see below) may be used to fine-tune the behavior of this option.

--owner--owner--owner ID
Causes the owning user to be restored. Even if split_xattr was called with the --owner
option, join_xattr will ignore this data unless this option is set. If ID is not -, then if a
file’s corresponding xattr container is either missing, or does not contain owner data, ID
will be used as a "default" value. Note that ID can be either a symbolic or numeric ID.

The options --numeric-ids and --usermap (see below) may be used to fine-tune the
behavior of this option.

--group--group--group ID
Causes the associated group to be stored. If ID is not -, then if a file’s corresponding xattr
container is either missing, or does not contain group data, ID will be used as a "default"
value. Note that ID can be either a symbolic or numeric ID.

The options --numeric-ids and --groupmap (see below) may be used to fine-tune the
behavior of this option.

--numeric-ids--numeric-ids--numeric-ids

--ignore-uuids--ignore-uuids--ignore-uuids

10

--preserve-uuids--preserve-uuids--preserve-uuids
The --numeric-ids option modifies the default behavior of the --owner, --group, and
--acl options. The --ignore-uuids and --preserve-uuids options modify the de-
fault behavior of the --acl option.

If an xattr container stores any data at all about the owning user or group of a file, it
stores a numeric ID and (if possible) a symbolic ID. By default, when such data is re-
stored to a file, the symbolic ID will be used, if it can be translated to a numeric ID (using
getpwnam/getgrnam); otherwise, the given numeric ID will be used (and a warning will
be issued). The --numeric-ids option will force the given numeric ID to be used.

The situation with ACLs is more complicated. On the HFS+ filesystem, an ACL consists of
a list of entries. Each entry grants or denies access to the file by a specified entity. An entity
is either a user or a group. However, an ACL specifies this entity using a UUID (universally
unique identifier), which is a 128-bit string, rather than a traditional numeric user/group
ID. If the UUID belongs to a user or group that is "known" to the operating system, then
there will be corresponding symbolic and numeric IDs that can be used to identify the
same entity.

An xattr container will encode whether the entity is a user or group, and will also encode
all three forms of ID: UUID, symbolic ID, and numeric ID — the last two IDs are included
only if the entity is "known" on the machine where the xattr container was created.

When restoring an ACL, the given UUID will be used if it belongs to an entity that is
"known" on the machine where the ACL is being restored; otherwise, either the given
symbolic ID will be tried (if --numeric-ids is not set) or the numeric ID will be tried
(if --numeric-ids is set); if these IDs do not belong to any "known" entities, the original
UUID will be preserved (and a warning will be issued).

This identity translation is helpful if you are trying to move your files to a new machine:
users and groups (besides special ones like root and admin) will normally have distinct
UUIDs on different machines (even if the symbolic and numeric IDs are the same). Indeed,
if you drop your laptop on the ground and replace it with a new laptop, then you will want
to move your backed up files to a new machine, and you probably do not want to preserve
all the old UUIDs, which make no sense on the new machine.

The options --ignore-uuids and --preserve-uuidsmodify (and simplify) the default
behavior. The --ignore-uuids option forces the given UUID to be ignored completely:
either the symbolic or numeric ID will be tried (depending on --numeric-ids), and if this
fails to translate, then a null UUID will be used. The --preserve-uuids option forces the
given UUID to be used, no matter what.

--usermap--usermap--usermap map

--groupmap--groupmap--groupmap map
These options modify the behavior of the --owner, --group, and --acl options. The
given values of map specify maps that translate user/group IDs. For example:

--usermap alice:sandy,bob:tom

11

specifies that when restoring user IDs (either the owning user of of file or a user in an ACL
entry), if the xattr container specifies user alice, then user sandy should be used instead,
and if it specifies bob, then tom should be used instead.

In general, a map is a list

id1:id2,id3:id4,...

You should avoid any extraneous spaces in specifying a map. For each pair id1:id2, user
id1 will be replaced by id2 during the restore. Each of id1 and id2 may be symbolic
or numeric IDs. If id1 is numeric, the pair is only relevant when interpreting numeric
IDs, and if id1 is symbolic, the pair is only relevant when interpreting symbolic IDs. Note
that without the --numeric-ids option, a numeric ID uid will be translated only when
restoring ownership to a file where the xattr container has no symbolic ID for the file, or
the symbolic ID (after any symbolic usermap translation) does not correspond to a user
on the machine where the files are being restored; a warning will be printed if no usermap
translation for uid is given: one can suppress this warning my including the usermap pair
uid:uid.

The --groupmap option works the same way, except that it maps group IDs instead of user
IDs.

Note that during a restore, the default owner and group (specified by the --owner and
--group options) are themselves subject to usermap and groupmap translation.

NAME:splitf_xattrsplitf_xattrsplitf_xattr

Synopsis

splitf_xattrsplitf_xattrsplitf_xattr options datadir

Description

This works like split_xattr, except that instead of creating a directory structure of xattr con-
tainers, it writes a list of file name/xattr container pairs to stdout. One such pair is generated for
each file/directory in datadir, regardless of whether that file/directory has any non-standard
metadata.

This is especially useful for backups to local hard drives, where there is little advantage in build-
ing up a directory structure. It can run significantly faster than split_xattr.

Options: these options have the same meaning as the options for split_xattr.

--files-from--files-from--files-from flist

--crtime--crtime--crtime

--acl--acl--acl

12

--owner--owner--owner ID

--group--group--group ID

--perms--perms--perms

--lnkperms--lnkperms--lnkperms

--fixperms--fixperms--fixperms

--mtime--mtime--mtime

--lnkmtime--lnkmtime--lnkmtime

NAME:joinf_xattrjoinf_xattrjoinf_xattr

Synopsis

joinf_xattrjoinf_xattrjoinf_xattr options datadir

The "opposite" of splitf_xattr: it reads in a list of file name/xattr container pairs from stdin
(as produced by splitf_xattr), and for each such pair, restores the metadata in the con-
tainer to the corresponding file in in datadir. Note that the file names are relative paths, so
splitf_xattr and joinf_xattr may use different datadirs. Also note that if a file listed in
stdin does not exist in datadir, the xattr container is quietly skipped (this is not considered an
error).

Options: these options work just like the corresponding options for join_xattr.

--files-from--files-from--files-from flist

--acl--acl--acl

--owner--owner--owner ID

--group--group--group ID

--numeric-ids--numeric-ids--numeric-ids

--ignore-uuids--ignore-uuids--ignore-uuids

--preserve-uuids--preserve-uuids--preserve-uuids

--usermap--usermap--usermap map

--groupmap--groupmap--groupmap map

13

Example The following will copy a directory dir to dir-copy, transferring all metadata, in-
cluding crtime and ACLs:

rsync -a dir/ dir-copy
splitf_xattr --crtime --acl dir | joinf_xattr --acl dir-copy

To properly preserve permissions on symbolic links, you should add the --lnkperms option
to splitf_xattr, if you are using an rsync prior to v3.x . You may also want to use the
--lnkmtime option for splitf_xattr, to preserve the mtime on symbolic links (whether or
not this option is sufficient or necessary depends on the rsync version and the OS version, but
it never hurts to use it).

NAME:split1_xattrsplit1_xattrsplit1_xattr

Synopsis

split1_xattrsplit1_xattrsplit1_xattr options file

Description

This works like split_xattr, except that it processes a single file (which may be a directory,
or any other filesystem object), and it writes to stdout a single xattr container.

Options: these options have the same meaning as the options for split_xattr.

--crtime--crtime--crtime

--acl--acl--acl

--owner--owner--owner ID

--group--group--group ID

--perms--perms--perms

--lnkperms--lnkperms--lnkperms

--fixperms--fixperms--fixperms

--mtime--mtime--mtime

--lnkmtime--lnkmtime--lnkmtime

14

NAME:join1_xattrjoin1_xattrjoin1_xattr

Synopsis

join1_xattrjoin1_xattrjoin1_xattr options file

The "opposite" of split1_xattr: it reads an xattr container stdin, and restores the metadata
in the container to file.

Options: these options work just like the corresponding options for join_xattr.

--acl--acl--acl

--owner--owner--owner ID

--group--group--group ID

--numeric-ids--numeric-ids--numeric-ids

--ignore-uuids--ignore-uuids--ignore-uuids

--preserve-uuids--preserve-uuids--preserve-uuids

--usermap--usermap--usermap map

--groupmap--groupmap--groupmap map

NAME:gen_patgen_patgen_pat

Synopsis

gen_patgen_patgen_pat [-x-x-x]

This command reads from stdin a list of file names (in the same format as in the --files-from
option in split_xattr), and writes to stdout a list of patterns suitable for use with the
--exclude-from option of rsync. The -x option makes the output also include patterns that
will match xattr containers, as well.

For example, if flist contains a list of file names, one can execute

gen_pat < flist > pat
rsync -a --delete --exclude-from=pat src/ dst

This will backup only those files specified in flist (including ancestors and descendents). One
can also write this more compactly as:

gen_pat < flist | rsync -a --delete --exclude-from=- src/ dst

15

NAME:strip_locksstrip_locksstrip_locks

Synopsis

strip_locksstrip_locksstrip_locks options datadir

This command can be used to strip all BSD Flags and (optionally) all ACLs from files and direc-
tories in datadir. This is useful if you want to restore files using rsync into datadir, as rsync
may not otherwise be able to access the files in datadir.

Options:

--files-from--files-from--files-from flist
restrict processing to files listed in flist

--acl--acl--acl
strip ACLs, in addition to BSD Flags

EXAMPLES

Returning to the example in §1.1.4, a more complete backup script would like like this:

rm -rf mystuff-xattr
split_xattr --files-from flist mystuff mystuff-xattr
gen_pat < flist > pat
rsync -avz --delete --exclude-from=pat \

mystuff/ smith@access.cims.nyu.edu:/home/smith/mystuff
gen_pat -x < flist > xpat
rsync -avz -c --delete --exclude-from=xpat \

mystuff-xattr/ smith@access.cims.nyu.edu:/home/smith/mystuff-xattr

This would restrict the files to those listed in flist. A complete restore script would look like
this:

strip_locks --files-from flist mystuff
gen_pat < flist > pat
rsync -avz --delete --exclude-from=pat \

smith@access.cims.nyu.edu:/home/smith/mystuff/ mystuff
rm -rf mystuff-xattr
mkdir mystuff-xattr
gen_pat -x < flist > xpat
rsync -avz --exclude-from=xpat \

smith@access.cims.nyu.edu:/home/smith/mystuff-xattr/ mystuff-xattr
join_xattr --files-from flist mystuff mystuff-xattr

16

Here is a more involved backup script. Assuming you want to backup ACLs, owners and groups,
permissions and mtime on symbolic links, and to fix problematic permissions, the script would
look like this:

rm -rf mystuff-xattr
split_xattr --lnkperms --lnkmtime --fixperms --acl \

--owner smith --group smith --files-from flist \
mystuff mystuff-xattr

gen_pat < flist > pat
rsync --chmod=u+rw,u-s,g-s,-t,Du+x --rsh=’ssh -i /Users/smith/.ssh/id_rsa’ \

-avz --delete --exclude-from=pat \
mystuff/ smith@access.cims.nyu.edu:/home/smith/mystuff

gen_pat -x < flist > xpat
rsync -avz -c --delete --exclude-from=xpat \

--rsh=’ssh -i /Users/smith/.ssh/id_rsa’ \
mystuff-xattr/ smith@access.cims.nyu.edu:/home/smith/mystuff-xattr

Here, the default owner and group is set to smith, assuming most files have owner and group
smith (this will save on bandwidth). Also, assuming you might want to run this script as root,
the name of your SSH secret key file should be passed to ssh when calling rsync. Here is the
corresponding restore script:

strip_locks --acl --files-from flist mystuff
gen_pat < flist > pat
rsync -avz --delete --exclude-from=pat \

--rsh=’ssh -i /Users/smith/.ssh/id_rsa’ \
smith@access.cims.nyu.edu:/home/smith/mystuff/ mystuff

rm -rf mystuff-xattr
mkdir mystuff-xattr
gen_pat -x < flist > xpat
rsync -avz --exclude-from=xpat \

--rsh=’ssh -i /Users/smith/.ssh/id_rsa’ \
smith@access.cims.nyu.edu:/home/smith/mystuff-xattr/ mystuff-xattr

join_xattr --acl --owner smith --group smith \
--files-from flist mystuff mystuff-xattr

Finally, here is an example of how the xbup tools can be used to backup files to an external hard
drive. In this script, files and subdirectories in the home directory of user smith, restricted to
those listed in ~smith/.bupfiles, are backed up to an external hard drive names lacie-80.
A "live" copy, with all metadata intact, is maintained on the backup. This particular script does
not preserve ACLs, but this could be achieved by adding the --acl option to the commands
strip_locks, splitf_xattr, and joinf_xattr:

17

SRC=/Users/smith
DST=/Volumes/lacie-80/home-backup
RSYNC=rsync
FILES=/Users/smith/.bupfiles

if ! test -d "$DST"
then

echo "can’t access $DST"
exit 1

fi

if ! test -e "$DST/data"
then

mkdir "$DST/data"
fi

echo "*** stripping locks"
time strip_locks "$DST/data"
echo
echo "*** syncing files"
gen_pat < "$FILES" > "$DST/pat"
time $RSYNC --stats -av --delete --delete-excluded \

"--exclude-from=$DST/pat" \
"$SRC/" "$DST/data"

echo
echo "*** syncing xattrs"
time splitf_xattr --crtime --files-from "$FILES" "$SRC" |

joinf_xattr "$DST/data"

Notice the --delete-excluded option to rsync. With this option, if you later remove some
files from .bupfiles, these will be deleted from the backup.

NAME:xbupxbupxbup

Synopsis

xbupxbupxbup options

This is script that invokes split_xattr, join_xattr, strip_locks, gen_pat, and rsync ap-
propriately, in order to perform remote backups and restores. It provides a number of conve-
niences:

• quick backup of just a subdirectory, or just selected files;

18

• automatic archival of changed/deleted files (which themselves get automatically deleted
after a specified amount of time).

Before using this script, you will have to setup a configuration file ~/.xbupconfig, which spec-
ifies (among other things) the local source directory and the remote destination host and direc-
tory. See the file sample-.xbupconfig included in the distribution to get started.

By default, xbup backs up files — you may use the --restore option to restore them.

Options:

--local--local--local
make effective backup directory the current working directory, rather than the root of the
backup tree

--files--files--files
backup only those files and directories listed in the file .bupfiles (located in the effective
backup directory)

--files-from--files-from--files-from file
like --files, but use specified file instead of .bupfiles

--config--config--config file
read config from file, instead of ~/.xbupconfig

--checksum--checksum--checksum
always checksum data files. By default, no transfer occurs if mtime and size of files agrees.
Note that xattr containers are always checksummed.

--dry-run--dry-run--dry-run
just a dry run. Tip: use --checksum --dry-run to compare source and destination.

--restore--restore--restore
restores files, instead of backing them up. This works with all of the above options.

The archival mechanism is very simple, and is based on rsync’s --backup option. Whenever
you run xbup to backup your files, a directory archive/arch.XXXXX is created in the remote
destination directory, where XXXXX is the current time. Any changed or deleted files will be
placed in a subdirectory of of archive/arch.XXXXX.

To find old copies of a file path/to/foo, run the command

ls -l archive/*/data/path/to/foo

Finding the matching xattr container for an archived file can be a bit tricky. Suppose
your old file is in archive/arch.XXXXX/data/path/to/foo. If there is an xattr container
archive/arch.XXXXX/xattr/path/to/foo.__@, then this is the matching xattr container.
Otherwise, run

19

ls -l archive/*/xattr/path/to/foo.__@
ls -l xattr/path/to/foo.__@

to see all candidates in the archives and in the main backup directory. Choose the first candidate
in an archive of a later date as the old file’s archive, or if there are none, the candidate in the main
backup directory. Note, however, that this candidate (if any) might have been first created at a
time after the old file was moved from the main backup to the archive, meaning that the old file
had no xattr container at that time. Look at the mtime (from the ls command) of the candidate:
this is the time this xattr container was first created on the remote machine; if this is later than
the mtime of the archive directory archive/arch.XXXXX holding the old file, then this means
the old file had no xattr container; otherwise, this is the matching xattr container.

Perhaps a shell script to find xattr containers corresponding to archived files would be helpful.

NAME:xatxatxat

Synopsis

xatxatxat options file

This is a general utility for inspecting/modifying extended attributes of a given file.

Options:

--list--list--list
list xattr names and their lengths

--get--get--get name
write value of xattr name to stdout

--print--print--print name
same as above, but human readable

--del--del--del name
delete xattr name

--set--set--set name
set value of xattr name to value read from stdin

--set--set--set name===value
set value of xattr name to value

--has--has--has name
test if xattr name exists (useful in find scripts)

--has-any--has-any--has-any
test if any xattrs exist (useful in find scripts)

20

5 Testing

The xbup tools have been tested on Mac OSX Tiger (10.4) and Leopard (10.5).

Backup bouncer v0.1.3 (see http://www.n8gray.org/code/backup-bouncer/), which is a
tool to test preservation of metadata for Mac OSX, was used as a part of the test procedure. All
tests passed successfully:

------------------ xbup ------------------
Verifying: basic-permissions ... ok (Critical)
Verifying: timestamps ... ok (Critical)
Verifying: symlinks ... ok (Critical)
Verifying: symlink-ownership ... ok
Verifying: hardlinks ... ok (Important)
Verifying: resource-forks ...

Sub-test: on files ... ok (Critical)
Sub-test: on hardlinked files ... ok (Important)

Verifying: finder-flags ... ok (Critical)
Verifying: finder-locks ... ok
Verifying: creation-date ... ok
Verifying: bsd-flags ... ok
Verifying: extended-attrs ...

Sub-test: on files ... ok (Important)
Sub-test: on directories ... ok (Important)
Sub-test: on symlinks ... ok

Verifying: access-control-lists ...
Sub-test: on files ... ok (Important)
Sub-test: on dirs ... ok (Important)

Verifying: fifo ... ok
Verifying: devices ... ok
Verifying: combo-tests ...

Sub-test: xattrs + rsrc forks ... ok
Sub-test: lots of metadata ... ok

These results were achieved using the following backup bouncer copier test script:

21

http://www.n8gray.org/code/backup-bouncer/

#!/bin/sh

rsync=/usr/bin/rsync # path to rsync
xattr=... # path to xbup tools

flags="-aH --rsync-path=$rsync"

Should exit with code 0 if the necessary programs exist, 1 otherwise
can-copy () {

test -e $rsync
}

Should generate some text on stdout identifying which version of the
copier is being used, and how it’s called. This is optional.
version () {

$rsync --version
echo
echo "command = sudo $rsync $flags src/ dst"

}

Should perform a copy from $1 to $2. Both will be directories. Neither
will end with ’/’. So you’ll get something like:
backup /Volumes/Src /Volumes/Dst/99-foo
backup () {

sudo $rsync $flags $1/ $2
sudo $xattr/splitf_xattr --crtime --acl $1 | sudo $xattr/joinf_xattr --acl $2

}

To use this script, fill in the definition of xattr, and place the script in the directory copiers.d
in the backup bouncer directory. In the backup bouncer directory, run make, and then run
sudo ./autopilot . This will test a bunch of copiers, including the one for xbup.

Note that backup bouncer v0.1.3 does not check permissions on symbolic links (although it does
check ownership). If the rsync is older than v3.x (which it will be by default), then it will not
preserve symbolic link permissions, and you would have to add the --lnkperms option to the
splitf_xattr command in the above script to do this.

6 Implementation Notes

The functions listxattr, getxattr, setxattr, and removexattr are used to access xattrs.
The functions getattrlist and setattrlist are used to access the crtime. The function
setattrlist is also used to set BSD flags, permissions, and mtime (see discussion below on
symlinks).

22

6.1 Resource Forks

If one reads the resource fork of a file, the atime of the file is updated. Worse, if one writes the
resource fork, the mtime is updated. The implementation works around this by restoring the
mtime of a file after updating any xattrs.

Another quirk of resource forks is that setting com.apple.ResourceFork via setxattr does
not replace the resource fork, but rather overwrites it. This means if you set the resource fork to
abcd, and then set it again to 123, its value actually is 123d. The solution is to first remove the
resource fork using removexattr — this is how the current implementation works.

Resource forks can be fairly big: apparently, up to 16MB. While get/setxattr provide a special
interface for reading/writing resource forks in small chunks, the current implementation does
not use this: one big buffer is allocated via malloc. This should be OK, as otherwise the memory
usage of these programs is fairly small. Typically, resource forks are around 30-50KB (for custom
icons).

Other xattrs are small — com.apple.FinderInfo is 32 bytes, and there seems to be a 4KB limit
on all other xattrs (but that could change).

6.2 Directories

Directories can have xattrs, but apparently not a resource fork. Directories can also have BSD
flags, a crtime, and ACLs. These are all preserved.

6.3 ACLs

Files, directories, and even symbolic links can have ACLs (but see below regarding anomalies
with ACLs and symbolic links). The function acl_get_link_np is used to fetch ACLs. The
function acl_set_file is used to set the ACL for all files other than symbolic links (again,
see below). The functions acl_delete_file_np, etc., are supposed to delete ACLs; however,
they simply do not work (on either 10.4 or 10.5). To delete an ACL, we replace a non-empty
ACL by an empty ACL. To store and retrieve ACLs from xattr containers, one might hope to use
acl_to_text and acl_from_text; however, these are buggy and can leak memory. These rou-
tines were rewritten, both to fix the bugs, and to provide greater functionality in terms of identity
mapping.

6.4 Symbolic Links

Symbolic links can have xattrs, but apparently not a resource fork. In fact, under OSX version
10.4, all symlinks get created with a com.apple.FinderInfo xattr, with a special "type" and
"creator" values. Somewhat mysteriously, this behavior has been modified under version 10.5 of
OSX, so that now these values are "masked out", and symbolic links will (normally) not have a
com.apple.FinderInfo xattr. If you restore files created under version 10.4 on a version 10.5
machine, these funny xattrs on symbolic links will appear to vanish. If you restore files created
under version 10.5 on a version 10.4 machine, all of these funny xattrs will appear to disappear

23

temporarily, but (due to some funny caching phenomenon) they will come back if you reboot or
remount the filesystem); in any case, this does not seem to cause a problem: the Finder will still
properly interpret symbolic links, even if the "type" and "creator" values are not set properly via
setxattr (indeed, GetFileInfo will still show the correct values).

The current implementation will preserve xattrs for symbolic links.

Symbolic links also apparently have a crtime. With the --crtime flag, split_xattr will store
the crtime of the symlink. join_xattr will attempt to restore it (using setattrlist); however,
on OSX version 10.4, it quietly fails, while on version 10.5 this works.

Another quirk of symlinks is that they can have BSD flags on an HFS+ volume. This contrary to
the BSD documentation, which says they cannot. In the implementation, lstat is used to ob-
tain these flags, but they are set with setattrlist, rather than chflags (there is no lchflags,
at least on version 10.4 of OSX).

Similarly, to set the permissions of a symlink, setattrlist, rather than chmod, is used, because
the latter always follows through symlinks (there is no lchmod, at least on version 10.4 of OSX).

Similarly, to set the mtime of a symlink, the function setattrlist is called, rather than utimes,
as again, this does not follow symlinks and also does not set the atime – unfortunately, just as for
crtime, this does not work on OSX version 10.4, but does work on version 10.5.

Symbolic links can even have ACLs. In version 10.5 of OSX, you can easily attach ACLs to a sym-
bolic link in the Info panel of the GUI, by applying the security properties of a directory to its
contents. However, setting the ACL of a symbolic link from a C program is trickier. The function
acl_set_link_np is documented to do just this; however, in versions 10.4 and 10.5, it does
nothing at all. In 10.5, the way one can do this is as follows: get a file descriptor for the symbolic
link using open with the O_SYMLINK flag, and then pass this file descriptor to acl_set_fd_np.
Unfortunately, there seems to be no way to get a file descriptor for a symbolic link in 10.4 (the
O_SYMLINK flag is not supported). Any attempt to set an ACL, or clear a non-empty ACL, on a
symbolic link using the xbup tools under 10.4 will yield an error.

6.5 Hard links

Hard links are not treated specially by split_xattr or join_xattr, but this should not cause
any problems.

If the same file appears twice in a directory structure via two different hard links, then
split_xattrwill generate two different (but identical) xattr containers; if join_xattr restores
both of these xattr containers to the same file, the metadata will be properly restored.

If you want rsync to preserve hard links, you have to run it with the -H option; however, this can
be quite expensive.

6.6 Special files

HFS+ filesystems allow traditional Unix "special" file types, such as devices and FIFOs. Appar-
ently, such special files may have BSD Flags and a crtime, but not xattrs and ACLs.

24

split_xattr and join_xattr do not give these special files any special treatment, and cor-
rectly preserve and restore their metadata.

rsync can be used to copy FIFOs to a remote server, even if you are not root on that server.
Unfortunately, to copy devices, you need to be root on the remote server. Luckily, you will never
run across these special file types among normal "user" files — normally, all devices are in the
directory /dev.

6.7 ctime anomalies

As already mentioned above, changing any metadata of a file (including permissions, BSD flags,
xattrs, and ACLs) should (in theory) update the ctime of the file. This appears to be the case in all
circumstances, except for one: removing the com.apple.FinderInfo extended attribute via
the removexattr function does not.

6.8 32-bit crtime and mtime

crtime and mtime are encoded as a 32-bit quantity when stored externally in an xattr container.
This makes them susceptible to the "Y2038 bug".

6.9 Unicode file names

No special processing is done with respect to unicode file names; however, this should not cause
a problem.

HFS+ uses UTF8 encoding of unicode characters in file names. However, it enforces a partic-
ular "normal form": if there are two ways to encode a unicode character in UTF8, HFS+ will
always internally store the file name in its preferred encoding. Other Unix file systems generally
allow completely arbitrary character sequences as file names, and do not enforce any particular
normal form. This can cause problems when you are backing up files from a non-HFS+ filesys-
tem to an HFS+ filesystem (but recent versions of rsync provide an --iconv option that miti-
gates this problem). However, there should be no problem at all backing up HFS+ to non-HFS+
filesystems, and later restoring: the remote filesystem should preserve the encoding preferred by
HFS+.

7 Copying

Copyright 2007–2008 Victor Shoup.

This program is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.

25

8 Version History

Version 2.0 (December 2, 2008) extensive modifications: preservation of ACLs and ownership,
more robust and reliable, improved documentation

NOTE:

• The internal format of xattr containers created by this version is not compatible with
those created with versions 1.x .

• The naming convention of xattr containers generated by split_xattr and read by
join_xattr has changed from versions 1.x .

For these reasons, if you are currently backing up using version 1.x of the xbup tools, you
should do a full backup using v2.0. To restore xattr contaners created by versions 1.x , you
will have to use version 1.x of the software.

Version 1.3 (April 13, 2008) changed xbup_helper script to run mkdir to create subdirectories
as necessary...this allows one to run xbup --local in a newly created directory

Version 1.2 (Jan. 17, 2008) changed behavior of splitf_xattr, so that now every file gets an
entry in the output, even if there is no metadata — this ensures that restorating using
joinf_xattr works more like join_xattr

Version 1.1 (November 1, 2007) initial release

26

	Introduction
	Possible solutions
	rsync-.4
	rdiff-backup
	Commercial backup tools
	xbup

	Macintosh Metadata Madness
	Traditional Unix metadata
	xattrs (extended attributes)
	BSD Flags
	crtime (creation time)
	ACLs (access control lists)
	rsync-.4 metadata limitations

	Installation
	Commands
	Testing
	Implementation Notes
	Resource Forks
	Directories
	ACLs
	Symbolic Links
	Hard links
	Special files
	ctime anomalies
	32-bit crtime and mtime
	Unicode file names

	Copying
	Version History

